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Abstract: In the present article, the rotational motion of a symmetigi body (gyro) about a fixed point close to Lagrange’s dase
studied. This gyro is acted upon by a perturbing moment veatthird component of a gyro moment vector, and a variatdtoring
moment vector. The angular velocity of the gyro is assumebetsufficiently large, its direction is close to the axis ohdgnic
symmetry, and the perturbing moments are small as compar#tetrestoring ones. These conditions permit to introdusenall
parameter. Averaged systems of the equations of motiondrfitst and second approximations are obtained. Also, th&itmo
of the precession angle up to the second approximation errdeted. The graphical representations of the attainetearand its
interpretations are presented.
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1 Introduction motions of a rotating symmetric gyrostat is studied when
the gyrostatic moment is acted. The asymptotic behaviour
of a Lagrange gyroscope under the influence of a weak
perturbing moment for the case that closed to regular

Iprecessions is investigated in14]. The analytical

The rotational motion of a rigid body about a fixed point
in a uniform force field or in a Newtonian one is one of

the important problems in the theo_ret|ca| classma olutions of the equations of motion are obtained using
mechanlcs. These_z problems require cqmpllcate he averaging method, including in1%,16,17]. The
mathematical techniques because that motion is governer(ij]Otion of a gyro haviné one fixed poin't a|"1d subject to
by six non-linear differential equations with three first frictional forces is studied in18]. The frictional forces

mtegralsd[Lt]. ;I_’hg tl;m?catetsmall ??rr]ametgr methodZ].[ re accounted for by a model wherein the frictional torque
was used to find the Nrst tlerms of the Series expansion Ofg proportional to the angular velocity. The problem of

the periodic solutions of the equations of motion of acapture and escape from resonance phenomena in
he@‘é{ ”g'bd b??z a%OUt a f.'XGId point wthen th; bgdy SPINSyotational motions of a rigid body in a viscous medium is
r?ﬁ' y atr?ud N ynargﬁa sg/tm'meﬂ:y ax'l ]t'.[ Omi th investigated in 19 when certain nonlinear integrable
other methods are used to obtain the solutions o amiltonian systems are subjected to non-hamiltonian
rotaﬂonal motion of a symmetric rigid body can be found perturbation. In 20Q], the author studied the motion of a

n T.e wofrl;z €. ?'4£5' 6. In [?.]’ the autho'rs stu;;hed ”;16 rigid body around the center of mass when it descends
motion of the electromagnetic gyroscopic motion w enthrough the atmosphere that has a considerable effect on
the gyroscope moves under the influence of the unlforn}he behaviour of the body. The most complex problems

forcie 'f|eld, Ngrvxr:toma? gng’ {)(?['rturbled t;orquefs "?‘n%arise when the resonance is considered. The spatial
restoring ones. The perturbed rotational motions ot a Mgide 4 qtic motion of a blunt body in the atmosphere when

body near to Lagrange’s case was investigated’j8, , there is a periodic change in the position of the center of

10] when the restoring.moment is constant and Whenmass is studied ir2[l]. This study is considered when the
depends on the nutation angle. Almost, the regularbody acted by a restoring moment, described by a
perturbed rotational motions of a rigid body have beenbiharmonic dependence on the spatial angle of attack, a

studied in L1]. In [12], the author studied the same ; P :
problem analogous to Lagrange top. 18], the perturbed small perturbing moment, due to the periodic change in
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the position of the center of mass, and a small dampingVii(i = 1,2,3) represent the projections of the perturbing
moment. In R2, the uncontrolled motions of momentvector onto the principal inertial axes.
blunt-shaped spacecrafts of small elongation descended in Let us consider the case of the gyro in which the
the rarefied atmosphere are considered. The analyticallipsoid of inertia is close to the ellipsoid of rotationdan
formulas for the initial angular velocity of the spacecraft the center of mass of the gyro is displaced relative to
and for spacecraft's geometrical parameters werecenter of mas€. by an amount of ordee. Then, the
obtained. WorksZ3] and [24], are devoted to the study of principal moments of inertia and the coordinates of the
perturbed motion of the rigid bodies and spacecraft,center of gravity can be written in the forn33

including the action of small harmonic disturbances, 0 0 0

variability of the inertia-mass parameters, and also A=A (1+&d), B=B(1+ed), A"#C, (1)
damping effect. In 25, the gyrostat's motion is

considered in cases of unperturbed motion 26 27,28], Xe = exil, Ye=ey1l, z.="1, 2)

th [-spin raft with variable structure w o N
e dual-spin spacecra ariable_structure aswhereA, B andC are the principal moments of inertié;

considered; also the attitude motion’s evolutions were s, di ionl tants of ord i |
investigated with the help of full mathematical models for an are dimensioniess constants of oraer uniy, 1S
systems with variable structure the characteristic value of moments of inertids a small
In this paper, the rotational motion of a symmetric parameterx, yc andz are th? coordinates @‘3;.)(1 and. .
rigid body (gyro) with mass distribution near to y; are dimensionless quantities that are considered finite
: S . ; in comparison withe; and/ is the distance fron® to the
Lagrange’s case is investigated. We considered that th%enterofgravity.

gyro is acted upon by the third component of the oI . .
gyrostatic moment vectok about the moving axis, a Takl'ng into cons[derauon that, the gyro rotates under
the action of the third component of the gyro moment

variable restoring momenk which is the result of a vector and Lorentz forc& — e(V A H) [34] in which
uniform magnetic field of strengtd and a point charge P S )

o - V=ewNl), '=(0,0,¢") where!’ is the distance of the
that located on the symmetry axis, and a perturbing_ . —' =/'—="—\"" )

: : osition of the point charge to O and w is the angular
moment vectoM. It is assumed that the angular velocity \eelocity vector gf the gyrg. So, the restoring m0|9nent of
of the gyro is very high, near to the symmetry axis, andthe Lorentz force has the forM L e(H.) (WA )
the projections of the perturbing moment vector onto the Therefore.  this moment ha_s._th_e Edm onents
principal axes of inertia of the body are small as ' P

2 o X D
compared to the restoring moment. Consequently, one caﬁw 4q cosd, eH'é p_cose and 0 in projection onto the
principal axes of inertia of the gyro.

introduce a small parametes << 1. The averaging . ; . ;
method [L5,16], is used to obtain the averaged systems of Tr;elr: t?he ?qt;%tgnssgoflgmtlon similar to Lagrange’s
the equations of motion and to evaluate the nutation an@s€ fake thefor [7.8,9,10

precession angles up to the first and second (Ap+ (C—A)ar+gAz=mglsinfcosp + My,
approximations. The graphical plots of these
approximations are presented. This problem is considered | AqQ+ (A—C)pr — pAz = —mg¢sin@sing + My,
as one of the important problems in mechanics. The
importance of this problem is due to the wide range of its Cr =Mgz; Mj=M(p,q,r,y,0,,t),

applications in various fields such as in the aero-planes, ¢ 3)
the spacecrafts, the submarines and the compasses.| 6 = pcosp — gsing,

Moreover, the study of the rotational motion of the gyro
has been motivated by industrial applications in many | ¢ =r — (psin¢ +qcosg)cotf,
fields. This is because the rigid bodies provide a
convenient model for the satellite-gyrostat, spacecradt a ) = (psing + qcosg ) csch.
like, see £9,30,31,32].

Here,p, gandr are the components of the angular velocity
vector;0, ¢ andy are the nutation, the self-rotations and
o the precession angles respectivalyjs the mass of the
2 Description of the problem gyro; andg is the acceleration due to gravity.
So, our aim is to investigate the behavior of this system

Consider the motion of a dynamically symmetrical rigid Under the following assumption8][
body (gyro) about a fixed poin®, a fixed coordinate 2 2 2 cri2s k. IM kK (i=1.2.3 4
systemOXYZ with origin O and another rotating one ot <rt Gk Ml<k (i=123). (4)
Oxyz fixed in the gyro and whose axes are directed alongAccording to these assumptions, one can introduce the
the principal axes of inertia of the gyro. This body rotatessmall parameteg as
under the influence of the third componeht (acted on P q— K— K
the rotatingz axis) of the gyrostatic moment vectarin p=¢R q=¢£Q k=¢K, (5)
which the first two components are considered to be zero, P .
perturbing moment vectoM = (M1,M2,M3) in which Mi = &M (P.Qr,¢.,6,9.t) (i=1.23).
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3 The approximate solutions where

In this section we will obtain the approximate solution
using the averaging methodq,16]. Taking into account

inequalities (4), the total restoring momefittakes the a=Py— Egsinfpsingo, b= —Qo+ Egsinfycospo,
form
K = mgl+ eH¢'?cosh/p? + 2. (6) Yo =Yot, Yo=no-+ (A%)~1As,

Si?gsttlsutmg (2) and (5) into system (3), one obtains ng = (C—A%)(A%)~1rg, Eg=2zoko/(y3—r3),

AP 4 [(C— AO)r + (1+ £81)A3]Q = K[(1— £8) 20 =(A")"*(Yo—To), ko=Ko, [yo/ro| <1, ro#0.

x sinf cosg — ey; cosB] + £[6,(C — A%) + SA%Qr,

Here, Py, Qo and Ko are the initial values of the
corresponding variableB, Q and K, while the variable

. . 0 0 Y = Yo has the meaning of the oscillation phase. System
x sin@sing — ex; cosd] + &[G (A° — C) — &ATJP, (7) is substantially nonlinear; therefore one can intr@duc
an additional variablg, defined as

A°Q+[(A°—C)r — (L— e&)A3lP = —K[(1 - £&)

Cr = 2K sinf(y1sing — x; cosp),

0 = g(Pcosp — Qsing),

¢ =r—¢g(Psing + Qcosp) cotb,

{ y=Y. v(0)=0; y=n+ (A% 123,
(12)

n=(C—A% A% 1r.

P = &g(Psing + Qcosg) csch.

(7
The projections of the perturbing moment vector onto the
principal axes of inertia can be obtained from (3)-(5) in the Equations (9) and (11) determine the general solution of

form system (7) fore = 0. According to (9), equations (11) can
M: = —K (8, sinBcosp +y; cosh) gﬁereovl\;;gtiﬁg in equivalent forms férandQ, consequently
—[BAs—1(8(C—A%) + &HA)Q,
M3 = K(&,sinBsing + x; coso) (8) a= Pcosy+ Qsiny— Esin@sina,
+[SA3+1(&H(A°—C) — AP, b = Psiny — Qcosy + Esin@ cosa;

. . (13)

M} = K sinB(y1Sing — x1cosg). a=y+¢, E=zK/(y2—r?),

For e = 0, the last four equations of (7) give 2= (A)~L(y—r)

r=ro, Y=yo, 8=060, ¢ =rot+¢o, (9)

whererg, Yo, 6y and ¢g are constants, that equal to the ) )

corresponding variables at the beginning of motion. The third component of the angular velocity vector can be
Substituting (9) into the first two equations of system rewritten in terms of a new variab&as follows

(7), the following system of second order differential

equations can be obtained

P+ y3P = ZoKosinBosin(rot + o), r=ro+ed. (14)
. (10)
Q+Y3Q = ZoKosinBycogrot + o).
Integration of this system yields We change system (7) and (12) from the variables
P,Q r g, 6, ¢ andytothe newones, b, d, Y, 6, a
P = acosy, + bsinyy + EgsinBgsin(rot + ¢o), andy in which o = y+ ¢ by using equations (13) and
(11)  (14) as transformation formula from the variabRsQ
Q = asiny — bcosy + EgsinBycogrot + ¢o), andr to the variables, b andd. After some reductions,
(@© 2016 NSP
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we obtain the following system We denote the two-dimensional vectgy, hy) by z;.

Hence, we assume that the perturbing moméfjtsare

= &(A% (M0 cosy-+MIsiny) — eE(acosa independent of.
Accordance to the procedure i), we will seek a
+bsina) cosfsina + (A% 1K — E[C(ro + £6) change of variables of system (17) as
. . 2
+A3]}sinfcosa + eEcosfcosa((asina —bcosa)  yx—x* 1 zie'ui (XY°) + -
+Esin@) + K- 1Esin@sina{—K + £5z [2yE(C
_ i\, [k
_AO)(AO)fl — 2E(rg+€8)—K(C— Z)AO)*l]}, y=y"+ i;&' Vi (X ,W) + ...
b= g(A%~1(MIsiny — MJcosy) + E(acosa — (D), X = (XL X2, x5

+bsina)cosB cosa + (A%)~{K — E[C(ro + £3) v = (y'Ly?), z=(guh).
+A3]}sin@sina + eE cosf sina(asina — bcosa) In terms of the new variables andy*, we can rewrite

system (17) as

. e o ¢ 51 )
+Esin8] + K *Esinfcosa{K — €6z *[2yE(C Xt = T2 g A (X) +

—A%) (A%~ _2E(rg+€8) — K(C—2)A% 1]},

V= w0+ Y2 EBi(X) + ... (18)
S_ ~—-1n0 A :
0 =¢eC M3, 6 =¢(acosa +bsina), W= (er, wp).
= g(asina — bcosa + Esing) csch, We can choose the vector valued functionsv; and

) uy in the following suitable formsl9]
a = (A% ~1(Crg+A3) + €[C(A%) 15

—(asina —bcosa + Esind) cotf], w??i = R0y = Aalx),
y=no+ (A% "*[A3+£(C—A%)d], Wik =2(x"y) ~Bi(x), )
where o) W2 = F(x,y") + (G + (F v
MP(@.b,8,4,0,0,1) =M/ (P.Q.r,4,0,4.1); i = et —(25)As(x) — (2)By(x") — Aglx),

According to (13) and (14), the l‘unctiormio are  where
periodic functions ofr andy with periods of 2t. System
(15) is more convenient for further study and can be Ar(X*) = T;jg"jg"a(x*,w)dwldw%
rewritten in the form

B ( ) 47‘[2f 0 (X*vy*)dy*ldy*zv

X= zi2:l£iFi(X7y)a
*\ _ 1 r2m 0F
Y=+ 5 Egixy), Po(X) = 7= I3 ISR y) + (G (20)
' 2 (Ve — (FRALX)
y2 =+ 52 ehi(x,y); ay V1~ (g )1
17)
@ = (A%)1(Cro+A3), —(5)B1(x")]dy*1dy*?,
wp = (A%)H(C— A%)ro+ Ag), and (%) will be treated as matrix of partial derivatives
ot
X(0) = X0, YH(0) = Y0, y2(0) =y, ol (i.i=1,2,..,5). The averaged system for the slow

variables up to the first and second approximations can be

) , determined as
wherex = (x},x?,...,x°) is the vector valued function and

y!, y? are the fast variables. The vector valued functions X = eAL(X]), X5 =32 1E8A(X),

F, g andhi(i = 1,2) can be defined from the right hand (22)
sides of (15). X;(0) = X10, %5(0) = Xo0.
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Also, for the fast variables the system of equations in the4 The case of dissipative moments

second approximation can be obtained from

ys = w+eBy(xi(1)), y3(0)=y% ¥ = (y'°y%). (22)

Integrating (22) to obtain

y3(t) =Y+ wt + e/ot B1(X;(s))ds.

The second system of (21) can be transformed into

(23)

ax;
dr

Thus, the time interval0, ) which we considered in the
original system (16) become®,T). The solution of
system (24) can be expressed as

%(1) =XV (1) + ex? (1) + O(£?).

=A1(X5) + €A(X5); T = €t. (24)

(25)

Making use of (24) and (25), to obtain the following

systems

(1)
d)é_l’ =A1 (x(l) )7

& _ o (x(1))x2) + A (X (1)), (26)
xV(0) =%, x?(0)=0
on;

where A} (x) = ||

. . oxl
derivatives.

|| represents the matrix of partial

Now, we try to apply the averaging procedure in the
previous section to obtain the approximate solutions of
both the nutation and precession angles up to the first and
second approximations. Taking into account relations (6)
and (8); then one can write in terms of the variables
a,b,d,y,0,a andy the first three equations of system
(15) in the following form, while the other equations of
the same system remain unchanged

a=&(A%) LK (Rysin6 + Rycosh) + Alrg (&,
—&1)Rs+ (Crg— A3) (&1 R4scosy — &Rssiny)]
+sin@cosa (Rs + ?E?cosh) + eER; cosd sina
—EK~L(K + £6z Rg)sinBsina,

b= £(A%~1[—K(RgsinB + Ryocos8) — Alrg(3,
—01)R11+ (Cro — Ag)(d1Rasiny — &Rs cosy)]
+sin@sina (R + £2E2cosh) + eERy2c0s8 cosa
+EK (K + 52 1Ry3) sinf cosa,

& = eKCY(yrsing — x; cosp)sinb.

(29)

Since the first system of (26) is linear, then it is easierwhere

to be investigated than system (24). So, its general solutio

can be expressed as

X/(T) = Al(x)a X(Oa C) = C=Xo.

Hence, the expressions for the functiord)(r) and
x@ (1) can be obtained in the forms

(1) = X(1,%),
(@)
X2(1) = ©(1) f§ (1) n(1)ar,
where
o0 = 1250 oy, 1= AoX(7.30)).

Hence, the vector functiong (t) andyy (t) take the forms

XY (t) = X (et) + ex? (et) 4 eug (xV (et),y°
+awt+ €[5 By (xV (g9))ds), (28)

V() =Y+ wt+ & [oBi(xV (e9))ds),

Thus, the approximate solutiong(t) andyy(t) can

be obtained, with the aid of Fourier series we can solve
equations (19). Consequently using (20) to get the vector

valued function®;(x*). Moreover, with the aid of (27) we
can determine easily from (26) the solutioxi¥ (1) and
x? (7). Then the required approximatiogi(t) andy (t)
can be constructed directly from (28).

Ry = (Jzsin¢ siny — & cosg cosy),

Ro = (X1 Siny — yy cosy),

Rs = [asin2y—bcos/+ Esinfcoq¢ — y)],
R4 = (asiny— bcosy+ Esinfcosg),

Rs = (acosy+ bsiny+ Esinfsing),

Re = (A°) H[K —E(C(ro+£9) +A3))],

R; = a(sina — cosa) — b(sina + cosa),

Rs = [2E(ro+ £6) — (A°) "1 (2y(C~ A°) + K(C~-2))],
Ry = (01 cosp siny+ & sing cosy),

Rio = (x1cosy+yisiny),

Ri1 = [bsin2y+acos/+ Esinf8sin(¢ — y)],

Ri2 = a(cosa — sina) — b(cosa + sina),

Rz = [2E(ro+ £6) — (A% ~1(2y(C— A% —K(C —2))].

To construct the approximate solution of system (29), we
apply the averaging procedure being described in the

(@© 2016 NSP
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previous section. The vector valued functioAg, B; and  averaged system (29) in the form
B, that defined by (20) take the forms

alM = Pycotnt + Qpsinnt
Ar={AV}, Bi={B{}; (i=12..5), (j=1,2)

—Epsingysinnt
A;(Ll) = _2R14_ %G(KE)_lHeelz[Rlee— 8aE2sec 0 osmeosmn + ¢0’

m__ i
x tar? 6 — bE ~*secd(Ry7Rys — 4ba’Ryo)] b Rocotnt + Qosinnt

+EgsinBycosnt + ¢o,
A2 — 3R14+ & (KE) " *Hel?[RysRy0 — 16bE2sed 8 (32)

D = (A ~1[(C—A%rg+ Ajlt,
><tar\26—E‘lse09(2aR17R19—4ab2R18)], V< (&) [( Jro 3]

a® =C(A%)1ro+[(A%) 13

A¥—0 AY—g, Ao,
—Epcosty|t + o,
B{Y = C(A%) 15— Ecosd, B = (C—A%)(A%)1g, " "
(30) Y = o+ eEt, 6% = 6.
and
where
A = BK-1Hel?[Ryy — 2E (a2 + b?) (2123
—\17"2)%
szgcsc?G— E-2(5a2+b? Ro3l,
( Red |1=%(A0)_1(51+52)+E000390,
(2 _ _ap-lygap? _oE-1(a2_ 12
A2 =733 Hel [R21 2E (a +b) (31) |2:r70[K(A0)71+KC71—|- Eo]taneosineosin2¢.
CE-2(82 . Ep2
XRe2eSC 0 — E7#(a 4 5b%) Rz, Making use of (28), (30), (31) and (32), we can
A0 construct the components of the functiory(t)
Aés) =0, A(24) = %242“7 A(25) =0. corresponding to the angleg and 8 in the case of
dissipative moments (8) in the form
where

WL (t) = Yo+ €[Eot — Roscschp] + 3€2[EoRoe
Ria = (A%)~1(81+ &)(Cro — A3) + 2E cosb,
+Hel"?Ry7+ EZsin 26|,
Ris = 4E~1cotf csch[2E?sin? 6 — (a® + b?))], (33)
6 (t) = 60+ £A%(Cro) *[Res

Rye = byE (1 —sin8) + bK (A% ~1sing,
+EgsinBycognt + ¢o— aM)].
Ri7 = 3a2+b? — 4E2sin? 6,

where
Rig = YE(1—sinB) + K (A% 1sin6,
18 = VE( ) +KA) Ros = A%(Crg)~%(a® cosa M) 4 b sina @),
Rig = VE(1—sin8) —K(A%1sinf, Ryo=2aRyo,
19 = YE( ) (A°) 20 19 R25:4r51(A0E000360—6),
Ry1 = 8E2(2+tarf ) sin® 0 + 4 cosh (tarf 6 — 2
2 ( ) ( ) Ra7 = (Cro)?sin? 6o + E3(1+ sir? ),
x (0 + Ecosf),
Rog = a’cognt — aW) + b0sin(nt — a®).
Rop = 14 2(3E 1+ cosf) cosh — E(4+tar? ) sin® 6,
Ro3 = (8 + Ecosf)sedd, 5 Discussion of the results

— (2 0 0y) 2
Rog = (C = 2A%)(ro+9) + (1+ 2AT)A3. This section is devoted to ascertain accuracy of the

solutions being achieved. Computer codes are presented
Taking into account relations (30) for the slow and and carried out to investigate the graphical represemtstio
fast variables, one can obtain easily the solution of thefor these solutions. Discussion of the results is given. For
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w- axis Bp=7/3,e=100 Y- axis Oy=m/3, =300
1.05 1.057
J . Az=50
A3=50 A3=100 1 M
1.049 - 3 1.054 -
1.048 - 1.052 +
i 1.05
1.047 i
] 1.048 -
i - Aax=100
1.046 1046 1
1.045 r —rr 1.044 +—+———+r T
1 51 101 151 201 251 301 1 51 101 151 201 251 301
I - axis f - axis
Fig. 1. Variation of the precession anglg viat whenAz = Fig. 2: Variation of the precession angle viat whenAz =

50 andA3 = 100, with the same values 6§ = 11/3 ande = 100. 50 andA3 = 100, with the same values 6§ = 11/3 ande = 300.

the mentioned problem the following data are used Y- axis Oo=m/3.A3=50
1.057
€=300
AP = 25kg.n?, C=17kg.n?, &=0.001, M = 300kg, ]
1.054
¢=25m, T=12566371 pg=0.015%"1, 1
1.052
o = 0.000%1, e= (100,300)coulomb, ¢’ = 13m, i €=100
5=7, 8, =50, & =40, A= (50,100)kg.m2.s L. —
Considery and 6 to denote the solutiong (t) and s ™ i " ol e G
6¢ (t) obtained in the previous section respectively. 2 i
. Fig. 3: The evaluation of the precession angleiat whene =
5.1 For the precession angl € Lll 100 ande = 300, with the same values 6§ = 17/3 andA3 = 50.

Here the concerned plots represent the functional time
dependence of both the amplitudes of the waves and the

oscillation frequencies revealing that (wh&gincreases) Y- axis Oo=m/3,A3=200
the amplitudes of the waves decrease and the frequency 1.05 - 300

numbers increase, see figures 1 and 2. 1.049

Also, when e increases, the amplitude of the waves ] WJ\/\/\J
increase and the frequency number remain unchanged,

see figures 3 and 4. On other hand, wiigiincreases the 1.0474 W\/\/\/\
amplitude of the waves decrease and the frequency 1

numbers remains unchanged, see figures 5 and 6. This 1.045 - €=100

means that the gyro oscillates about the vertical fixed axis

and these oscillations decrease the amplitude of the waves

without change of the frequency numbers. 1,043 T
51 101 151 201 251 301

[

1 - axis
5.2 For the nutation angle 6 Fig. 4: The evaluation of the precession angleiat whene =

. 100 ance = 300, with the same values 6§ = 17/3 andA3 = 200.
The amplitude of the waves decreases to some extent

when A3 increases for the same values @f and e, see
figures 7 and 8. Also, we note also that, whég
increases, the amplitude of the waves increases for the
same values cf andAs, see figures 9 and 10. The change
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€=100. A3=50

1.046 +—+—+++rrrrrrrr
1 51 101 151 201 251 301

I - axis

Fig. 5: The evaluation of the precession angleiat when6y =
11/6 and6y = 11/3, with the same values ef= 100 andAz = 50.

W - axis £=100,A3=200

1.052
1.051 4

1.05

1047 |

1.046

1.045

Fig. 6: lllustration of the precession angie viat when6y =
11/6 andfy = 11/3, with the same values ef= 100 andA\3 = 200.

O - avis By=m/4.e=200s A3=100

0.785416

0.78541
0.785404
0.785308 ‘ ‘ ‘| ‘I i ‘
0.785392 1 | ‘

0.785386 -

0.78538 T
1 51 101

T T T T

151 201 251 301
1 - axis

Fig. 7: lllustration of the variation of nutation angiviat for a
nominal set of parametefly = /4, e= 200 andAz = 100.

@ - axis Go=m/4,e=200,A3=200

0.785408

0.785404 ‘
0.7854 | ’

0.785396

0.785392

0.785388 +——

f - axis

Fig. 8: lllustration of the variation of nutation angtviat for a
nominal set of parametefy = 11/4, e = 200 andAz = 200.

@ - axis Og=m/4, e=200,A3=50
0.78543

0.78541 “ ‘ 1 I A e
([ (AN (fhf I

AL !‘ \ [ “ 1 h I
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‘“ i {1l | ‘ (e \"- il

0.78539 I | i ! I
ft I

Ak el
(% T gl Mo O L B PRI

1 51 101 151 201 251 301

t - axis

Fig. 9: lllustration of the variation of nutation angiviat for a
nominal set of paramete@y = 11/4, e = 200 andAz = 50.

@ - axis Gy=7m/3,e=200,A3=50
1.04723
1.04721
1.04719 M ‘ ‘
L.04717 +——
1 51 101 151 201 251 301

I - axis

Fig. 10: lllustration of the variation of nutation angiviat for
a nominal set of parametefis = 11/3, e = 200 andA3 = 50.
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P-axis O,=n/6,25=50
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100
0 i I
-100¢
-200
0 5 10 15 20

t-axis

Fig. 11: Variation of the numerical solutioR versus when6g =
11/6 andA3 = 50.

P-axis Oy=m/3, 15=50
50
0 i My |
50
0 5 10 15 20

t-axis

Fig. 12: Variation of the numerical solutioR versus when6g =
/3 andA3z = 50.

QTR
WMMHMW

Fig. 13: Variation of the numerical solutioR versugs when6y =
11/6 andA3 = 300.

P-axis Gy=7/3, A3=300

HH

100

ul HHH
R

0 5 10 15 20
t-axis

Fig. 14: Variation of the numerical solutioR versugs when6g =
/3 andA3 = 300.

Q-axis O,=7/6, ;=50
400 |
200 |
D {
200}
400}
0 5 10 15 20

t-axis

Fig. 15: Variation of the numerical solutio@ versug when6p =
11/6 andA3 = 50.

O=7/3, A3=50
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20
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Fig. 16: Variation of the numerical solutio@ versug when6y =
/3 andA3z = 50.
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Q-axis

O,=m/6,A;=300

1000 [

500

-500 |

-1000t
0

Fig. 17: Variation of the numerical solutio@ versug when6p =

11/6 andA3z = 300.

10 15 20

t-axis

Q-axis Oy=m/3, A3=300
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100 | } [
0
100 | ”
200 |
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f-axis

Fig. 18: Variation of the numerical solutio@ versug when6p =

11/3 andA3z = 300.
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Fig. 19: The grid lines represented in tl@— P plane wherfy =
11/6 andA3z = 50.

Q-axis O,=m/3, 1,=50

-150 -100 50 0O 50 100 150
P-axis

Fig. 20: The grid lines represented in tl@— P plane wherfy =
11/3 andA3z = 50.

of the nutation angle curves can be used to describe the

orientation of a ship or aircraft. So, the most important

practical applications of gyroscopes are met in devices for

measuring the orientation or maintaining the stability of

airplanes, spacecraft and submarines vehicles.

6 Numerical solutions

Figures (11-14) and (15-18) represent the variation of
the numerical solutions for eadh and Q versus timet
respectively, when the initial value of the nutation angle
6y equals /6 and m/3, moreover when the third
component of the gyrostatic moment vecthy equals
50kg.m?.s 1 and 30&g.n?.s 1. Also, figures (19-22)

solution of system (10) that consists of two second orde@9ains®.

differential equations. Taking into account the following

In view of these plots, it is clear that when the initial

data that be used in this system to obtain the periodi¢zalue of the nutation angle increases frauf6 to 17/3 for
numerical solutions for eadhandQ.

Az = (50,100)kg.n?.s %, H = 10kg.(amper) 12,
AP = 25kg.n?, C=17kg.nm?, ¢ =25m, ¢ =13m,

po =0.015%"1, go=0.000%"1, 6= (30°,60°).

the same value ofAz, the amplitude of the waves
monotonically decreases with the stationary of frequency
numbers for eack andQ, see figures (11,12) and (15,16)
respectively. Consequently the grid lines density does not
changed, see figures 19 and 20, while an elongation will
be occurred for bothP and Q axes as in figure 20 than
figure 19 i.e., wherf}y changes front/3 to 17/6.
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Fig. 21: The grid lines represented in ti@— P plane wherfy =
11/6 andA3 = 300.

Q-axis =m/3, A3=300

200

100

-100

-200

-200 200

P-axis

Fig. 22: The grid lines represented in thi@— P plane wherfy =
11/3 andA3 = 300.

Also, when Az increases from 3@.nm?.s ! to
300kg.n?.s~1 for the same value oy, we observe that

the amplitude of the waves monotonically increases with

applications like airplanes, submarines and ships to
improve any defect may be occurred.

7 Conclusion

The averaging method and its methodological treatment
are presented. This method is employed to get the
averaged systems of the equations of motion in both the
first and second approximations. The nutation aglg)

and precession anglg! (t) are functionally dependent on
the timet. They are determined up to the first and second
approximations respectively and don’t contain the
perturbing moment parameters. The second and the third
term of ¢ (t) supplement the expression for the angular
precession velocityw, = E and there is no dependence
on the deviation of the center of gravity. The obtained
solutions are considered as a generalization of previously
obtained ones as Leshchenko et a8,3B (when
k=cong, A3 =0 and in the absence of the point charge
€), as Leshchenko et al9] (whenk = k(8), Az =0 and
when the magnetic field equal to zero) and as Cid et al.
[35 (whenM; = 0 and when the magnetic field vanishes).
The numerical periodic solutions fd? and Q of the
system (10) are obtained and represented graphically. A
great effect of the third components of the gyro moment
Az is shown obviously from the graphical representations.
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