Login New user?  
02- Progress in Fractional Differentiation and Applications
An International Journal
               
 
 
 
 
 
 
 
 
 
 
 
 

Content
 

Volumes > Vol. 1 > No. 2

 
   

A new Definition of Fractional Derivative without Singular Kernel

PP: 73-85
Author(s)
Michele Caputo, Mauro Fabrizio,
Abstract
In the paper, we present a new definition of fractional derivative with a smooth kernel which takes on two different representations for the temporal and spatial variable. The first works on the time variables; thus it is suitable to use the Laplace transform. The second definition is related to the spatial variables, by a non-local fractional derivative, for which it is more convenient to work with the Fourier transform. The interest for this new approach with a regular kernel was born from the prospect that there is a class of non-local systems, which have the ability to describe the material heterogeneities and the fluctuations of different scales, which cannot be well described by classical local theories or by fractional models with singular kernel.

  Home   About us   News   Journals   Conferences Contact us Copyright naturalspublishing.com. All Rights Reserved