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Abstract: In the industry, many plants are described by higher order systems. Most of the time, higher order systems are approximated
with the lower order system using model reduction method, and then the appropriate controllers are designed. In this paper, the controller
for higher order system is designed without using model reduction methods. Instead, a fractional PID (FPID) controlleris designed for
higher order system. In simulations, ten different plants were examined, ranging from order 3 to order 7, with and without delay. The
time-domain optimal tuning of higher order systems was carried out using integrated squared error (ISE) as the performance index.
Results indicate that the controller for higher order system can be designed without model reduction methods by using FPID controller.
The results of FPID controllers are also compared with classical PID controller. The FPID controller displayed robust performance;
better gain and phase margin. The complementary sensitivity and sensitivity functions are better achieved with FPID controller. The
FPID controller exhibits an iso-damping property (flat response around gain crossover frequency) for higher order systems.
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1 Introduction

Fractional calculus is one of the growing fields in the area ofscience and engineering. A fractional order controller is
one of the applications of fractional calculus in the field ofthe control system. In this paper, controllers for higher order
systems are designed using a fractional PID (FPID) controller without using model reduction methods.

The FPID controller contains two more parameters in comparison to a simple PID controller. In the FPID controller, the
order of differential (λ ) and integration (µ) are non-integer number, in other words, fractional order.Podlubny proposed
this type of controller, and made a remark that this type of a controller will provide better response than simple PID
controller for a fractional order system [1,2,3,4,5]. Three different generations of CRONE (Commande Robuste d’Ordre
Non Entier meaning robust control of non-integer order) controller are also discussed in the literature as non-integer
controller [6].

The higher order systems can be found in multifarious industries like oil, cement, chemical, pharmaceutical, aircraft
system, atomic nuclear plant, flexible robot manipulator [7], quadrotor with a variable degree of freedom (DOF) [8], fuel
injector and spark timing of automobiles, etc. [9]. Many times, nonlinear systems are linearized at different operating
points, and turn out to be higher order systems [10,11]. Also, sometimes during modeling of the system, one may tend to
get higher order system using first principle method or finite-element model [12,13]. Mostly, these models are
inappropriate for many applications like analysis of system, optimization or control system design. In large-scale
systems, the system complexity makes the computation impractical owing to memory and time limitations as well as the
ill-conditioning [14]. Designing of the controller for this class of systems is always a challenging task.

If the order of the system is more than two, it is referred as higher order control system [15]. S. Das et al. [12] in 2011
designed fractional order controller with a model reduction method for higher order systems using optimization method.
In 1998, B. Bandyopadhyay et al. proposed a technique for designing a stabilizing controller for the stable higher order
system via its reduced order model. In 2014, RituRani et al. proposed fuzzy self-tuning PID controller for higher order
system [16]. Even in 2007, Vaishnav et al. proposed fuzzy PID controller for this category of systems [17].
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In most of these work, higher order systems are approximatedto lower order system by means of model reduction
methods like Pade approximation methods, Routh approximation techniques, model reduction by impulse/step error
minimization, principal component analysis method [18], and balanced-truncation method [19]. These methods are
preferred in the case of limited computational power, accuracy and storage capabilities. These reduced models need to
prevent essential characteristics of the original system.However, it is not always possible to capture these characteristics.
Hence, reduced order model is not appropriate for differentapplications if it is not capturing important characteristics.
The disadvantage of some methods is that they do not guarantee stable reduced models even though the original system
is stable. In this paper, higher order systems are designed using the FPID controller without using model reduction
methods.

In this study, ten different plants are considered for the simulations with order 3 to 7 without delay and with a delay
of 5 and 15 unit time. The complementary sensitivity function T(s) and sensitivity functionC(s) for one of the plants
have been carried out. The complementary sensitivity and sensitivity function indicate noise and disturbance rejection
capabilities respectively. The FPID controller is designed using optimization method. The Nelder-Mead method is used
for optimization of FPID controller parameters. In this approach, integrated squared error (ISE) has been used as a
performance index for calculation of the cost function. TheFPID controllers are providing much better responses
compared to classical PID controller. The PID controller isdesigned usingPID tunerapplication of MATLAB toolbox.
The closed loop responses for all plants are plotted by varying the gain of the system (K), which shows iso-damping
property of the controller. Iso-damping property means that the controller will demonstrate the same kind of response
even after changing gain of the system in a certain range. In other words, it indicates robustness characteristics of the
controller.

This paper is organized as follows. In Section 2, the introduction of fractional calculus and FPID controller with
different tuning methods and stability analysis are presented briefly. In Section 3, the FPID controller is designed forhigher
order systems using optimization method for various plants. In Section 4, results are tabulated regarding FPID controller
parameters, and their frequency specifications are also mentioned. The closed loop responses of higher order systems are
plotted. Discussion of results is also included in this section. In the last Section, conclusions are made regarding this work,
followed by references.

2 Introduction to Fractional Calculus and Fractional PID Controller

2.1 Fractional calculus

Fractional calculus is a field of mathematical study, which comes out of the traditional calculus of integral and derivative
operators [20]. During last few decades, many researchers have worked in the different areas of science and engineering
using fractional calculus [21,22,23].

There are various definitions of fractional differentiation-integral available in many books as well as research articles
on fractional calculus. The Caputo definition is more popular for engineering applications [24,25,26], as it is a
straightforward association between the type of the initial conditions and the type of the fractional derivative. As stated
by I. Podlubny [1], this definition allows initial conditions such asy′′(0),y′(0) etc., not like fractional condition such as
y0.28(0). Derivative of constant is bounded in the case of Caputo definition. This definition is defined as follows:

aDα
t =

1
Γ (n−α)

∫ t

a

f n(τ)
(t − τ)α−n+1dτ, (1)

wheren is an integer number, which satisfies the condition(n−1)≤ α ≤ n, α is a real number anda andt are the limits
of integration. For instant, ifα is 0.9, thenn would be 1 as 0≤ 0.9≤ 1. Γ (n) is the gamma function, which is defined by
following equation:

Γ (n) =
∫ ∞

0
xn−1e−xdx. (2)

This function is not defined for value ofn, which is not negative whole number and zero. This function is very beneficial
for fractional calculus.

The Riemann-Liouville definition is given by:

aDα
t =

1
Γ (n−α)

(

d
dt

)n∫ t

a

f (τ)
(t − τ)α−n+1dτ, (3)
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wheren is an integer number, which satisfies the condition(n−1)≤ α ≤ n, α is real number,J is the integral operator
anda andt are the limits of integration.

The Grunwald-Letnikov’s definition is given by:

aDα
t = lim

h→0

1
hα

[ t−a
h ]

∑
r=0

(−1)r
(

n
r

)

f (t − rh), (4)

wheren is an integer number, which satisfies the condition(n−1)≤ α ≤ n, a andt are the limits of differentiation, h is
the step size for differentiation,[ t−a

h ] is integer part, and
(n

r

)

is the binomial coefficient.

2.2 Stability of Fractional Order System

A general fractional differentiation equation is given by:

anDαny(t)+an−1D
αn−1y(t)+ · · ·+a0D

α0y(t) =

bmDβny(t)+bm−1D
βn−1y(t)+ · · ·+b0D

β0y(t), (5)

whereDα denotes the fractional differentiation order with time limit of 0 to t. an, an−1, · · · , a0, bm, bm−1, · · · , b0 are real
constants, andαn,αn−1, · · · ,α0,
βm,βm−1, · · · ,β0 are positive real numbers.

The above equation can be converted into transfer function using Laplace transfer using following property [27],

L{Dγ x(t)}= sγX(s); if x(t) =0 ∀t < 0. (6)

By using this property, it can be presented in the following form of transfer function:

G(s) =
bmsβm +bm−1sβm−1 + · · ·+b0sβ0

ansαn + sn−1sαn−1 + · · ·+a0sα0
=

Q(sα)

P(sα)
. (7)

Eq. (5) can be called commensurate order system ifαk andβk are arithmetical progression with the same difference.
Mathematically,

αk = k×α;where k=0,1,2,· · · ,n
,

βk = k×α;where k=0,1,2,· · · ,m
and the value ofα is between 0 to 1.

Theorem 1.A commensurate order system is stable if and only if

|arg(λi)|> π/2;∀i, (8)

whereλi is the i th root of P(sα ).

Eq. (5) can be called incommensurate order, ifαk andβk are not in the integer multiple. The incommensurate system
can be decoupled by following model form of the fractional form:

F(s) =
N

∑
i=1

nk

∑
k=1

Ai,k

(sqi +λi)k , (9)

wherenk is the positive integer,N is the total roots of the pseudo-polynomialP(sα), andAi,k,λi are complex numbers.

Theorem 2.The incommensurate order system is BIBO stable if and only if

0< qi < 2 (10)

|arg(λi)|< pi(1−qi/2);∀i. (11)
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The stability region for fractional order system (sq) is shown in Fig.1. The stability region depends upon the value of q.
The stability of the fractional system can be computed usingRiemann surface. The Riemann surface ofs1/4 is shown in
Fig. 2, which shows four Riemann sheets in the complex plane.

(a) For 0< q< 1 (b) For q=1 (c) For 1< q< 2

Fig. 1: Stability region of the fractional order system.
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Fig. 2: Riemann surface fors1/4.

2.3 Fractional PID Controller

A fractional order controller was proposed by I. Podlubny for fractional order systems [1,2]. The attractive feature of FPID
controller is that it is less sensitive to changes of parameters of a controlled system and controller [28]. FPID controller
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has five parameters to tune as shown in following Eq. (12). Fig.3 shows a block diagram of FPID controller. The structure
of FPID controller is in the parallel form [29,30,31]

GC(s) =
U(s)
E(s)

= KP+
KI

sλ +KDsµ ;(0≤ λ ,µ ≤ 2), (12)

whereGC(s) is the controller transfer function,U(s) is the Laplace of control signal,E(s) is the Laplace of error signal,
KP is the proportional constant gain,KI is the integration constant gain,KD is the derivative constant gain,λ is the order
of integration, andµ is the order of differentiator.

Fig. 3: Block diagram of FPID controller.

The fractional order system can be approximated by various methods [32,33,34]. Oustaloup recursive approximation
is the most popular method for approximate fractional order[6,35,36]. It is given by:

sv ≈ K
N

∏
k=−N

1+ s/ωk

1+ s/ω ′
k

. (13)

Above approximation equation can by calculated using following equations:

ωu =
√

ωhωb

whereωh,ωb are the frequency bound for approximation.

ω
′
0 = α−0.5ωu;ω0 = α0.5ωu;

ω ′
k+1

ω ′
k

=
ωk+1

ωk
= αη > 1,

ω ′
k+1

ωk
= η > 0;

ωk

ω ′
k

= α > 0

N =
log(ωN/ω0)

log(αη)
.

FPID controller is also implemented in real time applications, using analog as well as digital approximation methods.
The order of integrator and differentiator are in the range of 0 to 2 [37].
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2.4 Tuning of Fractional PID Controller

Tuning of FPID controllers is challenging task, as it has twomore parameters to tune as compared to classical PID
controller. According to D. Valerio and J. Costa [38], tuning methods can be divided into three different categories as
follow:

–Rule-based methods
–Analytical methods
–Numerical methods

Apart from the above methods, auto-tuning and internal model control (IMC) methods are also used for tuning of fractional
order controllers [23].

Ziegler Nichols type rules for FPID controller were proposed by D. Valerio and J. Costa in 2006 [39]. This method
is only applicable, where plant response is similar to S-shaped behavior for a step input. In [40], Ziegler-Nichols method
was used for tuning the gain parameters of the FPID controller (KP,KI ,KD). Other parameters (λ ,µ) were tuned manually
by varying these parameters and observing the effect on the required specifications.

A tuning method for the fractional order system based on analytical method was proposed by C. Zhao et al. in 2005
[41]. Parameters of the FPID controller were obtained by solving equations that were obtained from the desired
specifications. Results of this method were validated usingtwo examples. The tuning method based on the specifications
as well as the proposed auto-tuning method for FPID controller based on the relay test was described in 2007 by B.
Vinagre et al. [42] and 2008 C. Monje et al.[23]. It allows the requirements of robustness constraints forthe FPID system
using simple relations among its parameters.

The tuning of fractional order controllers based on numerical methods has been proposed by many researchers. Based
on a genetic algorithm [43], J. Cao et al. proposed tuning of FPID using integral of time-weighted absolute error (ITAE)
and control input as a performance index. L. Chang and H. Chen[37] also suggested tuning of FPID using an adaptive
genetic algorithm for the active magnetic bearing system. Based on the genetic algorithm [44], tuning rules have been
developed using time domain performance index. The enhanced particle swarm optimization (PSO) method has also
been used for designing of fractional order controllers [45,46,47]. The FPID controllers were also designed by different
methods like an improved differential evolution optimization approach by A. Biswas et al. [48] in 2009, electromagnetism-
like algorithm [49] by C. Lee and F. Chang, MIGO (Ms constrained integral gain optimization) method by Y. chen et al.
[50] in 2008. In this work, numerical based method is used for designing of FPID controller, as mathematical models are
available for higher order systems.

The auto-tuning method for FPID controller was developed based on relay [23] and modulus, phase and phase slope
of the process [51]. IMC based tuning for the FPID controller was proposed by few researchers [52,53,54,55].

2.5 Performance of FPID Controller

The performance of FPID controller is demonstrated in this subsection. The first order transfer function plant is considered.
It has following transfer function:

GP(s) =
K

sτ +1
(14)

A FPID controller is designed forK = 10 andτ = 1 using optimization method. The obtained parameters for FPID
controller areKP = 100,KI = 100,KD = 100,λ = 0.01 andµ = 0.90. The values ofK are varied between 10 to 40.
Similarly, the values ofτ are varied between 1 to 4. The closed loop responses are plotted in Fig.4. The closed loop
responses show similar kind of behaviors for different values ofK andτ.

3 Design of Fractional PID Controller for Higher Order Systems

A general transfer function of higher order system is given by:

GP(s) =
a0+a1s+ · · ·+am−1sm−1+amsm

b0+b1s+ · · ·+bn−1sn−1+bnsn (15)

GP(s) =
∑m

i=0aisi

∑n
i=0bisi , (16)
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Fig. 4: Response of the FPID controller for different values of K andτ.

whereai andbi are scalars,n> mandn> 2.

The various plants are considered for designing of FPID controller. There test bench process plants are referred from
[12,56,57]. In these plants, order of systems is varying from 3 to 7 withand without delay (plant 2 and plant 9).

P1(s) =
1

s(s+1)3 (17)

P2(s) =
e−5s

(s+1)3 (18)

P3(s) =
1

s(s+1)(1+0.2s)(1+0.04s)(1+0.0008s)
(19)

P4(s) =
1

(s+1)4 (20)

P5(s) =
1

(s+1)5 (21)

P6(s) =
1

(s+1)6 (22)

P7(s) =
1

(s+1)7 (23)

P8(s) =
1−2s
(s+1)3 (24)

P9(s) =
e−15s

(s+1)3 (25)

P10(s) =
9

(s+1)(s2+2s+9)
(26)

The step responses of above higher order systems are plottedin Fig.5, and open loop frequency responses are tabulated
in Table1. The plant 1 and plant 3 are integrating higher order system.Plant 8 has one zero at left hand side of s-plane.
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Fig. 5: Step responses of higher order systems.

Table 1: Open loop frequency response.

Plant
No

GM in
dB

PM in
deg

ωpc
rad/sec

ωgc
rad/sec

P1 -1.02 -4.97 0.577 0.617

P2 1.93 -180 0.4 0

P3 13.4 41.1 1.97 0.779

P4 12 -180 1 0

P5 9.2 -180 0.727 0

P6 7.5 -180 0.577 0

P7 6.34 -180 0.481 0

P8 1.16 45.8 0.845 0.55

P9 0.392 -180 0.175 0

P10 8.52 -180 3.32 0
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3.1 FPID Design for Without Delay System

The parameters of FPID controller are obtained using numerical method, as this method is suitable for all kinds of
process model. The ISE performance index is considered because it penalizes highly for significant error. It can also
easily discriminate between excessively overdamped and underdamped system. It is calculated by following equation:

ISE=
∫ t

0
e2(t) dt (27)

wheree(t) is the error signal, and it is given for unity feedback systemconsidering unit step input,

e(t) = 1−L−1
(

1
s

GP(s)GC(s)
1+GP(s)GC(s)

)

. (28)

Note:L−1{F(s)} represents the inverse Laplace transform ofF(s).
In optimization, following constrains have been considered [58,59],

0≤ KP,KI ,KD ≤ 20 and 0≤ λ ,µ ≤ 2. (29)

Also, this cost function is subjected to following specifications.

1.Gain margin (GM) means in-system gain changes that make the system marginally stable. It is defined as

GM in dB= 20× log10
1

|GC( jωP)GP( jωP)|
, (30)

whereGC is the controller transfer function, andGP is the plant transfer function.
2.A phase crossover frequencyωP is given by:

arg[GC( jωP)GP( jωP)] =−π . (31)

3.Phase margin (φm) is the amount of phase shift at frequencyωgc that would be needed to produce instability. It is given
by:

φm = arg[GC( jωgc)GP( jωgc)]+π (32)

4.Gain crossover frequencyωgc is given by

∣

∣GC( jωgc)GP( jωgc)
∣

∣= 1 (33)

5.Complementary sensitivity functionT(s) is indication of noise rejection ratio, which maps the noiseinput to the
output, and it is given by

T(s) =
GP(s)GC(s)

1+GP(s)GC(s)
. (34)

The frequency noise rejection withX, the desired noise attenuation for frequenciesω ≥ ωt rad/sec is given by:

|T( jω)| ≤ XdB. (35)

6.Sensitivity functionS(s) is indication of disturbance rejection ratio, which maps the disturbance to the output, and it
is given by:

S(s) =
1

1+GP(s)GC(s)
. (36)

To ensure good output disturbance rejection withY, the desired noise attenuation for frequenciesω ≤ ωs rad/sec is
given by:

|S( jω)| ≤YdB. (37)

Nelder-Mean method is used for tuning of the FPID controllerfor higher order systems [60]. It is a heuristic search
method, which converges to non-stationary solution. This method was proposed by John Nelder & Roger Mead (1965). It
is based on concept of simplex approach (sort, reflection, expansion, contraction, shrink).
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3.2 Design for Delay System

For designing of delay system of higher order system, smith predictor structure is used for control purpose [61]. It is one
of the best known schemes for controlling systems with time-delay. It is a feedback control scheme that has an inner loop
as well as an outer loop. The inner loop functions to eliminate the actual delayed output as well as to feed the predicted
output to the controller. By using this scheme, it is possible to design the controller assuming no time-delay in the control
loop. The model of smith predicator is shown in Fig.6. For delay system, the controller is designed using same method
as described for without delay system.

Fig. 6: Smith predictor model for time delay system.

4 Results and Discussions

A fractional PID controller is designed with following specifications using method described in previous section.

–Minimize ISE
–GM ≥ 10 dB
–φm ≥ 45 deg
–T(s)+S(s)≈ 1
–ωgc ≥ 0.1 rad/sec
–ωpc ≥ 0.5 rad/sec

The closed loop responses of systems are plotted in Fig.7. In addition, performance of FPID controller is compared
with classical PID controller. The classical PID controllers are tuned usingPID tuner application in MATLAB version
of R2014a. The results of this controller are tabulated in Table 2 and3. The phase margin (φm) and damping ratio (ζ )
are correlated with each other. For robust performance, phase margin should be around 45◦. Similarly, gain margin is
also required to be 10 to 20 dB. For all the plants, the value ofgain and phase margins are better. The responses of FPID
controllers are better than classical PID controller for most of the plants. The FPID controllers have very less overshoot
and quick response compared to classical PID controller. For plant 8 (one zero at left hand side of s-plane), the response
of classical PID controller is unstable, interestingly, a FPID controller response is stable for plant 8.

For one of the plants, the complementary sensitivity transfer function and complementary sensitivity function are
shown in Fig.8. It is showing good noise and disturbance rejection characteristics of the FPID controller.

Using smith predictor, design of controller for time delay systems become simple and straight forward. The smith
predictor structure also works for higher order system withdelay.

The variation of gain(K) is introduced for all the plants up to 50 %. For different values of K, the closed loop
responses of higher order systems are shown in Fig.9. It yields the iso-damping property (flat response around gain
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(f) Plant 6
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(g) Plant 7
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(h) Plant 8
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(i) Plant 9
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Fig. 7: FPID and PID controller responses for higher order system.
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Table 2: Design specifications of system with FPID controller.

Plant
Design specifications

φm deg. ωgc rad/sec GM in dB ωpc rad/sec

P1 60.3 0.562 21.8 1.87

P2 60.2 1.5 19.3 4.96

P3 60 3.07 17.3 10.7

P4 60 0.966 28.2 15.6

P5 59.8 0.512 10.1 2.17

P6 60.1 0.142 10 0.839

P7 60 0.178 10 0.622

P8 59.9 0.161 10 0.826

P9 60.2 1.5 19.3 4.96

P10 75.8 0.725 9.99 3.02

Table 3: Parameters for FPID controller

Plant
FPID controller parameters with cost function

KP KI λ KD µ ISE

P1 1.3498 0.0094982 1.0023 2.8752 1.5642 1.00159

P2 0.23594 1.7476 0.98745 5.1258 0.63837 0.65466

P3 1.647 0.041962 0.9997 3.7827 0.99995 0.295583

P4 15.387 0.50503 1.529 14.249 1.83332 0.39317

P5 4.0416 0.36081 1.1254 7.6198 1.6718 1.18302

P6 0.70904 0.35967 0.88653 2.1096 1.0008 3.18

P7 0.72433 0.20129 1.0003 1.6126 0.99975 5.18651

P8 0.51498 0.11961 1.1597 0.23558 1.4822 5.4517

P9 0.23594 1.7476 0.98745 5.1258 0.63837 0.65466

P10 0.45347 0.76373 0.98988 0.16165 0.18618 0.89986

crossover frequency) for higher order systems. In other words, the overshoots of the closed-loop step responses will
remain almost constant for different values of the gain. Theiso-damping property can be described by

(

d
dω

(Arg[G( jω)])

)

ω=ωgc

= 0. (38)

5 Conclusion

The FPID controllers are designed for higher order systems without using any model reduction methods. Different plants
are simulated ranging from order 3 to 7 without delay and withdelay. The closed loop responses are also compared with
classical PID controller. The FPID controllers show betterresponse regarding less overshoot, better transient responses,
as well as gain and phase margin. In addition, the FPID controller has better noise and disturbance rejection ratio.

For higher order control system, the FPID controller exhibited iso-damping property. It shows that the FPID controller
is a kind of robust controller for higher order system.
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Bode Diagram of T(s) and S(s)
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Fig. 8: Complementary and sensitivity function for plant 3.
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(i) Plant 9
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Fig. 9: Iso damping properties for higher order systems.
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