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Abstract: In the industry, many plants are described by higher ordeesys. Most of the time, higher order systems are approgiunat
with the lower order system using model reduction method then the appropriate controllers are designed. In thisp#ge controller
for higher order system is designed without using modelctdn methods. Instead, a fractional PID (FPID) contraéedesigned for
higher order system. In simulations, ten different planésernexamined, ranging from order 3 to order 7, with and withimlay. The
time-domain optimal tuning of higher order systems wasiedrout using integrated squared error (ISE) as the perfocsandex.
Results indicate that the controller for higher order systan be designed without model reduction methods by usitiy Eéhtroller.
The results of FPID controllers are also compared with @as®ID controller. The FPID controller displayed robustformance;
better gain and phase margin. The complementary sengitiaid sensitivity functions are better achieved with FPIDtodler. The
FPID controller exhibits an iso-damping property (flat @sge around gain crossover frequency) for higher ordeesyst

Keywords: Higher order control, fractional calculus, fractional RitBntroller, model reduction methods, fractional ordertoalter.

1 Introduction

Fractional calculus is one of the growing fields in the areaaince and engineering. A fractional order controller is
one of the applications of fractional calculus in the fieldlw# control system. In this paper, controllers for higheteor
systems are designed using a fractional PID (FPID) comtralithout using model reduction methods.

The FPID controller contains two more parameters in conspartio a simple PID controller. In the FPID controller, the
order of differential ) and integration) are non-integer number, in other words, fractional orBedlubny proposed
this type of controller, and made a remark that this type obatroller will provide better response than simple PID
controller for a fractional order systerh, P, 3,4,5]. Three different generations of CRONE (Commande Robufedde
Non Entier meaning robust control of non-integer order)togler are also discussed in the literature as non-integer
controller [].

The higher order systems can be found in multifarious imiksstike oil, cement, chemical, pharmaceutical, aircraft
system, atomic nuclear plant, flexible robot manipulatrduadrotor with a variable degree of freedom (DO#]) fuel
injector and spark timing of automobiles, etB].[Many times, nonlinear systems are linearized at diffemperating
points, and turn out to be higher order systef311]. Also, sometimes during modeling of the system, one magt ten
get higher order system using first principle method or fieieement model 2,13]. Mostly, these models are
inappropriate for many applications like analysis of syst@ptimization or control system design. In large-scale
systems, the system complexity makes the computation ctipadowing to memory and time limitations as well as the
ill-conditioning [14]. Designing of the controller for this class of systems 8als a challenging task.

If the order of the system is more than two, it is referred ghér order control systemip]. S. Das et al.12] in 2011
designed fractional order controller with a model reductioethod for higher order systems using optimization method
In 1998, B. Bandyopadhyay et al. proposed a technique faguieg) a stabilizing controller for the stable higher order
system via its reduced order model. In 2014, RituRani etralp@sed fuzzy self-tuning PID controller for higher order
system [L6]. Even in 2007, Vaishnav et al. proposed fuzzy PID contrdbe this category of system47].
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In most of these work, higher order systems are approximatémlver order system by means of model reduction
methods like Pade approximation methods, Routh approiomaechniques, model reduction by impulse/step error
minimization, principal component analysis methdd][ and balanced-truncation methotl9]. These methods are
preferred in the case of limited computational power, agcyiand storage capabilities. These reduced models need to
prevent essential characteristics of the original systéomvever, it is not always possible to capture these chaiatits.
Hence, reduced order model is not appropriate for diffeagmiications if it is not capturing important charactecist
The disadvantage of some methods is that they do not guarsataiele reduced models even though the original system
is stable. In this paper, higher order systems are desigsied) the FPID controller without using model reduction
methods.

In this study, ten different plants are considered for theusations with order 3 to 7 without delay and with a delay

of 5 and 15 unit time. The complementary sensitivity funefit(s) and sensitivity functiorC(s) for one of the plants
have been carried out. The complementary sensitivity anditbgty function indicate noise and disturbance rejewti
capabilities respectively. The FPID controller is desijnsing optimization method. The Nelder-Mead method is used
for optimization of FPID controller parameters. In this agch, integrated squared error (ISE) has been used as a
performance index for calculation of the cost function. THRID controllers are providing much better responses
compared to classical PID controller. The PID controlledésigned usingID tunerapplication of MATLAB toolbox.
The closed loop responses for all plants are plotted by mgrihie gain of the system (K), which shows iso-damping
property of the controller. Iso-damping property meang tha controller will demonstrate the same kind of response
even after changing gain of the system in a certain rangetheravords, it indicates robustness characteristics of the
controller.

This paper is organized as follows. In Section 2, the intobida of fractional calculus and FPID controller with
different tuning methods and stability analysis are presgbhriefly. In Section 3, the FPID controller is designediigher
order systems using optimization method for various pldntSection 4, results are tabulated regarding FPID cdetrol
parameters, and their frequency specifications are alstioned. The closed loop responses of higher order systegns ar
plotted. Discussion of results is also included in thisisectin the last Section, conclusions are made regardisgtbrk,
followed by references.

2 Introduction to Fractional Calculus and Fractional PID Controller

2.1 Fractional calculus

Fractional calculus is a field of mathematical study, whioles out of the traditional calculus of integral and deieat
operators20]. During last few decades, many researchers have workédidifferent areas of science and engineering
using fractional calculus?[1,22,23).

There are various definitions of fractional differentiatimtegral available in many books as well as researchlestic
on fractional calculus. The Caputo definition is more poputa engineering applications2§,25,26], as it is a
straightforward association between the type of the initenditions and the type of the fractional derivative. Aatstl
by 1. Podlubny 1], this definition allows initial conditions such 84(0),y (0) etc., not like fractional condition such as
y°28(0). Derivative of constant is bounded in the case of Caputo itiefin This definition is defined as follows:

a__ 1 v ()
aDr = I'(n—a)/a (t—r)"*"*ldr’ @

wheren is an integer number, which satisfies the condiior- 1) < a < n, a is a real number andandt are the limits
of integration. For instant, i is 0.9, them would be 1 as & 0.9 < 1. (n) is the gamma function, which is defined by
following equation:

r(n) = /O “-le¥dx @

This function is not defined for value of which is not negative whole number and zero. This functiovery beneficial
for fractional calculus.

The Riemann-Liouville definition is given by:

a1 d\" /t  f(1)
0 = iy (&) L et @

a
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wheren is an integer number, which satisfies the conditior- 1) < a < n, a is real number] is the integral operator
anda andt are the limits of integration.

The Grunwald-Letnikov’s definition is given by:

aD? _nmh— 20 () (t—rh), (4)

wheren is an integer number, which satisfies the conditior- 1) < a < n, aandt are the limits of differentiation, h is
the step size for differentiatioff:2] is integer part, and) is the binomial coefficient.

2.2 Stability of Fractional Order System

A general fractional differentiation equation is given by:

anD"y(t) +an-1DM1y(t) + - +aD™y(t) =
bmDPry(t) + bm_1DP-1y(t) 4 - 4 boDPoy(t),  (5)
whereD? denotes the fractional differentiation order with timeiliwf O tot. an, an_1, - - -, ag, bm, bm-1, - -+, bg are real
constants, andy, an_1,- - - , 0o,

Bm, Bm-1,- -+ , Bo are positive real numbers.
The above equation can be converted into transfer funcsomgu.aplace transfer using following propergi],

L{Dx(t)} = s"X(s); if x(t) =0 Vt < O. (6)
By using this property, it can be presented in the followiogn of transfer function:
bm38m+bm_138m71+"'+b0980 o Q(Sa)

= . 7
B80S + 5 1S 14+ ags®  P(s7) @

Eq. () can be called commensurate order systenyifind B¢ are arithmetical progression with the same difference.
Mathematically,

G(s) =

=k x a;where k=0,1,2,-- ,n

B« = kx a;where k=0,1,2,- ,m
and the value ofr is between 0 to 1.

Theorem 1A commensurate order system is stable if and only if

larg(Ai)| > 11/2;Vi, (8)
whereA; is the i th root of P(§).

Eq. 6) can be called incommensurate ordegjifand ¢ are not in the integer multiple. The incommensurate system
can be decoupled by following model form of the fractionahfio

N Nk
le sq|+)\ (4 Ak ©)

whereny is the positive integel is the total roots of the pseudo-polynonidk®), andA; i, Aj are complex numbers.

Theorem 2The incommensurate order system is BIBO stable if and only if

0<q <2 (10)

larg(Ai)| < pi(1—qi/2);Vvi. (11)
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The stability region for fractional order systesi)is shown in Fig1. The stability region depends upon the value of g.
The stability of the fractional system can be computed uBliggnann surface. The Riemann surface'dt is shown in

Fig. 2, which shows four Riemann sheets in the complex plane.

jw jw
Stable | an/2
Unstabl
Region Stable Unstable — nSAa ©
Region . | Region
R — /2 8! Region Stable
q /2 — Region —
o o I I
T o
Unstable |
Region |
—
N\

(a)For0<g<1 (b) For g=1 (c)Fori<qg<?2

Fig. 1: Stability region of the fractional order system.

"
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777

Fig. 2: Riemann surface fas/%.

2.3 Fractional PID Controller

A fractional order controller was proposed by I. Podlubmyffactional order system4[2]. The attractive feature of FPID
controller is that it is less sensitive to changes of paransatf a controlled system and controll26]. FPID controller
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has five parameters to tune as shown in following Eg).(Fig. 3 shows a block diagram of FPID controller. The structure
of FPID controller is in the parallel forn2p, 30,31]

U (S) K|
Ge(s)= —= =Kp+—+Kps*; (0< A, u<2), 12
C() E(S) P+SA+D (7 I"lf) ( )
whereGc¢(s) is the controller transfer functiokl (s) is the Laplace of control signdk(s) is the Laplace of error signal,
Kp is the proportional constant gail, is the integration constant gaikp is the derivative constant gain,is the order
of integration, anqu is the order of differentiator.

> Kp

Error Signal E(s)
> K » s
> Ko > st

Fig. 3: Block diagram of FPID controller.

The fractional order system can be approximated by varicethods B2, 33,34]. Oustaloup recursive approximation
is the most popular method for approximate fractional of@e35, 36]. It is given by:

N 1+s/ax

& ~K X 13
T s 49

Above approximation equation can by calculated using ¥alg equations:

Wy = /Why
wherew,, w, are the frequency bound for approximation.
wp = o~y wy = a®ay;
(’4«,-1 _ W1 —an>1,
W, X
it oo _gs0
o o
_ log(an/ @)
log(an)

FPID controller is also implemented in real time applicatipusing analog as well as digital approximation methods.
The order of integrator and differentiator are in the rang@ o 2 [37].
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2.4 Tuning of Fractional PID Controller

Tuning of FPID controllers is challenging task, as it has twore parameters to tune as compared to classical PID
controller. According to D. Valerio and J. Costad], tuning methods can be divided into three different catiegoas
follow:

—Rule-based methods
—Analytical methods
—Numerical methods

Apart from the above methods, auto-tuning and internal rmaterol (IMC) methods are also used for tuning of fractibna
order controllers?3].

Ziegler Nichols type rules for FPID controller were propds$s D. Valerio and J. Costa in 20089). This method
is only applicable, where plant response is similar to setddbehavior for a step input. 14, Ziegler-Nichols method
was used for tuning the gain parameters of the FPID contridie K|, Kp). Other parametera ( u) were tuned manually
by varying these parameters and observing the effect oretiéred specifications.

A tuning method for the fractional order system based onydical method was proposed by C. Zhao et al. in 2005
[41]. Parameters of the FPID controller were obtained by sglv@guations that were obtained from the desired
specifications. Results of this method were validated usitogexamples. The tuning method based on the specifications
as well as the proposed auto-tuning method for FPID cometrdlased on the relay test was described in 2007 by B.
Vinagre et al. #2] and 2008 C. Monje et ak]. It allows the requirements of robustness constraintfer~PID system
using simple relations among its parameters.

The tuning of fractional order controllers based on nunatricethods has been proposed by many researchers. Based
on a genetic algorithm43], J. Cao et al. proposed tuning of FPID using integral of tiweighted absolute error (ITAE)
and control input as a performance index. L. Chang and H. C8igralso suggested tuning of FPID using an adaptive
genetic algorithm for the active magnetic bearing systeasel on the genetic algorith4], tuning rules have been
developed using time domain performance index. The enldapagicle swarm optimization (PSO) method has also
been used for designing of fractional order controlléi$46,47]. The FPID controllers were also designed by different
methods like an improved differential evolution optimipatapproach by A. Biswas et at§] in 2009, electromagnetism-
like algorithm j9] by C. Lee and F. Chang, MIGQV constrained integral gain optimization) method by Y. cheale
[50] in 2008. In this work, numerical based method is used forgsg of FPID controller, as mathematical models are
available for higher order systems.

The auto-tuning method for FPID controller was developezkbaon relayZ3] and modulus, phase and phase slope
of the processq1]. IMC based tuning for the FPID controller was proposed hy fesearchers$p,53,54,55|.

2.5 Performance of FPID Controller

The performance of FPID controller is demonstrated in thissection. The first order transfer function plantis coased.
It has following transfer function:

K
Gels) = sT+1

A FPID controller is designed fdk = 10 andr = 1 using optimization method. The obtained parameters foDFP
controller areKp = 100 K; = 100 Kp = 100A = 0.01 andu = 0.90. The values oK are varied between 10 to 40.
Similarly, the values ofr are varied between 1 to 4. The closed loop responses aredlatt-ig.4. The closed loop
responses show similar kind of behaviors for different galofK andr.

(14)

3 Design of Fractional PID Controller for Higher Order Systems
A general transfer function of higher order system is given b

Go(s) = 20 AT +am-18" +ams” (15)
P bo+ 1S+ -+ by 15" 1+ by

_ IMpas

CP(9 = 5 o

(16)
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Fig. 4: Response of the FPID controller for different values of K and

wherea; andb; are scalars) > mandn > 2.

The various plants are considered for designing of FPIDrotlat. There test bench process plants are referred from
[12,56,57]. In these plants, order of systems is varying from 3 to 7 aitd without delay (plant 2 and plant 9).

- i . (17)
RS = oy -
Pa(s) = S5+ 1)(1+ 0.2s)(1i 0.04s) (1 + 0.000%) (19)
S :1)4 (20)
(9 = 5 s -
o :1)6 (22)
P9 = 47 “
(9 = (g o
o ::;3 (25)
Pio(s) = (s+1) (s29+ 25+9) >

The step responses of above higher order systems are pioRied5, and open loop frequency responses are tabulated
in Tablel. The plant 1 and plant 3 are integrating higher order sysi®damt 8 has one zero at left hand side of s-plane.
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Fig. 5: Step responses of higher order systems.

Table 1: Open loop frequency response.

Plant GM in  PM in  @wpc Wy

No dB deg rad/sec rad/sec
P -1.02 -4.97 0.577 0.617
P, 1.93 -180 0.4 0

P3 13.4 41.1 1.97 0.779
Py 12 -180 1 0

Ps 9.2 -180 0.727 0

Ps 7.5 -180 0.577 0

P, 6.34 -180 0.481 0

Ps 1.16 45.8 0.845 0.55
Py 0.392 -180 0.175 0

Po 852 -180 3.32 0
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3.1 FPID Design for Without Delay System

The parameters of FPID controller are obtained using nwakrmethod, as this method is suitable for all kinds of
process model. The ISE performance index is consideredubeda penalizes highly for significant error. It can also
easily discriminate between excessively overdamped addrdamped system. It is calculated by following equation:

t
ISE:/ (t) dt 27)
0
wheree(t) is the error signal, and it is given for unity feedback systemsidering unit step input,

_ 1 (1 GP(S)Gc(S)
et)y=1-L 1@%)' (28)

Note:L~1{F(s)} represents the inverse Laplace transforrf ().
In optimization, following constrains have been considdis, 59,

0<Kp,K,Kp <20and 0< A, u < 2. (29)
Also, this cost function is subjected to following specifioas.
1.Gain margin (GM) means in-system gain changes that maksyitem marginally stable. It is defined as

1

GMindB=20xIlo - - , 30
NG (jom) Gr(j )| (30)
whereGg is the controller transfer function, ai is the plant transfer function.
2.A phase crossover frequenay is given by:
arg[Ge(jwp)Gp(juwp)] = —Tr. (31)

3.Phase margingy) is the amount of phase shift at frequenay: that would be needed to produce instability. It is given
by:
= arg[Ge (j wye)Gp(jawye)] + 10 (32)
4.Gain crossover frequenacy is given by

|Ge(jwge)Gr(joge) | = 1 (33)
5.Complementary sensitivity functiof(s) is indication of noise rejection ratio, which maps the ndigeut to the
output, and it is given by
Gp(5)Gc(9)
T(§) = —————.
() 1+ Gp(8)Gc(9)
The frequency noise rejection wiky, the desired noise attenuation for frequencies w; rad/sec is given by:

(34)

IT(jw)| < XdB (35)
6.Sensitivity functiorS(s) is indication of disturbance rejection ratio, which maps thisturbance to the output, and it
is given by:
1
S =—————.
) 1+ Gp(s)Gc(9)

To ensure good output disturbance rejection withthe desired noise attenuation for frequencies ws rad/sec is
given by:

(36)

IS(jw)| <YdB 37)

Nelder-Mean method is used for tuning of the FPID contrdibertigher order systems(). It is a heuristic search
method, which converges to non-stationary solution. Tréhmd was proposed by John Nelder & Roger Mead (1965). It
is based on concept of simplex approach (sort, reflectiqggam®sion, contraction, shrink).
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3.2 Design for Delay System

For designing of delay system of higher order system, snrgdiptor structure is used for control purpo&é][ It is one

of the best known schemes for controlling systems with tdeky. It is a feedback control scheme that has an inner loop
as well as an outer loop. The inner loop functions to elimarthe actual delayed output as well as to feed the predicted
output to the controller. By using this scheme, it is possibldesign the controller assuming no time-delay in therobnt
loop. The model of smith predicator is shown in FigFor delay system, the controller is designed using sambaodet

as described for without delay system.

Output
Ref. FPID »  Plant -
Input
A4
Plant Model
without
delay
|
Delay
4E:

Fig. 6: Smith predictor model for time delay system.

4 Results and Discussions

A fractional PID controller is designed with following sp#cations using method described in previous section.

—Minimize ISE
-GM >10dB

—¢@m > 45 deg
-T(s)+S(s)~1
—ye > 0.1 rad/sec
—wpc > 0.5 rad/sec

The closed loop responses of systems are plotted in/Fig. addition, performance of FPID controller is compared
with classical PID controller. The classical PID contradlare tuned usin®ID tuner application in MATLAB version
of R2014a. The results of this controller are tabulated ibld2 and 3. The phase marging,) and damping ratio{)
are correlated with each other. For robust performanceseheargin should be around 45Similarly, gain margin is
also required to be 10 to 20 dB. For all the plants, the valugadf and phase margins are better. The responses of FPID
controllers are better than classical PID controller foistraf the plants. The FPID controllers have very less ovatsho
and quick response compared to classical PID controllerplemt 8 (one zero at left hand side of s-plane), the response
of classical PID controller is unstable, interestingly,RIB controller response is stable for plant 8.

For one of the plants, the complementary sensitivity tran&inction and complementary sensitivity function are
shown in Fig 8. It is showing good noise and disturbance rejection charatics of the FPID controller.

Using smith predictor, design of controller for time delggstems become simple and straight forward. The smith
predictor structure also works for higher order system wétay.

The variation of gain(K) is introduced for all the plants up to 50 %. For different wdwfK, the closed loop
responses of higher order systems are shown in %idt yields the iso-damping property (flat response around ga
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Fig. 7: FPID and PID controller responses for higher order system.
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Table 2: Design specifications of system with FPID controller.

Design specifications

Plant
@ndeg. aycrad/sec GMindB wycrad/sec
Py 60.3 0.562 21.8 1.87
P 60.2 15 19.3 4.96
P3 60 3.07 17.3 10.7
P4 60 0.966 28.2 15.6
P 59.8 0.512 10.1 217
Ps 60.1 0.142 10 0.839
P 60 0.178 10 0.622
Pg 59.9 0.161 10 0.826
Po 60.2 15 19.3 4.96
Pio 75.8 0.725 9.99 3.02

Table 3: Parameters for FPID controller

FPID controller parameters with cost function
Kp K, A Kp u ISE
Py 1.3498 0.0094982 1.0023  2.8752 1.5642  1.00159
P, 0.23594 1.7476 0.98745 5.1258 0.63837 0.65466
Ps 1.647 0.041962  0.9997  3.7827 0.99995 0.295583
Py 15.387 0.50503 1.529 14.249 1.83332 0.39317
Ps 4.0416 0.36081 1.1254 7.6198 1.6718 1.18302
Ps 0.70904  0.35967 0.88653 2.1096  1.0008 3.18
P, 0.72433 0.20129 1.0003 1.6126 0.99975 5.18651
Ps 0.51498 0.11961 1.1597 0.23558 1.4822 5.4517
Py 0.23594 1.7476 0.98745 5.1258 0.63837 0.65466
Pio 0.45347 0.76373 0.98988 0.16165 0.18618  0.89986

Plant

crossover frequency) for higher order systems. In otherdgjothe overshoots of the closed-loop step responses will
remain almost constant for different values of the gain. iEbedamping property can be described by

(gpamaiction) o (3

W=wyc

5 Conclusion

The FPID controllers are designed for higher order systeitiowt using any model reduction methods. Different plants
are simulated ranging from order 3 to 7 without delay and wilay. The closed loop responses are also compared with
classical PID controller. The FPID controllers show betemponse regarding less overshoot, better transientnespo
as well as gain and phase margin. In addition, the FPID cbetittas better noise and disturbance rejection ratio.

For higher order control system, the FPID controller exithiso-damping property. It shows that the FPID controller
is a kind of robust controller for higher order system.
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Bode Diagram of T(s) and S(s)
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Fig. 8: Complementary and sensitivity function for plant 3.
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