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Abstract: In the present article, the rotational motion of a symmetricrigid body (gyro) about a fixed point close to Lagrange’s caseis
studied. This gyro is acted upon by a perturbing moment vector, a third component of a gyro moment vector, and a variable restoring
moment vector. The angular velocity of the gyro is assumed tobe sufficiently large, its direction is close to the axis of dynamic
symmetry, and the perturbing moments are small as compared to the restoring ones. These conditions permit to introduce asmall
parameter. Averaged systems of the equations of motion in the first and second approximations are obtained. Also, the evolution
of the precession angle up to the second approximation is determined. The graphical representations of the attained angles and its
interpretations are presented.
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1 Introduction

The rotational motion of a rigid body about a fixed point
in a uniform force field or in a Newtonian one is one of
the important problems in the theoretical classical
mechanics. These problems require complicated
mathematical techniques because that motion is governed
by six non-linear differential equations with three first
integrals [1]. The Poincar ´e small parameter method [2]
was used to find the first terms of the series expansion of
the periodic solutions of the equations of motion of a
heavy rigid body about a fixed point when the body spins
rapidly about the dynamical symmetry axis [3]. Some
other methods are used to obtain the solutions of the
rotational motion of a symmetric rigid body can be found
in the works e. g. [4,5,6]. In [6], the authors studied the
motion of the electromagnetic gyroscopic motion when
the gyroscope moves under the influence of the uniform
force field, Newtonian one, perturbed torques and
restoring ones. The perturbed rotational motions of a rigid
body near to Lagrange’s case was investigated in [7,8,9,
10] when the restoring moment is constant and when
depends on the nutation angle. Almost, the regular
perturbed rotational motions of a rigid body have been
studied in [11]. In [12], the author studied the same
problem analogous to Lagrange top. In [13], the perturbed

motions of a rotating symmetric gyrostat is studied when
the gyrostatic moment is acted. The asymptotic behaviour
of a Lagrange gyroscope under the influence of a weak
perturbing moment for the case that closed to regular
precessions is investigated in [14]. The analytical
solutions of the equations of motion are obtained using
the averaging method, including in [15,16,17]. The
motion of a gyro having one fixed point and subject to
frictional forces is studied in [18]. The frictional forces
are accounted for by a model wherein the frictional torque
is proportional to the angular velocity. The problem of
capture and escape from resonance phenomena in
rotational motions of a rigid body in a viscous medium is
investigated in [19] when certain nonlinear integrable
Hamiltonian systems are subjected to non-hamiltonian
perturbation. In [20], the author studied the motion of a
rigid body around the center of mass when it descends
through the atmosphere that has a considerable effect on
the behaviour of the body. The most complex problems
arise when the resonance is considered. The spatial
chaotic motion of a blunt body in the atmosphere when
there is a periodic change in the position of the center of
mass is studied in [21]. This study is considered when the
body acted by a restoring moment, described by a
biharmonic dependence on the spatial angle of attack, a
small perturbing moment, due to the periodic change in
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the position of the center of mass, and a small damping
moment. In [22], the uncontrolled motions of
blunt-shaped spacecrafts of small elongation descended in
the rarefied atmosphere are considered. The analytical
formulas for the initial angular velocity of the spacecraft
and for spacecraft’s geometrical parameters were
obtained. Works [23] and [24], are devoted to the study of
perturbed motion of the rigid bodies and spacecraft,
including the action of small harmonic disturbances,
variability of the inertia-mass parameters, and also
damping effect. In [25], the gyrostat’s motion is
considered in cases of unperturbed motion. In [26,27,28],
the dual-spin spacecraft with variable structure was
considered; also the attitude motion’s evolutions were
investigated with the help of full mathematical models for
systems with variable structure.

In this paper, the rotational motion of a symmetric
rigid body (gyro) with mass distribution near to
Lagrange’s case is investigated. We considered that the
gyro is acted upon by the third component of the
gyrostatic moment vectorλ about the movingz axis, a
variable restoring momentk which is the result of a
uniform magnetic field of strengthH and a point chargee
that located on the symmetry axis, and a perturbing
moment vectorM. It is assumed that the angular velocity
of the gyro is very high, near to the symmetry axis, and
the projections of the perturbing moment vector onto the
principal axes of inertia of the body are small as
compared to the restoring moment. Consequently, one can
introduce a small parameterε << 1. The averaging
method [15,16], is used to obtain the averaged systems of
the equations of motion and to evaluate the nutation and
precession angles up to the first and second
approximations. The graphical plots of these
approximations are presented. This problem is considered
as one of the important problems in mechanics. The
importance of this problem is due to the wide range of its
applications in various fields such as in the aero-planes,
the spacecrafts, the submarines and the compasses.
Moreover, the study of the rotational motion of the gyro
has been motivated by industrial applications in many
fields. This is because the rigid bodies provide a
convenient model for the satellite-gyrostat, spacecraft and
like, see [29,30,31,32].

2 Description of the problem

Consider the motion of a dynamically symmetrical rigid
body (gyro) about a fixed pointO, a fixed coordinate
systemOXYZ with origin O and another rotating one
Oxyz fixed in the gyro and whose axes are directed along
the principal axes of inertia of the gyro. This body rotates
under the influence of the third componentλ3 (acted on
the rotatingz axis) of the gyrostatic moment vectorλ in
which the first two components are considered to be zero,
perturbing moment vectorM ≡ (M1,M2,M3) in which

Mi(i = 1,2,3) represent the projections of the perturbing
moment vector onto the principal inertial axes.

Let us consider the case of the gyro in which the
ellipsoid of inertia is close to the ellipsoid of rotation and
the center of mass of the gyro is displaced relative to
center of massOc by an amount of orderε. Then, the
principal moments of inertia and the coordinates of the
center of gravity can be written in the forms [33]

A = A0(1+ εδ1), B = B0(1+ εδ2), A0 6=C, (1)

xc = εx1ℓ, yc = εy1ℓ, zc = ℓ, (2)

whereA, B andC are the principal moments of inertia;δ1
andδ2 are dimensionless constants of order unity;A0 is
the characteristic value of moments of inertia;ε is a small
parameter;xc, yc andzc are the coordinates ofOc; x1 and
y1 are dimensionless quantities that are considered finite
in comparison withε; andℓ is the distance fromO to the
center of gravity.

Taking into consideration that, the gyro rotates under
the action of the third component of the gyro moment
vector and Lorentz forceF = e(V ∧ H) [34] in which
V = e(ω ∧ ℓ′), ℓ′ ≡ (0,0, ℓ′) whereℓ′ is the distance of the
position of the point chargee to O andω is the angular
velocity vector of the gyro. So, the restoring moment of
the Lorentz force has the formM = e(H.ℓ′)(ω ∧ ℓ′).

Therefore, this moment has the components
eHℓ′2q cosθ , −eHℓ′2p cosθ and 0 in projection onto the
principal axes of inertia of the gyro.

Then the equations of motion similar to Lagrange’s
case take the form [6,7,8,9,10]






























































Aṗ+(C−A)qr+ qλ3 = mgℓsinθ cosϕ +M1,

Aq̇+(A−C)pr− pλ3 =−mgℓsinθ sinϕ +M2,

Cṙ = M3; Mi = Mi(p,q,r,ψ ,θ ,ϕ , t),

θ̇ = pcosϕ − qsinϕ ,

ϕ̇ = r− (psinϕ + qcosϕ)cotθ ,

ψ̇ = (psinϕ + qcosϕ)cscθ .

(3)

Here,p, q andr are the components of the angular velocity
vector;θ , ϕ andψ are the nutation, the self-rotations and
the precession angles respectively;m is the mass of the
gyro; andg is the acceleration due to gravity.

So, our aim is to investigate the behavior of this system
under the following assumptions [8]

p2+ q2 ≪ r2, Cr2 ≫ k, |Mi| ≪ k (i = 1,2,3). (4)

According to these assumptions, one can introduce the
small parameterε as







p = εP, q = εQ, k = εK,

Mi = ε2M∗
i (P,Q,r,ψ ,θ ,ϕ , t) (i = 1,2,3).

(5)

c© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 4, 1453-1464 (2016) /www.naturalspublishing.com/Journals.asp 1455

3 The approximate solutions

In this section we will obtain the approximate solution
using the averaging method [15,16]. Taking into account
inequalities (4), the total restoring momentK takes the
form

K = mgℓ+ eHℓ′2cosθ
√

p2+ q2. (6)

Substituting (2) and (5) into system (3), one obtains
directly































































































A0Ṗ+[(C−A0)r+(1+ εδ1)λ3]Q = K[(1− εδ1)

×sinθ cosϕ − εy1cosθ ]+ ε[δ1(C−A0)+ δ2A0]Qr,

A0Q̇+[(A0−C)r− (1− εδ2)λ3]P =−K[(1− εδ2)

×sinθ sinϕ − εx1cosθ ]+ ε[δ2(A0−C)− δ1A0]Pr,

Cṙ = ε2K sinθ (y1sinϕ − x1cosϕ),

θ̇ = ε(Pcosϕ −Qsinϕ),

ϕ̇ = r− ε(Psinϕ +Qcosϕ)cotθ ,

ψ̇ = ε(Psinϕ +Qcosϕ)cscθ .
(7)

The projections of the perturbing moment vector onto the
principal axes of inertia can be obtained from (3)-(5) in the
form



















































M∗
1 =−K(δ1sinθ cosϕ + y1cosθ )

−[δ1λ3− r(δ1(C−A0)+ δ2A0)]Q,

M∗
2 = K(δ2sinθ sinϕ + x1cosθ )

+[δ2λ3+ r(δ2(A0−C)− δ1A0)]P,

M∗
3 = K sinθ (y1sinϕ − x1cosϕ).

(8)

For ε = 0, the last four equations of (7) give

r = r0, ψ = ψ0, θ = θ0, ϕ = r0t +ϕ0, (9)

wherer0, ψ0, θ0 andϕ0 are constants, that equal to the
corresponding variables at the beginning of motion.

Substituting (9) into the first two equations of system
(7), the following system of second order differential
equations can be obtained







P̈+ y2
0P = Z0K0sinθ0sin(r0t +ϕ0),

Q̈+ y2
0Q = Z0K0sinθ0 cos(r0t +ϕ0).

(10)

Integration of this system yields






P = acosγ0+ bsinγ0+E0sinθ0sin(r0t +ϕ0),

Q = asinγ0− bcosγ0+E0sinθ0 cos(r0t +ϕ0),
(11)

where



































a = P0−E0sinθ0 sinϕ0, b =−Q0+E0sinθ0 cosϕ0,

γ0 = y0t, y0 = n0+(A0)−1λ3,

n0 = (C−A0)(A0)−1r0, E0 = z0k0/(y2
0− r2

0),

z0 = (A0)−1(y0− r0), k0 = K0, |y0/r0| ≤ 1, r0 6= 0.

Here, P0, Q0 and K0 are the initial values of the
corresponding variablesP, Q and K, while the variable
γ = γ0 has the meaning of the oscillation phase. System
(7) is substantially nonlinear; therefore one can introduce
an additional variableγ, defined as







γ̇ = y, γ(0) = 0; y = n+(A0)−1λ3,

n = (C−A0)(A0)−1r.
(12)

Equations (9) and (11) determine the general solution of
system (7) forε = 0. According to (9), equations (11) can
be rewritten in equivalent forms forP andQ, consequently
one obtains



































a = Pcosγ +Qsinγ −E sinθ sinα,

b = Psinγ −Qcosγ +E sinθ cosα;

α = γ +ϕ , E = zK/(y2− r2),

z = (A0)−1(y− r).

(13)

The third component of the angular velocity vector can be
rewritten in terms of a new variableδ as follows

r = r0+ εδ . (14)

We change system (7) and (12) from the variables
P, Q, r, ψ , θ , ϕ andγ to the new onesa, b, δ , ψ , θ , α
and γ in which α = γ + ϕ by using equations (13) and
(14) as transformation formula from the variablesP, Q
andr to the variablesa, b andδ . After some reductions,
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we obtain the following system









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




























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




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








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










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


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










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


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






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



































































ȧ = ε(A0)−1(M0
1 cosγ +M0

2 sinγ)− εE(acosα

+bsinα)cosθ sinα +(A0)−1{K −E[C(r0+ εδ )

+λ3]}sinθ cosα + εE cosθ cosα[(asinα − bcosα)

+E sinθ ]+K−1E sinθ sinα{−K̇ + εδ̇ z−1[2yE(C

−A0)(A0)−1−2E(r0+ εδ )−K(C−2)A0)−1]},

ḃ = ε(A0)−1(M0
1 sinγ −M0

2 cosγ)+ εE(acosα

+bsinα)cosθ cosα +(A0)−1{K −E[C(r0+ εδ )

+λ3]}sinθ sinα + εE cosθ sinα[(asinα − bcosα)

+E sinθ ]+K−1E sinθ cosα{K̇ − εδ̇ z−1[2yE(C

−A0)(A0)−1−2E(r0+ εδ )−K(C−2)A0)−1]},

δ̇ = εC−1M0
3, θ̇ = ε(acosα + bsinα),

ψ̇ = ε(asinα − bcosα +E sinθ )cscθ ,

α̇ = (A0)−1(Cr0+λ3)+ ε[C(A0)−1δ

−(asinα − bcosα +E sinθ )cotθ ],

γ̇ = n0+(A0)−1[λ3+ ε(C−A0)δ ],
(15)

where

M0
i (a,b,δ ,ψ ,θ ,α,γ, t)=M∗

i (P,Q,r,ψ ,θ ,ϕ , t); i= 1,2,3.
(16)

According to (13) and (14), the functionsM0
i are

periodic functions ofα andγ with periods of 2π . System
(15) is more convenient for further study and can be
rewritten in the form



































































ẋ = ∑2
i=1 ε iFi(x,y),

ẏ1 = ω1+∑2
i=1 ε igi(x,y),

ẏ2 = ω2+∑2
i=1 ε ihi(x,y);

ω1 = (A0)−1(Cr0+λ3),

ω2 = (A0)−1[(C−A0)r0+λ3],

x(0) = x0, y1(0) = y10, y2(0) = y20,

(17)

wherex = (x1,x2, ...,x5) is the vector valued function and
y1, y2 are the fast variables. The vector valued functions
Fi, gi andhi(i = 1,2) can be defined from the right hand
sides of (15).

We denote the two-dimensional vector(g1, h1) by z1.
Hence, we assume that the perturbing momentsM∗

i are
independent oft.

Accordance to the procedure in [16], we will seek a
change of variables of system (17) as

x = x∗+
2

∑
i=1

ε iui(x
∗,y∗)+ ...,

y = y∗+
2

∑
i=1

ε ivi(x
∗,y∗)+ ...,

y = (y1,y2), x∗ = (x∗1,x∗2, ...,x∗5),

y∗ = (y∗1,y∗2), z1 = (g1,h1).

In terms of the new variablesx∗ and y∗, we can rewrite
system (17) as



















ẋ∗ = ∑2
i=1ε iAi(x∗)+ ...,

ẏ∗ = ω +∑2
i=1 ε iBi(x∗)+ ...;

ω = (ω1,ω2).

(18)

We can choose the vector valued functionsu1, v1 and
u2 in the following suitable forms [15]











































ω ∂u1
∂y∗ = F1(x∗,y∗)−A1(x∗),

ω ∂v1
∂y∗ = z1(x∗,y∗)−B1(x∗),

ω ∂u2
∂y∗ = F2(x∗,y∗)+ ( ∂F1

∂x∗ )u1+( ∂F1
∂y∗ )v1

−( ∂u1
∂x∗ )A1(x∗)− ( ∂u1

∂y∗ )B1(x∗)−A2(x∗),

(19)

where


























































A1(x∗) =
1

4π2

∫ 2π
0

∫ 2π
0 F1(x∗,y∗)dy∗1dy∗2,

B1(x∗) =
1

4π2

∫ 2π
0

∫ 2π
0 z1(x∗,y∗)dy∗1dy∗2,

A2(x∗) = 1
4π2

∫ 2π
0

∫ 2π
0 [F2(x∗,y∗)+ ( ∂F1

∂x∗ )u1

+( ∂F1
∂y∗ )v1− ( ∂u1

∂x∗ )A1(x∗)

−( ∂u1
∂y∗ )B1(x∗)]dy∗1dy∗2,

(20)

and ( ∂ f
∂x ) will be treated as matrix of partial derivatives

‖ ∂ fi
∂x j ‖ (i, j = 1,2, ...,5). The averaged system for the slow

variables up to the first and second approximations can be
determined as







ẋ∗1 = εA1(x∗1), ẋ∗2 = ∑2
i=1 ε iAi(x∗2),

x∗1(0) = x10, x∗2(0) = x20.
(21)
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Also, for the fast variables the system of equations in the
second approximation can be obtained from

ẏ∗2 = ω + εB1(x
∗
1(t)), y∗2(0) = y0; y0 = (y10,y20). (22)

Integrating (22) to obtain

y∗2(t) = y0+ωt + ε
∫ t

0
B1(x

∗
1(s))ds. (23)

The second system of (21) can be transformed into

dx∗2
dτ

= A1(x
∗
2)+ εA2(x

∗
2); τ = εt. (24)

Thus, the time interval(0, τ
ε ) which we considered in the

original system (16) becomes(0,T ). The solution of
system (24) can be expressed as

x∗2(τ) = x(1)(τ)+ εx(2)(τ)+O(ε2). (25)

Making use of (24) and (25), to obtain the following
systems























dx(1)
dτ = A1(x(1)),

dx(2)
dτ = A′

1(x
(1)(τ))x(2)+A2(x(1)(τ)),

x(1)(0) = x0, x(2)(0) = 0.

(26)

where A′
1(x) = ‖

∂Ai
1

∂x j ‖ represents the matrix of partial
derivatives.

Since the first system of (26) is linear, then it is easier
to be investigated than system (24). So, its general solution
can be expressed as

X ′(τ) = A1(X), X(0,c) = c = x0.

Hence, the expressions for the functionsx(1)(τ) and
x(2)(τ) can be obtained in the forms







x(1)(τ) = X(τ,x0),

x(2)(τ) = Φ(τ)
∫ τ

0 Φ−1(τ) η(τ)dτ,
(27)

where

Φ(τ) = ‖
∂X(τ,c)

∂c
‖c=x0, η = A2(X(τ,x0)).

Hence, the vector functionsxν
ε (t) andyν

ε (t) take the forms






















xν
ε (t) = x(1)(εt)+ εx(2)(εt)+ εu1(x(1)(εt),y0

+ωt + ε
∫ t

0 B1(x(1)(εs))ds),

yν
ε (t) = y0+ωt + ε

∫ t
0 B1(x(1)(εs))ds),

(28)

Thus, the approximate solutionsxν
ε (t) and yν

ε (t) can
be obtained, with the aid of Fourier series we can solve
equations (19). Consequently using (20) to get the vector
valued functionA2(x∗). Moreover, with the aid of (27) we
can determine easily from (26) the solutionsx(1)(τ) and
x(2)(τ). Then the required approximationxν

ε (t) andyν
ε (t)

can be constructed directly from (28).

4 The case of dissipative moments

Now, we try to apply the averaging procedure in the
previous section to obtain the approximate solutions of
both the nutation and precession angles up to the first and
second approximations. Taking into account relations (6)
and (8); then one can write in terms of the variables
a,b,δ ,ψ ,θ ,α and γ the first three equations of system
(15) in the following form, while the other equations of
the same system remain unchanged


















































































































ȧ = ε(A0)−1[K(R1sinθ +R2cosθ )+A0r0(δ2

−δ1)R3+(Cr0−λ3)(δ1R4cosγ − δ2R5sinγ)]

+sinθ cosα(R6+ ε2E2cosθ )+ εER7cosθ sinα

−EK−1(K̇ + εδ̇z−1R8)sinθ sinα,

ḃ = ε(A0)−1[−K(R9sinθ +R10cosθ )−A0r0(δ2

−δ1)R11+(Cr0−λ3)(δ1R4sinγ − δ2R5cosγ)]

+sinθ sinα(R6+ ε2E2cosθ )+ εER12cosθ cosα

+EK−1(K̇ + εδ̇z−1R13)sinθ cosα,

δ̇ = εKC−1(y1sinϕ − x1cosϕ)sinθ .
(29)

where










































































































































































R1 = (δ2 sinϕ sinγ − δ1cosϕ cosγ),

R2 = (x1sinγ − y1cosγ),

R3 = [asin2γ − bcos2γ +E sinθ cos(ϕ − γ)],

R4 = (asinγ − bcosγ +E sinθ cosϕ),

R5 = (acosγ + bsinγ +E sinθ sinϕ),

R6 = (A0)−1[K −E(C(r0+ εδ )+λ3)],

R7 = a(sinα − cosα)− b(sinα + cosα),

R8 = [2E(r0+ εδ )− (A0)−1(2y(C−A0)+K(C−2))],

R9 = (δ1 cosϕ sinγ + δ2sinϕ cosγ),

R10 = (x1cosγ + y1sinγ),

R11 = [bsin2γ + acos2γ +E sinθ sin(ϕ − γ)],

R12 = a(cosα − sinα)− b(cosα + sinα),

R13 = [2E(r0+ εδ )− (A0)−1(2y(C−A0)−K(C−2))].

To construct the approximate solution of system (29), we
apply the averaging procedure being described in the
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previous section. The vector valued functionsA1,B1 and
B2 that defined by (20) take the forms



















































































A1 = {A(i)
1 }, B1 = {B( j)

1 }; (i = 1,2, ...,5), ( j = 1,2)

A(1)
1 =− b

2R14−
1
16(KE)−1Heℓ′2[R15R16−8aE2sec2 θ

× tan2 θ − bE−1secθ (R17R18−4ba2R19)],

A(2)
1 = a

2R14+
1
32(KE)−1Heℓ′2[R15R20−16bE2sec2 θ

× tan2 θ −E−1secθ (2aR17R19−4ab2R18)],

A(3)
1 = 0, A(4)

1 = E, A(5)
1 = 0,

B(1)
1 =C(A0)−1δ −E cosθ , B(2)

1 = (C−A0)(A0)−1δ ,
(30)

and



























































A(1)
2 = b

32K−1Heℓ′2[R21−2E−1(a2+ b2)

×R22csc2 θ −E−2(5a2+ b2)R23],

A(2)
2 =− a

32K−1Heℓ′2[R21−2E−1(a2+ b2)

×R22csc2 θ −E−2(a2+5b2)R23],

A(3)
2 = 0, A(4)

2 = Kδ (C−2A0)
R24

, A(5)
2 = 0.

(31)

where















































































































































R14 = (A0)−1(δ1+ δ2)(Cr0−λ3)+2E cosθ ,

R15 = 4E−1cotθ cscθ [2E2sin2 θ − (a2+ b2)],

R16 = byE(1− sinθ )+ bK(A0)−1sinθ ,

R17 = 3a2+ b2−4E2sin2 θ ,

R18 = yE(1− sinθ )+K(A0)−1sinθ ,

R19 = yE(1− sinθ )−K(A0)−1sinθ , R20 = 2aR19,

R21 = 8E2(2+ tan2 θ )sin3 θ +4cosθ (tan2 θ −2)

×(δ +E cosθ ),

R22 = 1+2(δE−1+ cosθ )cosθ −E(4+ tan2 θ )sin3 θ ,

R23 = (δ +E cosθ )secθ ,

R24 = (C2−2A0)(r0+ δ )+ (1+2A0)λ 2
3 .

Taking into account relations (30) for the slow and
fast variables, one can obtain easily the solution of the

averaged system (29) in the form



































































































a(1) = P0cotηt +Q0sinηt

−E0sinθ0sinηt +ϕ0,

b(1) =−P0cotηt +Q0sinηt

+E0sinθ0cosηt +ϕ0,

γ(1) = (A0)−1[(C−A0)r0+λ3]t,

α(1) =C(A0)−1r0+[(A0)−1λ3

−E0cosθ0]t +ϕ0,

ψ(1) = ψ0+ εE0t, θ (1) = θ0.

(32)

where






















η = (I2
1 − I2

2)
1
2 ;

I1 =
Cr0
2 (A0)−1(δ1+ δ2)+E0cosθ0,

I2 =
r0
2 [K(A0)−1+KC−1+E0] tanθ0sinθ0 sin2ϕ .

Making use of (28), (30), (31) and (32), we can
construct the components of the functionxν

ε (t)
corresponding to the anglesψ and θ in the case of
dissipative moments (8) in the form



































ψν
ε (t) = ψ0+ ε[E0t −R25cscθ0]+

1
4ε2[E0R26

+Heℓ′2R27+E2
0 sin2θ0],

θ ν
ε (t) = θ0+ εA0(Cr0)

−1[R28

+E0sinθ0cos(ηt +ϕ0−α(1))].

(33)

where






































R25 = A0(Cr0)
−1(a(1)cosα(1)+ b(1)sinα(1)),

R26 = 4r−1
0 (A0E0cosθ0− δ ),

R27 = (Cr0)
2 sin2 θ0+E2

0(1+ sin2 θ0),

R28 = a0cos(ηt −α(1))+ b0sin(ηt −α(1)).

5 Discussion of the results

This section is devoted to ascertain accuracy of the
solutions being achieved. Computer codes are presented
and carried out to investigate the graphical representations
for these solutions. Discussion of the results is given. For
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Fig. 1: Variation of the precession angleψ via t whenλ3 =
50 andλ3 = 100, with the same values ofθ0 = π/3 ande = 100.

the mentioned problem the following data are used



































A0 = 25kg.m2, C = 17kg.m2, ε = 0.001, M = 300kg,

ℓ= 25m, T = 12.566371, p0 = 0.015s−1,

q0 = 0.0005s−1, e = (100,300)coulomb, ℓ′ = 13m,

δ = 7, δ1 = 50, δ2 = 40, λ3 = (50,100)kg.m2.s−1.

Considerψ andθ to denote the solutionsψν
ε (t) and

θ ν
ε (t) obtained in the previous section respectively.

5.1 For the precession angle ψ

Here the concerned plots represent the functional time
dependence of both the amplitudes of the waves and the
oscillation frequencies revealing that (whenλ3 increases)
the amplitudes of the waves decrease and the frequency
numbers increase, see figures 1 and 2.
Also, when e increases, the amplitude of the waves
increase and the frequency number remain unchanged,
see figures 3 and 4. On other hand, whenθ0 increases the
amplitude of the waves decrease and the frequency
numbers remains unchanged, see figures 5 and 6. This
means that the gyro oscillates about the vertical fixed axis
and these oscillations decrease the amplitude of the waves
without change of the frequency numbers.

5.2 For the nutation angle θ

The amplitude of the waves decreases to some extent
when λ3 increases for the same values ofθ0 and e, see
figures 7 and 8. Also, we note also that, whenθ0
increases, the amplitude of the waves increases for the
same values ofe andλ3, see figures 9 and 10. The change

Fig. 2: Variation of the precession angleψ via t whenλ3 =
50 andλ3 = 100, with the same values ofθ0 = π/3 ande = 300.

Fig. 3: The evaluation of the precession angleψ via t whene =
100 ande = 300, with the same values ofθ0 = π/3 andλ3 = 50.

Fig. 4: The evaluation of the precession angleψ via t whene =
100 ande= 300, with the same values ofθ0 = π/3 andλ3 = 200.
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Fig. 5: The evaluation of the precession angleψ via t whenθ0 =
π/6 andθ0 = π/3, with the same values ofe = 100 andλ3 = 50.

Fig. 6: Illustration of the precession angleψ via t whenθ0 =
π/6 andθ0 = π/3, with the same values ofe= 100 andλ3 = 200.

Fig. 7: Illustration of the variation of nutation angleθ via t for a
nominal set of parametersθ0 = π/4, e = 200 andλ3 = 100.

Fig. 8: Illustration of the variation of nutation angleθ via t for a
nominal set of parametersθ0 = π/4, e = 200 andλ3 = 200.

Fig. 9: Illustration of the variation of nutation angleθ via t for a
nominal set of parametersθ0 = π/4, e = 200 andλ3 = 50.

Fig. 10: Illustration of the variation of nutation angleθ via t for
a nominal set of parametersθ0 = π/3, e = 200 andλ3 = 50.
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Fig. 11: Variation of the numerical solutionP versust whenθ0 =
π/6 andλ3 = 50.

Fig. 12: Variation of the numerical solutionP versust whenθ0 =
π/3 andλ3 = 50.

Fig. 13: Variation of the numerical solutionP versust whenθ0 =
π/6 andλ3 = 300.

Fig. 14: Variation of the numerical solutionP versust whenθ0 =
π/3 andλ3 = 300.

Fig. 15: Variation of the numerical solutionQ versust whenθ0 =
π/6 andλ3 = 50.

Fig. 16: Variation of the numerical solutionQ versust whenθ0 =
π/3 andλ3 = 50.
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Fig. 17: Variation of the numerical solutionQ versust whenθ0 =
π/6 andλ3 = 300.

Fig. 18: Variation of the numerical solutionQ versust whenθ0 =
π/3 andλ3 = 300.

of the nutation angle curves can be used to describe the
orientation of a ship or aircraft. So, the most important
practical applications of gyroscopes are met in devices for
measuring the orientation or maintaining the stability of
airplanes, spacecraft and submarines vehicles.

6 Numerical solutions

In this section, we are going to study the numerical
solution of system (10) that consists of two second order
differential equations. Taking into account the following
data that be used in this system to obtain the periodic
numerical solutions for eachP andQ.



















λ3 = (50,100)kg.m2.s−1, H = 10kg.(amper)−1s−2,

A0 = 25kg.m2, C = 17kg.m2, ℓ= 25m, ℓ′ = 13m,

p0 = 0.015s−1, q0 = 0.0005s−1, θ0 = (300,600).

Fig. 19: The grid lines represented in theQ−P plane whenθ0 =
π/6 andλ3 = 50.

Fig. 20: The grid lines represented in theQ−P plane whenθ0 =
π/3 andλ3 = 50.

Figures (11-14) and (15-18) represent the variation of
the numerical solutions for eachP and Q versus timet
respectively, when the initial value of the nutation angle
θ0 equals π/6 and π/3, moreover when the third
component of the gyrostatic moment vectorλ3 equals
50kg.m2.s−1 and 300kg.m2.s−1. Also, figures (19-22)
represent the variation of the numerical solutionsQ
againstP.

In view of these plots, it is clear that when the initial
value of the nutation angle increases fromπ/6 to π/3 for
the same value ofλ3, the amplitude of the waves
monotonically decreases with the stationary of frequency
numbers for eachP andQ, see figures (11,12) and (15,16)
respectively. Consequently the grid lines density does not
changed, see figures 19 and 20, while an elongation will
be occurred for bothP and Q axes as in figure 20 than
figure 19 i.e., whenθ0 changes fromπ/3 to π/6.

c© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 4, 1453-1464 (2016) /www.naturalspublishing.com/Journals.asp 1463

Fig. 21: The grid lines represented in theQ−P plane whenθ0 =
π/6 andλ3 = 300.

Fig. 22: The grid lines represented in theQ−P plane whenθ0 =
π/3 andλ3 = 300.

Also, when λ3 increases from 50kg.m2.s−1 to
300kg.m2.s−1 for the same value ofθ0, we observe that
the amplitude of the waves monotonically increases with
the increase of the frequency numbers for both solutions
P andQ, see figures (11,13), (12,14) and (15,17), (16,18).
On the other hand, we can see that, the grid lines density
decreases whenλ3 increases, see groups of figures (19,
21) and (20,12), while an elongation for eachP and Q
axes is observed.

From the above discussions, we can conclude that, the
great effect of the third component of the gyrostatic
moment vectorλ3 on the motion of the gyro with the
variation of the initial value of the nutation angle. The
obtained results can be used in a lot of modern industrial

applications like airplanes, submarines and ships to
improve any defect may be occurred.

7 Conclusion

The averaging method and its methodological treatment
are presented. This method is employed to get the
averaged systems of the equations of motion in both the
first and second approximations. The nutation angleθ ν

ε (t)
and precession angleψν

ε (t) are functionally dependent on
the timet. They are determined up to the first and second
approximations respectively and don’t contain the
perturbing moment parameters. The second and the third
term of ψν

ε (t) supplement the expression for the angular
precession velocityωp = E and there is no dependence
on the deviation of the center of gravity. The obtained
solutions are considered as a generalization of previously
obtained ones as Leshchenko et al. [8,33] (when
k = const, λ3 = 0 and in the absence of the point charge
e), as Leshchenko et al. [9] (whenk = k(θ ), λ3 = 0 and
when the magnetic field equal to zero) and as Cid et al.
[35] (whenMi = 0 and when the magnetic field vanishes).
The numerical periodic solutions forP and Q of the
system (10) are obtained and represented graphically. A
great effect of the third components of the gyro moment
λ3 is shown obviously from the graphical representations.
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