
Appl. Math. Inf. Sci. 13, No. 5, 821-829 (2019) 821

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/130516

New Ostrowski Type Inequalities for Coordinated

(s,m)−Convex Functions in the Second Sense

Miguel J. Vivas-Cortez1,∗, Carlos Garcı́a2, Artion Kashuri 3 and Jorge E. Hernández Hernández 4
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Abstract: In the present work we introduce the class of (s,m)-convex functions on the coordinates and some new Ostrowski-type

inequalities are deduced for this kind of generalized convex functions. The results obtained have the absolute value of the second

partial derivative with respect to the coordinates (∂ 2 f /∂ r∂ t) in the aforementioned class and bounded, as a necessary condition. This

generalizes the results for convex functions of [10]. Also, some corollary is presented.
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1 Introduction

Let f : I ⊂ [0,+∞) → R be a mapping differentiable in
I◦, the interior of the interval I, such that f ′ ∈ L [a,b],
where a,b∈ I and a < b. If | f ′(x)| ≤M, then the following
inequality holds

∣

∣

∣
f (x)−

1

b− a

∫ b

a
f (u)du

∣

∣

∣
≤

M

b− a

[ (x− a)2 +(b− x)2

2

]

.

This result is known in the literature as the Ostrowski
inequality. Recently, many generalizations of the
Ostrowski inequality for functions of bounded variation,
Lipschitzian, monotone, absolutely continuous, convex
functions, s-convex, h-convex and (m,h1,h2)-convex
among others [1,3,5,4,8] has appeared. In this work we
give new Ostrowski-type inequalities for functions
coordinated (s,m)-convex.

2 Preliminaries

Let us consider now a bi-dimensional interval△ := [a,b]×
[c,d] in R

2 with a < b and c < d, a mapping f : △→ R is

said to be convex on △ if the inequality

f (λx+(1−λ )z,λy+(1−λ )w) ≤ λ f (x,y)+(1−λ ) f (z,w),

holds for all (x,y), (z,w) ∈ △ and λ ∈ [0,1]. The
mapping f is said to be concave on the co-ordinates on △
if the above inequality holds in reversed direction, for all
(x,y), (z,w) ∈△ and λ ∈ [0,1].

A modification for convex (concave) functions on △,
which is also known as coordinated convex (concave)
functions, was introduced by S. S. Dragomir [6,7] as
follows:
A function f : △ → R is said to be convex (concave) on
the co-ordinates on △ if the partial mappings
fy : [a,b] → R, fy(u) = f (u,y) and fx : [c,d] → R,
fx(v) = f (x,v) are convex (concave) where defined for all
x ∈ [a,b], y ∈ [c,d].

A formal definition for coordinates convex (concave)
functions may be stated in:

Definition 1. [9] A mapping f : △ → R is said to be

convex on the coordinates on △ if the inequality

f (tx+(1− t)y,ru+(1− r)w)
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≤ tr f (x,u) + t(1− r) f (x,w)

+ r(1− t) f (y,u)+ (1− t)(1− r) f (y,w), (1)

holds for all t,r ∈ [0,1] and (x,u), (y,w) ∈ △. The

mapping of f is concave on the coordinates on △ if the

inequality (1.1) holds in reversed direction.

Clearly, every convex (concave) mapping f : △ → R is
convex (concave) on the coordinates. Furthermore, there
exists coordinated convex (concave) function not convex
(concave), (see for instance [6,7]).

The concept of s-convex functions on the coordinates
in the second sense was introduced by Alomari and Darus
in [2] as a generalization of the coordinates convexity.

Definition 2([2]). The mapping f : △ → R is s-convex

in the second sense on △ if

f (λ x+(1−λ )z,λ y+(1−λ )w)

≤ λ
s f (x,y)+ (1−λ )s f (z,w),

holds for all (x,y), (z,w) ∈ △ , λ ∈ [0,1] with some fixed

s ∈ (0,1].

A function f : △→R is called s-convex in the second
sense on the coordinates on △ if the partial mappings
fy : [a,b] → R, fy(u) = f (u,y) and fx : [c,d] → R,
fx(v) = f (x,v), are s-convex in the second sense for all
y ∈ [c,d], x ∈ [a,b] and s ∈ (0,1], i.e., the partial
mappings fy and fx are s-convex in the second sense with
some fixed s ∈ (0,1].
A formal definition of co-ordinated s-convex function in
second sense may be stated as follows:

Definition 3. A function f : △→R is called s-convex in

the second sense on the co-ordinates on △ if

f (tx+(1− t)y,ru+(1− r)w)

≤ tsrs f (x,u)+ ts(1− r)s f (x,w)

+ rs(1− t)s f (y,u)+ (1− t)s(1− r)s f (y,w) (2)

holds for all t,r ∈ [0,1] and (x,u), (y,w) ∈ △, for some

fixed s ∈ (0,1]. The mapping f is s-concave on the

co-ordinates on △ if the inequality (1.2) holds in reversed

direction for all t,r ∈ [0,1] and (x,y), (u,w) ∈ △ with

some fixed s ∈ (0,1].

The following lemma can be found in [11].

Lemma 1. [11] Let f : △ → R be a twice partial

differentiable mapping on △◦. If
∂ 2 f

∂ r∂ t
∈ L (△), then the

following identity holds:

f (x,y)+
1

(b−a)(d −c)

∫ b

a

∫ d

c
f (u,v)dvdu−A

=
(x−a)2(y−c)2

(b−a)(d −c)
×

∫ 1

0

∫ 1

0
rt

∂ 2

∂ r∂ t
f (tx+(1− t)a,ry+(1− r)c)drdt

−
(x−a)2(d −y)2

(b−a)(d −c)
×

∫ 1

0

∫ 1

0
rt

∂ 2

∂ r∂ t
f (tx+(1− t)a,ry+(1− r)d)drdt

−
(b−x)2(y−c)2

(b−a)(d −c)
×

∫ 1

0

∫ 1

0
rt

∂ 2

∂ r∂ t
f (tx+(1− t)b,ry+(1− r)c)drdt

+
(b−x)2(d −y)2

(b−a)(d −c)
×

∫ 1

0

∫ 1

0
rt

∂ 2

∂ r∂ t
f (tx+(1− t)b,ry+(1− r)d)drdt

for all (x,y) ∈△, where

A =
1

d−c

∫ d

c
f (x,v)dv+

1

b−a

∫ b

a
f (u,y)du.

3 Main Results

In this section we present new Ostrowski types for
functions co-ordinates (s,m)-convex.

Definition 4. A function f : △ → R is called

(s,m)-convex in the second sense on the co-ordinates on

△ if the inequality

f (tx+(1− t)y,ru+(1− r)w)

≤ tsrs f (x,u)+mts(1− r)s f (x,w)

+mrs(1− t)s f (y,u)+m2(1− t)s(1− r)s f (y,w)

holds for all t,r ∈ [0,1] and (x,u), (y,w) ∈ △, for some

fixed s,m ∈ (0,1]. The mapping of f is (s,m)-concave on

the co-ordinates on △ if the inequality holds in reversed

direction for all t,r ∈ [0,1] and (x,u), (y,w) ∈△.

Theorem 1. Let f : △ → R be a twice partial

differentiable mapping on △◦ such that
∂ 2 f

∂ r∂ t
∈ L(△). If

∣

∣

∣

∂ 2 f

∂ r∂ t

∣

∣

∣
is (s,m)-convex in the second sense on the

co-ordinates on △ with s,m ∈ (0,1] and
∣

∣

∣

∂ f

∂ r∂ t
(x,y)

∣

∣

∣
≤ M, (x,y) ∈ △, then the following
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inequality holds

∣

∣

∣
f (x,y)+

1

(b− a)(d− c)

∫ b

a

∫ d

c
f (u,v)dudv−A

∣

∣

∣

≤
M(s+ 1+m)2

(s+ 1)2(s+ 2)2
×

[ (x− a)2 +(x− b)2

b− a

][ (y− c)2 +(y− d)2

d − c

]

for all (x,y) ∈△, where A is defined in Lemma 1.

Proof. By an application of Lemma 1, we have

∣

∣

∣
f (x,y)+

1

(b− a)(d− c)

∫ b

a

∫ d

c
f (u,v)dudv−A

∣

∣

∣

≤
(x− a)2(y− c)2

(b− a)(d− c)
×

∫ 1

0

∫ 1

0
rt

∣

∣

∣

∂ 2 f

∂ r∂ t
(tx+(1− t)a,ry+(1− r)c)

∣

∣

∣
drdt

+
(x− a)2(y− d)2

(b− a)(d− c)
×

∫ 1

0

∫ 1

0
rt

∣

∣

∣

∂ 2 f

∂ r∂ t
(tx+(1− t)a,ry+(1− r)d)

∣

∣

∣
drdt

+
(x− b)2(y− c)2

(b− a)(d− c)
×

∫ 1

0

∫ 1

0
rt

∣

∣

∣

∂ 2 f

∂ r∂ t
(tx+(1− t)b,ry+(1− r)c)

∣

∣

∣
drdt

+
(x− b)2(y− d)2

(b− a)(d− c)
×

∫ 1

0

∫ 1

0
rt

∣

∣

∣

∂ 2 f

∂ r∂ t
(tx+(1− t)b,ry+(1− r)d)

∣

∣

∣
drdt

=
(x− a)2(y− c)2

(b− a)(d− c)
×

∫ 1

0

∫ 1

0
rt

∣

∣

∣

∂ 2 f

∂ r∂ t

(

tx+m(1− t)
a

m
,ry+m(1− r)

c

m

)
∣

∣

∣
drdt

+
(x− a)2(y− d)2

(b− a)(d− c)
×

∫ 1

0

∫ 1

0
rt

∣

∣

∣

∂ 2 f

∂ r∂ t

(

tx+m(1− t)
a

m
,ry+m(1− r)

d

m

)
∣

∣

∣
drdt

+
(x− b)2(y− c)2

(b− a)(d− c)
×

∫ 1

0

∫ 1

0
rt

∣

∣

∣

∂ 2 f

∂ r∂ t

(

tx+m(1− t)
b

m
,ry+m(1− r)

c

m

)∣

∣

∣
drdt

+
(x− b)2(y− d)2

(b− a)(d− c)
×

∫ 1

0

∫ 1

0
rt

∣

∣

∣

∂ 2 f

∂ r∂ t

(

tx+m(1− t)
b

m
,ry+m(1− r)

d

m

)∣

∣

∣
drdt

for all (x,y) ∈△.

Now, using the coordinates (s,m)-convex

∣

∣

∣

∂ 2 f

∂ r∂ t

∣

∣

∣
, we

have

∫ 1

0

∫ 1

0
rt

∣

∣

∣

∂ 2 f

∂ r∂ t

(

tx+m(1− t)
a

m
,ry+m(1− r)

c

m

)
∣

∣

∣
drdt

≤
∣

∣

∣

∂ 2 f

∂ r∂ t
(x,y)

∣

∣

∣

∫ 1

0

∫ 1

0
rs+1ts+1drdt

+
∣

∣

∣

∂ 2 f

∂ r∂ t
(x,

c

m
)
∣

∣

∣

∫ 1

0

∫ 1

0
mts+1r(1− r)sdrdt

+
∣

∣

∣

∂ 2 f

∂ r∂ t
(

a

m
,y)

∣

∣

∣

∫ 1

0

∫ 1

0
mrs+1t(1− t)sdrdt

+
∣

∣

∣

∂ 2 f

∂ r∂ t
(

a

m
,

c

m
)
∣

∣

∣

∫ 1

0

∫ 1

0
m2rt(1− t)s(1− r)sdrdt. (3)

Since
∫ 1

0

∫ 1

0
rs+1ts+1drdt =

1

(s+ 2)2

∫ 1

0

∫ 1

0
rs+1t(1− t)sdrdt =

∫ 1

0

∫ 1

0
ts+1r(1− r)sdrdt

=
1

(s+ 1)(s+ 2)2

∫ 1

0

∫ 1

0
rt(1− t)s(1− r)sdrdt =

1

(s+ 1)2(s+ 2)2

and we have that

∣

∣

∣

∂ f

∂ r∂ t
(x,y)

∣

∣

∣
≤ M for (x,y) ∈ △, hence

from (3), we obtain

∫ 1

0

∫ 1

0
rt

∣

∣

∣

∂ 2 f

∂ r∂ t

(

tx+m(1− t)
a

m
,ry+m(1− r)

c

m

)∣

∣

∣
drdt

≤
M

(s+ 2)2
+

2Mm

(s+ 1)(s+ 2)2
+

Mm2

(s+ 1)2(s+ 2)2

=
M(s+ 1+m)2

(s+ 1)2(s+ 2)2
. (4)

Analogously, we also have

∫ 1

0

∫ 1

0
rt

∣

∣

∣

∂ 2 f

∂ r∂ t

(

tx+m(1− t)
a

m
,ry+m(1− r)

d

m

)
∣

∣

∣
drdt

≤
M(s+ 1+m)2

(s+ 1)2(s+ 2)2
, (5)

∫ 1

0

∫ 1

0
rt

∣

∣

∣

∂ 2 f

∂ r∂ t

(

tx+m(1− t)
b

m
,ry+m(1− r)

c

m

)∣

∣

∣
drdt

≤
M(s+ 1+m)2

(s+ 1)2(s+ 2)2
(6)
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∫ 1

0

∫ 1

0
rt

∣

∣

∣

∂ 2 f

∂ r∂ t

(

tx+m(1− t)
b

m
,ry+m(1− r)

d

m

)∣

∣

∣
drdt

≤
M(s+ 1+m)2

(s+ 1)2(s+ 2)2
(7)

Now using of inequalities (4),(5),(6) and (7) and the fact
that

(x− a)2(y− c)2 +(x− a)2(y− d)2

+(x− b)2(y− c)2 +(x− b)2(y− d)2

= [(x− a)2 +(x− b)2][(y− c)2 +(y− d)2],

it follows that

∣

∣

∣
f (x,y)+

1

(b− a)(d− c)

∫ b

a

∫ d

c
f (u,v)dudv−A

∣

∣

∣

≤
M(s+ 1+m)2

(s+ 1)2(s+ 2)2
×

[ (x− a)2 +(x− b)2

b− a

][ (y− c)2 +(y− d)2

d− c

]

.

The proof is complete.

Theorem 2. Let f : △ → R be a twice partial

differentiable mapping on △◦ such that
∂ 2 f

∂ r∂ t
∈ L(△). If

∣

∣

∣

∂ 2 f

∂ r∂ t

∣

∣

∣

q

is (s,m)-convex in the second sense on the

co-ordinates on △ with s,m ∈ (0,1], p,q > 1, 1
p
+ 1

q
= 1

and

∣

∣

∣

∂ f

∂ r∂ t
(x,y)

∣

∣

∣
≤ M, (x,y) ∈ △, then the following

inequality holds

∣

∣

∣
f (x,y)+

1

(b− a)(d− c)

∫ b

a

∫ d

c
f (u,v)dudv−A

∣

∣

∣

≤
M

(1+ p)
2
q

(m+ 1

s+ 1

)
2
q
×

[ (x− a)2 +(x− b)2

b− a

][ (y− c)2 +(y− d)2

d− c

]

,

for all (x,y) ∈△, where A is defined as in Lemma 1.

Proof. Using Lemma 1 and the Hölder inequality for
double integrals, we have

∣

∣

∣
f (x,y)+

1

(b−a)(d −c)

∫ b

a

∫ d

c
f (u,v)dudv−A

∣

∣

∣

≤
(

∫ 1

0

∫ 1

0
rpt pdrdt

)
1
p
×

[ (x−a)2(y−c)2

(b−a)(d −c)
×

(

∫ 1

0

∫ 1

0

∣

∣

∣

∂ 2 f

∂ r∂ t
(tx+(1− t)a,ry+(1− r)c)

∣

∣

∣

q
drdt

)
1
q

+
(x−a)2(y−d)2

(b−a)(d −c)
×

(

∫ 1

0

∫ 1

0

∣

∣

∣

∂ 2 f

∂ r∂ t
(tx+(1− t)a,ry+(1− r)d)

∣

∣

∣

q
drdt

)
1
q

+
(x−b)2(y−c)2

(b−a)(d −c)
×

(

∫ 1

0

∫ 1

0

∣

∣

∣

∂ 2 f

∂ r∂ t
(tx+(1− t)b,ry+(1− r)c)

∣

∣

∣

q
drdt

)
1
q

+
(x−b)2(y−d)2

(b−a)(d −c)
×

(

∫ 1

0

∫ 1

0

∣

∣

∣

∂ 2 f

∂ r∂ t
(tx+(1− t)b,ry+(1− r)d)

∣

∣

∣

q
drdt

)
1
q
]

=
(

∫ 1

0

∫ 1

0
rpt pdrdt

)
1
p
×

[ (x−a)2(y−c)2

(b−a)(d −c)
×

(

∫ 1

0

∫ 1

0

∣

∣

∣

∂ 2 f

∂ r∂ t
(tx+m(1− t)

a

m
,ry+m(1− r)

c

m
)
∣

∣

∣

q
drdt

)
1
q

+
(x−a)2(y−d)2

(b−a)(d −c)
(

∫ 1

0

∫ 1

0

∣

∣

∣

∂ 2 f

∂ r∂ t
(tx+m(1− t)

a

m
,ry+m(1− r)

d

m
)
∣

∣

∣

q
drdt

)
1
q

+
(x−b)2(y−c)2

(b−a)(d −c)
×

(

∫ 1

0

∫ 1

0

∣

∣

∣

∂ 2 f

∂ r∂ t
(tx+m(1− t)

b

m
,ry+(1− r)

c

m
)
∣

∣

∣

q
drdt

)
1
q

+
(x−b)2(y−d)2

(b−a)(d −c)
× (8)

(

∫ 1

0

∫ 1

0

∣

∣

∣

∂ 2 f

∂ r∂ t
(tx+m(1− t)

b

m
,ry+m(1− r)

d

m
)
∣

∣

∣

q
drdt

)
1
q
]

for all (x,y) ∈△.

Since

∣

∣

∣

∂ 2 f

∂ r∂ t

∣

∣

∣

q
is (s,m)-convex in the second sense on the co-

ordinates on △, we have

∫ 1

0

∫ 1

0

∣

∣

∣

∂ 2 f

∂ r∂ t

(

tx+m(1− t)
a

m
,ry+m(1− r)

c

m

)
∣

∣

∣

q
drdt

≤
∣

∣

∣

∂ 2 f

∂ r∂ t
(x,y)

∣

∣

∣

q
∫ 1

0

∫ 1

0
rstsdrdt

+
∣

∣

∣

∂ 2 f

∂ r∂ t

(

x,
c

m

)
∣

∣

∣

q
∫ 1

0

∫ 1

0
mts(1− r)sdrdt

≤
∣

∣

∣

∂ 2 f

∂ r∂ t

( a

m
,y
)
∣

∣

∣

q
∫ 1

0

∫ 1

0
mrs(1− t)sdrdt

+
∣

∣

∣

∂ 2 f

∂ r∂ t

( a

m
,

c

m

)
∣

∣

∣

q
∫ 1

0

∫ 1

0
m2(1− t)s(1− r)sdrdt (9)

Since
∫ 1

0

∫ 1

0
rstsdrdt =

1

(s+1)2

∫ 1

0

∫ 1

0
ts(1− r)sdrdt =

∫ 1

0

∫ 1

0
rs(1− t)sdrdt

=
1

(s+1)2

c© 2019 NSP
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and
∫ 1

0

∫ 1

0
(1− r)s(1− t)sdrdt =

1

(s+1)2
.

Hence from (8) and since

∣

∣

∣

∂ 2 f

∂ r∂ t

∣

∣

∣
≤ M, (x,y) ∈△, we obtain

∫ 1

0

∫ 1

0

∣

∣

∣

∂ 2 f

∂ r∂ t

(

tx+m(1− t)
a

m
,ry+m(1− r)

c

m

)
∣

∣

∣

q
drdt

≤
Mq

(s+1)2
+2

mMq

(s+1)2
+

m2Mq

(s+1)2

=
Mq(m+1)2

(s+1)2

Similarly, we also have the following inequalities

∫ 1

0

∫ 1

0

∣

∣

∣

∂ 2 f

∂ r∂ t

(

tx+m(1− t)
a

m
,ry+m(1− r)

d

m

)
∣

∣

∣

q
drdt

≤
Mq(m+1)2

(s+1)2

∫ 1

0

∫ 1

0

∣

∣

∣

∂ 2 f

∂ r∂ t

(

tx+m(1− t)
b

m
,ry+m(1− r)

c

m

)
∣

∣

∣

q
drdt

≤
Mq(m+1)2

(s+1)2

and

∫ 1

0

∫ 1

0

∣

∣

∣

∂ 2 f

∂ r∂ t

(

tx+m(1− t)
b

m
,ry+m(1− r)

d

m

)∣

∣

∣

q
drdt

≤
Mq(m+1)2

(s+1)2
.

Since
∫ 1

0

∫ 1

0
rpt pdrdt =

1

(1+ p)2

and the above inequalities (9), we obtain

∣

∣

∣
f (x,y)+

1

(b−a)(d −c)

∫ b

a

∫ d

c
f (u,v)dudv−A

∣

∣

∣

≤ (
1

(1+ p)2
)

1
p

[ (x−a)2(y−c)2

(b−a)(d −c)

(Mq(m+1)2

(s+1)2

)
1
q

+
(x−a)2(y−d)2

(b−a)(d −c)

(Mq(m+1)2

(s+1)2

)
1
q

+
(x−b)2(y−c)2

(b−a)(d −c)

(Mq(m+1)2

(s+1)2

)
1
q

+
(x−b)2(y−d)2

(b−a)(d −c)

(Mq(m+1)2

(s+1)2

)
1
q
]

=
M

(1+ p)
2
p

(
m+1

s+1
)

2
q

[ (x−a)2 +(x−b)2

b−a

][ (y−c)2 +(y−d)2

d −c

]

The proof is complete.

Theorem 3. Let f : △ → R be a twice partial

differentiable mapping on △◦ such that
∂ 2 f

∂ r∂ t
∈ L(△). If

∣

∣

∣

∂ 2 f

∂ r∂ t

∣

∣

∣

q

is (s,m)-convex in the second sense on the

co-ordinates on △ with s,m ∈ (0,1], q ≥ 1 and
∣

∣

∣

∂ f

∂ r∂ t
(x,y)

∣

∣

∣
≤ M, (x,y) ∈ △, then the following

inequality holds

∣

∣

∣
f (x,y)+

1

(b− a)(d− c)

∫ b

a

∫ d

c
f (u,v)dudv−A

∣

∣

∣

≤
M

4

( 2(s+ 1+m)

(s+ 1)(s+ 2)

)
2
q
×

[ (x− a)2 +(x− b)2

b− a

][ (y− c)2 +(y− d)2

d− c

]

,

for all (x,y) ∈△, where A is defined in Lemma 1.

Proof. Suppose q ≥ 1. From Lemma 1 and using the
power mean inequality for double integrals, we have

∣

∣

∣
f (x,y)+

1

(b−a)(d −c)

∫ b

a

∫ d

c
f (u,v)dudv−A

∣

∣

∣

≤
(

∫ 1

0

∫ 1

0
rtdrdt

)1− 1
q
×

[ (x−a)2(y−c)2

(b−a)(d −c)
×

(

∫ 1

0

∫ 1

0
rt

∣

∣

∣

∂ 2 f

∂ r∂ t

(

tx+m(1− t)
a

m
,ry+m(1− r)

c

m

)
∣

∣

∣

q
drdt

)
1
q

+
(x−a)2(y−d)2

(b−a)(d −c)
×

(

∫ 1

0

∫ 1

0
rt

∣

∣

∣

∂ 2 f

∂ r∂ t

(

tx+m(1− t)
a

m
,ry+m(1− r)

d

m

)
∣

∣

∣

q
drdt

)
1
q

+
(x−b)2(y−c)2

(b−a)(d −c)
×

(

∫ 1

0

∫ 1

0
rt

∣

∣

∣

∂ 2 f

∂ r∂ t

(

tx+m(1− t)
b

m
,ry+m(1− r)

c

m

)
∣

∣

∣

q
drdt

)
1
q

+
(x−b)2(y−d)2

(b−a)(d −c)
× (10)

(

∫ 1

0

∫ 1

0
rt

∣

∣

∣

∂ 2 f

∂ r∂ t

(

tx+m(1− t)
b

m
,ry+m(1− r)

d

m

)
∣

∣

∣

q
drdt

)
1
q
]

for all (x,y) ∈△.

Similarly, as in Theorem 2 that

∣

∣

∣

∂ 2 f

∂ r∂ t

∣

∣

∣

q

is (s,m)-convex

in the second sense on the co-ordinates on △ and
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∣

∣

∣

∂ 2 f

∂ r∂ t
(x,y)

∣

∣

∣
≤ M for all (x,y) ∈△, we have

∫ 1

0

∫ 1

0
rt

∣

∣

∣

∂ 2 f

∂ r∂ t

(

tx+m(1− t)
a

m
,ry+m(1− r)

c

m

)∣

∣

∣

q

drdt

≤
∣

∣

∣

∂ 2 f

∂ r∂ t
(x,y)

∣

∣

∣

q
∫ 1

0

∫ 1

0
rs+1ts+1drdt

+
∣

∣

∣

∂ 2 f

∂ r∂ t

(

x,
c

m

)
∣

∣

∣

q
∫ 1

0

∫ 1

0
mts+1r(1− r)sdrdt

≤
∣

∣

∣

∂ 2 f

∂ r∂ t

( a

m
,y
)
∣

∣

∣

q
∫ 1

0

∫ 1

0
mt(1− t)srs+1drdt

+
∣

∣

∣

∂ 2 f

∂ r∂ t

( a

m
,

c

m

)
∣

∣

∣

q
∫ 1

0

∫ 1

0
m2t(1− t)sr(1− r)sdrdt

≤
Mq

(s+ 2)2
+

mMq

(s+ 1)(s+ 2)2

+
mMq

(s+ 1)(s+ 2)2
+

m2Mq

(s+ 1)2(s+ 2)2

=
Mq(s+ 1+m)2

(s+ 1)2(s+ 2)2
.

In a similar way, we have the following inequalities

∫ 1

0

∫ 1

0
rt

∣

∣

∣

∂ 2 f

∂ r∂ t

(

tx+m(1− t)
a

m
,ry+m(1− r)

d

m

)
∣

∣

∣

q

drdt

≤
Mq(s+ 1+m)2

(s+ 1)2(s+ 2)2
,

∫ 1

0

∫ 1

0
rt

∣

∣

∣

∂ 2 f

∂ r∂ t

(

tx+m(1− t)
b

m
,ry+m(1− r)

c

m

)
∣

∣

∣

q

drdt

≤
Mq(s+ 1+m)2

(s+ 1)2(s+ 2)2

and

∫ 1

0

∫ 1

0
rt

∣

∣

∣

∂ 2 f

∂ r∂ t

(

tx+m(1− t)
b

m
,ry+m(1− r)

d

m

)∣

∣

∣

q

drdt

≤
Mq(s+ 1+m)2

(s+ 1)2(s+ 2)2
.

Now using the above inequalities and

∫ 1

0

∫ 1

0
rtdrdt =

1

4
,

in (10), we obtain

∣

∣

∣
f (x,y)+

1

(b− a)(d− c)

∫ b

a

∫ d

c
f (u,v)dudv−A

∣

∣

∣

≤ (
1

4
)1− 1

q

[ (x− a)2(y− c)2

(b− a)(d− c)

(Mq(s+ 1+m)2

(s+ 1)2(s+ 2)2

)
1
q

+
(x− a)2(y− d)2

(b− a)(d− c)

(Mq(s+ 1+m)2

(s+ 1)2(s+ 2)2

) 1
q

+
(x− b)2(y− c)2

(b− a)(d− c)

(Mq(s+ 1+m)2

(s+ 1)2(s+ 2)2

)
1
q

+
(x− b)2(y− d)2

(b− a)(d− c)

(Mq(s+ 1+m)2

(s+ 1)2(s+ 2)2

)
1
q
]

=
M

4

( 2(s+ 1+m)

(s+ 1)(s+ 2)

)
2
q
×

[ (x− a)2 +(x− b)2

b− a

][ (y− c)2 +(y− d)2

d − c

]

.

The proof is complete.

4 Some applications obtained.

The Theorem 2.2 in [10] is obtained from Theorem 1 as a
corollary.

Corollary 1. Let f : △ → R be a twice partial

differentiable mapping on △◦ such that
∂ 2 f

∂ r∂ t
∈ L(△). If

∣

∣

∣

∂ 2 f

∂ r∂ t

∣

∣

∣
is s-convex in the second sense on the

co-ordinates on △ with s ∈ (0,1] and

∣

∣

∣

∂ f

∂ r∂ t
(x,y)

∣

∣

∣
≤ M,

(x,y) ∈△, then the following inequality holds

∣

∣

∣
f (x,y)+

1

(b− a)(d− c)

∫ b

a

∫ d

c
f (u,v)dudv−A

∣

∣

∣

≤
M

(s+ 1)2

[ (x− a)2 +(x− b)2

b− a

][ (y− c)2 +(y− d)2

d− c

]

for all (x,y) ∈△, where A is defined in Lemma 1.

Proof. Letting m = 1 in Theorem 1 we get the desired
result.

From Theorem 2 we get the Theorem 2.3 in [10].

Corollary 2.Let f : △ → R be a twice partial

differentiable mapping on △◦ such that
∂ 2 f

∂ r∂ t
∈ L(△). If

∣

∣

∣

∂ 2 f

∂ r∂ t

∣

∣

∣

q

is s-convex in the second sense on the

co-ordinates on △ with s ∈ (0,1], p,q > 1, 1
p
+ 1

q
= 1 and

∣

∣

∣

∂ f

∂ r∂ t
(x,y)

∣

∣

∣
≤ M, (x,y) ∈ △, then the following
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inequality holds

∣

∣

∣
f (x,y)+

1

(b− a)(d− c)

∫ b

a

∫ d

c
f (u,v)dudv−A

∣

∣

∣

≤
M

(1+ p)
2
q

( 2

s+ 1

)
2
q
×

[ (x− a)2 +(x− b)2

b− a

][ (y− c)2 +(y− d)2

d− c

]

,

for all (x,y) ∈△, where A is defined as in Lemma 1.

Proof. Letting m = 1 in Theorem 2 we get the desired
result.

From Theorem 3 we obtain the Theorem 2.4 in [10].

Corollary 3. Let f : △ → R be a twice partial

differentiable mapping on △◦ such that
∂ 2 f

∂ r∂ t
∈ L(△). If

∣

∣

∣

∂ 2 f

∂ r∂ t

∣

∣

∣

q

is s-convex in the second sense on the

co-ordinates on △ with s,m ∈ (0,1], q ≥ 1 and
∣

∣

∣

∂ f

∂ r∂ t
(x,y)

∣

∣

∣
≤ M, (x,y) ∈ △, then the following

inequality holds

∣

∣

∣
f (x,y)+

1

(b− a)(d− c)

∫ b

a

∫ d

c
f (u,v)dudv−A

∣

∣

∣

≤
M

4

( 2

s+ 1

) 2
q
×

[ (x− a)2 +(x− b)2

b− a

][ (y− c)2 +(y− d)2

d− c

]

,

for all (x,y) ∈△, where A is defined in Lemma 1.

Proof. Letting m = 1 in Theorem 3 we get the desired
result.

For the m−convexity of
∂ 2 f

∂ r∂ t
we have the following

inequalities.

Corollary 4. Let f : △ → R be a twice partial

differentiable mapping on △◦ such that
∂ 2 f

∂ r∂ t
∈ L(△). If

∣

∣

∣

∂ 2 f

∂ r∂ t

∣

∣

∣
is m-convex on the co-ordinates on △ with

m ∈ (0,1] and

∣

∣

∣

∂ f

∂ r∂ t
(x,y)

∣

∣

∣
≤ M, (x,y) ∈ △, then the

following inequality holds

∣

∣

∣
f (x,y)+

1

(b− a)(d− c)

∫ b

a

∫ d

c
f (u,v)dudv−A

∣

∣

∣

≤
M(2+m)2

36
×

[ (x− a)2 +(x− b)2

b− a

][ (y− c)2 +(y− d)2

d − c

]

for all (x,y) ∈△, where A is defined in Lemma 1.

Corollary 5. Let f : △ → R be a twice partial

differentiable mapping on △◦ such that
∂ 2 f

∂ r∂ t
∈ L(△). If

∣

∣

∣

∂ 2 f

∂ r∂ t

∣

∣

∣

q

is m-convex on the co-ordinates on △ with

m ∈ (0,1], p,q > 1, 1
p
+ 1

q
= 1 and

∣

∣

∣

∂ f

∂ r∂ t
(x,y)

∣

∣

∣
≤ M,

(x,y) ∈△, then the following inequality holds

∣

∣

∣
f (x,y)+

1

(b− a)(d− c)

∫ b

a

∫ d

c
f (u,v)dudv−A

∣

∣

∣

≤
M

(1+ p)
2
q

(m+ 1

2

)
2
q
×

[ (x− a)2 +(x− b)2

b− a

][ (y− c)2 +(y− d)2

d− c

]

,

for all (x,y) ∈△, where A is defined as in Lemma 1.

Corollary 6. Let f : △ → R be a twice partial

differentiable mapping on △◦ such that
∂ 2 f

∂ r∂ t
∈ L(△). If

∣

∣

∣

∂ 2 f

∂ r∂ t

∣

∣

∣

q

is m-convex on the co-ordinates on △ with

s,m ∈ (0,1], q ≥ 1 and

∣

∣

∣

∂ f

∂ r∂ t
(x,y)

∣

∣

∣
≤ M, (x,y) ∈△, then

the following inequality holds

∣

∣

∣
f (x,y)+

1

(b− a)(d− c)

∫ b

a

∫ d

c
f (u,v)dudv−A

∣

∣

∣

≤
M

4

(m+ 2

3

)
2
q
×

[ (x− a)2 +(x− b)2

b− a

][ (y− c)2 +(y− d)2

d− c

]

,

for all (x,y) ∈△, where A is defined in Lemma 1.

When
∂ 2 f

∂ r∂ t
is convex we have the following

inequalities whose proofs follows the same method of the
above results.

Corollary 7. Let f : △ → R be a twice partial

differentiable mapping on △◦ such that
∂ 2 f

∂ r∂ t
∈ L(△). If

∣

∣

∣

∂ 2 f

∂ r∂ t

∣

∣

∣
is convex on the co-ordinates on △ and

∣

∣

∣

∂ f

∂ r∂ t
(x,y)

∣

∣

∣
≤ M, (x,y) ∈ △, then the following

inequality holds

∣

∣

∣
f (x,y)+

1

(b− a)(d− c)

∫ b

a

∫ d

c
f (u,v)dudv−A

∣

∣

∣

≤
M

4

[ (x− a)2 +(x− b)2

b− a

][ (y− c)2 +(y− d)2

d− c

]

for all (x,y) ∈△, where A is defined in Lemma 1.

c© 2019 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


828 M. J. Vivas-Cortez et al.: Ostrowski Type Inequalities and (s,m)−Convex Functions in...

Corollary 8. Let f : △ → R be a twice partial

differentiable mapping on △◦ such that
∂ 2 f

∂ r∂ t
∈ L(△). If

∣

∣

∣

∂ 2 f

∂ r∂ t

∣

∣

∣

q

is convex on the co-ordinates on △, p,q > 1,

1
p
+ 1

q
= 1 and

∣

∣

∣

∂ f

∂ r∂ t
(x,y)

∣

∣

∣
≤ M, (x,y) ∈ △, then the

following inequality holds

∣

∣

∣
f (x,y)+

1

(b− a)(d− c)

∫ b

a

∫ d

c
f (u,v)dudv−A

∣

∣

∣

≤
M

(1+ p)
2
q

[ (x− a)2 +(x− b)2

b− a

][ (y− c)2 +(y− d)2

d− c

]

,

for all (x,y) ∈△, where A is defined as in Lemma 1.

Corollary 9. Let f : △ → R be a twice partial

differentiable mapping on △◦ such that
∂ 2 f

∂ r∂ t
∈ L(△). If

∣

∣

∣

∂ 2 f

∂ r∂ t

∣

∣

∣

q

is convex on the co-ordinates on △ , q ≥ 1 and
∣

∣

∣

∂ f

∂ r∂ t
(x,y)

∣

∣

∣
≤ M, (x,y) ∈ △, then the following

inequality holds

∣

∣

∣
f (x,y)+

1

(b− a)(d− c)

∫ b

a

∫ d

c
f (u,v)dudv−A

∣

∣

∣

≤
M

4

[ (x− a)2 +(x− b)2

b− a

][ (y− c)2 +(y− d)2

d− c

]

,

for all (x,y) ∈△, where A is defined in Lemma 1.

5 Conclusions

In this work the class of (s,m)−convex functions in the
second sense on the coordinates has been introduced, and
some Ostrowski-type inequalities for this kind of
functions has been established. From Theorems 1, 2 and 3
some corollary, as applications to s−convexity in the
second sense, m−convexity and the classical convexity on
the coordinates, has been found,also, a generalization of
the results presented by M. A. Latif and S.S. Dragomir
[10].
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Ecuador (PUCE) for the financial support under the
project: Fuciones convexas generalizadas y algunas
desigualdades. Also M.Sc. Carlos Garcı́a and M.Sc. Jorge
E. Hernández Hernández wants to thank Consejo de
Desarrollo Cientı́fico, Humanı́stico y Tecnológico from
Universidad Centroccidental Lisandro Alvarado
(Venezuela) for the technical support given in the
development of this work.

The authors are grateful to the anonymous referee for a
careful checking of the details and for helpful comments
that improved this paper.

References

[1] M. Alomari, M. Darus, Some Otrowski type inequalities for

quasi-convex functions with applications to special means,

RGMIA Res. Rep. Coll., 13(1), (2010), preprint.

[2] M. Alomari, M. Darus, The Hadamards Hadamards

inequality for s-convex function of 2-variables on the co-

ordinates. , Int. Journal of Math. Anal., 2 (13), 629-638,

(2008).

[3] M. Alomari, M. Darus, S.S. Dragomir, P. Cerone, Otrowski

type inequalities for functions whose derivatives are s-convex

in the second sense. , Appl. Math. Lett. , 23, 1071-1076

,(2010).

[4] M. Alomari, Several Inequalities of Hermite-Hadamard,

Ostrowski and Simpson type for s-convex, Quasi-convex and

r-convex mappings and applications. Thesis Submitted in

Fulfilment for the degree of Doctor of Philosophy. Faculty

of Science and Technology University Kebangsaan Malaysia,

Bangi, (2008).

[5] P. Cerone, S.S. Dragomir, Ostrowski type inequalities

for functions whose derivative satisfy certain convexity

assumptions, Demonstr. Math., 37(2), 299-308, (2004).

[6] S.S. Dragomir, On Hadamard’s inequatity for convex

functions on the co-ordinates in a rectangle from the plane,

Taiwanese Journal of Mathematics , 5, 775-788, 2001.

[7] S.S Dragomir , C.E.M Pearse, Selected

Topics on Hermite-Hadamard Inequalities and

Applications, RGMIA Monographs, Victoria

University, Online: htt p : //www.sta f f .vu.edu.au

/RGMIA/monographs/hermitehadamard.html ,(2002).

[8] J.E. Hernández Hernández, Ostrowski Type Fractional

Integral Operator Inequalities for (m,h1,h2)−Convex

Functions, Mayfeb Journal of Mathematics, 4, 13-28, (2017).

[9] M.A. Latif, M. Alomari, Hadamard-type inequalities

for product two convex functions on the co-ordinates.

International Mathematical Forum, 4(47), 2327-2338,

(2009).

[10] M. A. Latif , S.S. Dragomir, New Ostrowski type

inequalities for co-ordinated s-covex functions in the second

sense., Le Matematiche., LXVII (1), 57-72, (2012).

[11] M.A. Latif, S. Hussain, S.S. Dragomir, New Ostrowski

type inequalities for co-ordinated convex functions. RGMIA

Research Report Collection, 14, (2011).

[12] M. A. Noor, K. I. Noor , M. U. Awan, Generalized

Convexity and Integral Inequalities, Appl. Math. & Inf. Sci.,

1, 233-243, (2015).

[13] M. A. Noor, On some characterizations of non-convex

functions, Nonlinear Anal. For., 12 (2), 193-201, (2007).

[14] A. Ostrowski, die Absolutabweichung einer differentiebaren

Funk-tion von ihrem Integralmittelwert, Comment. Math.

Helv., 10, 226227, (1938).

[15] M. J. Vivas-Cortez, C. Garcı́a, Ostrowski Type Inequalities

for Function Whose Derivatives are (m,h1,h2)-Convex.

Appl. Math. Inf. Sci., 11 (1), 79-86,(2017).

c© 2019 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 13, No. 5, 821-829 (2019) / www.naturalspublishing.com/Journals.asp 829

Miguel J. Vivas
C. earned his Ph.D. degree
from Universidad Central de
Venezuela, Caracas, Distrito
Capital (2014) in the field
Pure Mathematics (Nonlinear
Analysis), and earned
his Master Degree in Pure
Mathematics in the area of

Differential Equations (Ecological Models). He has vast
experience of teaching and research at university levels. It
covers many areas of Mathematical such as Inequalities,
Bounded Variation Functions and Ordinary Differential
Equations. He has written and published several research
articles in reputed international journals of mathematical
and textbooks. He was Titular Professor in Decanato de
Ciencias y Tecnologı́a of Universidad Centroccidental
Lisandro Alvarado (UCLA), Barquisimeto, Lara state,
Venezuela, and invited Professor in Facultad de Ciencias
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