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Abstract: This paper elucidates an ecological model of a three-space food chain consists of two competing species and a third species,

which is supporting the first competing species in non-linear manner of Holling type-II functional response and ingests the second

competitive species in linear style, within the limited resources. This model is constituted by a system of non-linear decoupled first

order ordinary differential equations. By using perturbed method, we investigate the local stability nature of the system at each possible

equilibrium point. Further, the numerical illustrations at suitable parametric values to the model are presented by observing the species

survivalness in nature for long time.
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1 Introduction

Many applications of real world problems are expressed
in ecological models. The study of ecological models has
become central role of mathematics and created much
interest among authors. The classical models of food
chain with only two tropic levels are discussed by many
researchers and scientists. In the study of interactions
between the species, like Prey-Predator, Competition,
Mutualism, Ammensalism, Commensalism and so on,
much attention is paid to converting them mathematically
so that one can study the behavior of species in both
analytically and numerically. The discussion on local and
global stability of ecological models in different types of
interactions of species is very engrossing and demanding
mathematically and biologically. Any complex
interactions among the species are mixing of the above
interactions. More work related to complex interactions
among species and their stability nature are discussed by
May [1], Naji and Balasim [2], Smith [3], and
Edelstein-Keshet [4]. A general discussion on the
multi-species populations models can be viewed in
Kapur [5]. The comprehensive report on theoretical
ecology can be found from Stiling [6]. The basic concepts
in mathematical modeling are got from the treatises of
Lotka [7] and Kuang [8]. For review and fruitful

discussion on models with mutualism, we can refer to
Addicott John [9], Dean [10], Goh [11], Wolin [12] and
Zhibin [13]. The investigations on multi-interactions
among species can be observed from Gyllenberg et
al. [14], Suresh Kumar et al. [15] and Wang et al. [16].
The work on commensalism interaction between two
species can be seen from Seshagiri Rao et al. [17].
Differential equations and their applications to dynamical
systems can be viewed from the books of Brauer et
al. [18], Braun [19], and Hirsch et al. [20]. The species, in
environment interacts other species in different functional
response types within the availability natural resources.
There have been great number of generalizations in this
direction. Chen et al. [21] studied the global stability of
the existing positive equilibrium for the prey-predator
model incorporating a constant number prey refuges.
In [22], Seo et al. discussed the stability analysis of a
predator-prey model with a Holling type-I functional
response including a predator mutual interference. The
bifurcation analysis of prey-predator system with constant
harvesting of Holling type-II is investigated by Peng et
al. [23]. Later Yu [24] discusses the global stability
analysis of prey-predator model with modified
Leslie-Gower and Holling type-II schemes. More work on
a prey-predator systems with Holling type-III and Holling
type-IV response functions, the reader may refer to
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Huang et al. [25] and Naji et al. [26]. Species epidemic
food chains models in different tropical levels with
various response functions can be found in [27–36].

Therefore, in this paper, we focused on the dynamics
of a three-space food chain consists of two logistically
growing competing species and a third species acts as a
predator as well as host for the competing species which
interacts linear and non-linear manner.

The applications of these type models are available in
real life. For example, deer and elk are both competing
each other for their food in the same region and a lion
(predator) harms elk then automatically deer gets survival
for time being, indirectly deer gets benefit from lion. One
of demerits of the presented model is that the species with
such kind of interactions will not be survival for long time
in the environment due to under extreme ecological
conditions such as animals (competition among
themselves) and a predator which will be more interested
(or) harm the second competitor for its food. On the other
hand, it indirectly helps the first competitor, situations
leading to one of the species growth is exponential and
another is not such kind of solution exists in ecosystem.

The rest of the paper is organized as follows. In
Section 2, we formulate the model in terms of the
non-linear decoupled ordinary differential equations; In
Section 3, we present analysis of the proposed model by
finding the equilibrium points of the model in Section 3.1
and the stability analysis of the model in Section 3.2; and
Section 4 discuss the numerical simulation of the
proposed model.

2 Model Formulation

The ecological setup for three species food web system
with multi-intraction among themselves for the proposed
model is shown in the following Figure 1.

Fig. 1: Schematic diagram of three species food-chain system

In the Figure 1, x,y and z are the population densities of
two competing species and a third species, which is
predator for y and host for x at any time instant t

respectively. The species z consumes y linearly and helps
the first competing species x in Holling type-II functional
response manner. The parameter α23 is the consumption

coefficient of z on y; α32 is the benefit coefficient of z on y

due to the interaction; α is the commensal coefficient of
the species x with respected to z; r is the intrinsic growth
rate of the first competing species; ω is death rate of third
species z. The coefficients βi j (i 6= j; i, j = 1,2) are the
inter-species competition coefficients of two competing
species x and y.

By employing the terminology given above, the
model equations for an ecosystem consisting three
species interacting in different ways, as given in Figure 1,
consists of a set of non-linear decoupled first order
ordinary differential equations as follows,

dx

dt
= x

(

1−β12y+
αz

1+ x

)

dy

dt
= ry(1−β21x)−α23yz

dz

dt
= z(−ω +α32y)

(1)

with the non-negative initial conditions x(0)≥ 0,y(0)≥ 0
and z(0)≥ 0.

3 Model Analysis

In this section, we present the stability analysis of the
proposed model by finding the feasible equilibrium points
of the dynamical system.

3.1 Equilibrium Points

The equilibrium points of the system are necessary for the
purpose of studying the local stability nature of the
ecological model. The system, under investigation, has
the following four equilibrium points

(i) Fully washed out state or extinct state: E1 = (0,0,0).
(ii) Only first competitive species washed out state: E2 =

(

0, ω
α32

,
r

α23

)

.

(iii) Only third species washed out state:

E3 =
(

1
β21

,
1

β12
,0
)

.

(iv) Interior or Coexistence state: E4 = (x∗,y∗,z∗), where

x∗ =
rα −α23(β21y∗− 1)

β21rα +(β12y∗− 1)α23

,

y∗ =
ω

α32

,

z∗ =
r(β12y∗− 1)(β21+ 1)

β21rα +(β12y∗− 1)α23

.

In the following section, we discuss about the local
stability of the system at the above existing equilibrium
points by employing perturbed technique.
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3.2 Stability Analysis of Equilibrium Points

The Jacobian matrix for the system (1) at an equilibrium
point E = (x,y,z) is given by

JE =





J11 J12 J13

J21 J22 J23

0 J32 J33



 , (2)

where

J11 = 1−β12y+
αz

1+ x
− αxz

(1+ x)2
, J12 =−β12x,

J13 =
αx

1+ x
, J21 =−rβ21y, J22 = r(1−β21x)−α23z,

J23 = −α23y, J32 = α32z and J33 =−ω +α32y.

The corresponding characteristic equation is λ 3 + a0λ 2 +
a1λ + a2 = 0, where

a0 = − J33 − J22 − J11

a1 = J11J22 + J11J33 − J12J21 + J22J33 − J23J32

a2 = − J11J22J33 + J11J23J32 + J12J21J33 − J13J21J32

The dynamical system is stable when all three eigenvalues
of (2) are negative in case of real roots or having negative
real parts in case of the complex roots. In other cases, the
dynamical system is unstable always.

Theorem 1. The interior equilibrium point

E4 = (x∗,y∗,z∗) would exist when β21y∗ > 1, β12y∗ > 1
and rα > α23(β21y∗− 1).

Proof. Let x∗,y∗,z∗ be the positive solutions of the
equations

x∗
(

1−β12y∗+
αz∗

1+ x∗

)

= 0,

ry∗(1−β21x∗)−α23y∗z∗ = 0,

z∗(−ω +α32y∗) = 0.

Solving these equations for x∗,y∗ and z∗, we obtain

x∗ =
rα −α23(β21y∗− 1)

β21rα +(β12y∗− 1)α23

,

y∗ =
ω

α32

,

z∗ =
r(β12y∗− 1)(β21 + 1)

β21rα +(β12y∗− 1)α23

.

These would be positive when
rα > α23(β21y∗ − 1),β21y∗ > 1 and β12y∗ > 1. So, the
interior equilibrium point E4 = (x∗,y∗,z∗) for system (1)
exists if β21y∗ > 1, β12y∗ > 1 and rα > α23(β21y∗− 1).

Theorem 2. The dynamical system (1) is always unstable

at the equilibrium points E1, E3 and E4.

Proof. (i) The eigenvalues of the dynamical system at the
extinct equilibrium point E1 =(0,0,0) are 1,r,−ω . So,
the equilibrium point E1 is a saddle point, and hence
the dynamical system is unstable in general.

(ii) The corresponding Jacobian matrix at the equilibrium

point E3 =
(

1
β21

,
1

β12
,0
)

is

JE3
=









0 − β12

β21

α
1+β21

− rβ21

β12
0 −α23

β12

0 0
−ωβ12+α32

β12









.

The characteristic equation of JE3
is

(

−ωβ12 +α32

β12

−λ

)

(

λ 2 − r
)

= 0.

The eigenvalues of JE3
are λ1 =

√
r, λ2 = −

√
r and

λ3 = α32−ωβ12

β12
. Therefore, the equilibrium point E3 is

a saddle point and hence the dynamical system (1) is
unstable.

(iii) The Jacobian matrix at the coexistence state E4 =
(x∗,y∗,z∗) is

JE4
=





H11 H12 H13

H21 0 H23

0 H32 0



 ,

where

H11 = − αx∗z∗

(1+ x∗)2
, H12 =−β12x∗, H13 =

αx∗

1+ x∗
,

H21 = − rβ21y∗, H23 =−α23y∗ and H32 = α32z∗.

The characteristic equation of JE4
is

λ 3 −H11λ 2 − (H23H32 +H12H21)λ

+(H11H23H32 −H13H21H32) = 0.

Denote, the characteristic equation by λ 3 +α0λ 2 +α1λ +
α2 = 0, where

α0 = −H11,

α1 = − (H23H32 +H12H21),

α2 = H11H23H32 −H13H21H32.

According to Routh-Hurwitz criteria, the equilibrium point
E4 will be locally asymptotically stable if α0 > 0,α2 > 0
and α0α1 −α2 > 0, but we have

α0 = −H11 =
αx∗z∗

(1+ x∗)2
> 0,

α2 = H11H23H32 −H13H21H32

=
αα32x∗y∗z∗

(1+ x∗)

(

α32z∗

1+ x∗
+ rβ21

)

> 0, and

α0α1 −α2 = H11H12H21 +H13H21H32

= − rαβ21

1+ x∗
x∗y∗z∗

(

β12x∗

1+ x∗
+α32

)

< 0 always.
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Hence, the dynamical system (1) is unstable always at E4,
since it fails to satisfy the Routh-Hurwitz criteria.

Theorem 3. The dynamical system (1) at the boundary

steady state E2 is

(i) unstable, and trajectories are outward spiral, if

α32α23 +α32αr > ωα23β12.

(ii) closed orbits, if α32α23 +α32αr = ωα23β12.

(iii) the trajectories are inward spiral, if

α32α23 +α32αr < ωα23β12.

Proof. The Jacobian matrix for the system (1) at

E2 =
(

0, ω
α32

,
r

α23

)

is

JE2
=





1−β12
ω

α32
+α r

α23
0 0

−rβ21
ω

α32
0 −α23

ω
α32

0 α32
r

α23
0



 .

The characteristic equation of which is

(

α32α23 −ωα23β12 +α32αr

α23α32

−λ

)

(

λ 2 +ωr
)

= 0,

then the corresponding eigenvalues are

λ =
α32α23 −ωα23β12 +α32αr

α23α32

,0± i
√

ωr.

In particular, denote

λ1 =
α32α23 −ωα23β12 +α32αr

α23α32

, λ2 = i
√

ωr and

λ3 =−i
√

ωr.

We can have the following observations to the dynamical
system (1) based on the eigenvalue λ1.

(i) if α32α23 +α32αr > ωα23β12, then λ1 > 0. Thus, the
system (1) is unstable in x direction and trajectories are
circular orbits out in yz direction.

(ii) if α32α23 +α32αr = ωα23β12, then λ1 = 0. Hence,
the system (1) admits neutrally stable in yz direction.

(iii) if α32α23 +α32αr < ωα23β12, then λ1 < 0. So, the
system (1) is stable in x direction and trajectories are
circular orbits in yz direction.

4 Numerical Simulations

The system of equations in (1) are solved numerically by
applying Rungue-Kutta fourth order method to observe
the species behavior in environment at suitable selected
model characterizing parameters satisfying the conditions
in Theorem 3. The software MATLAB (ode45) program
has been used in finding the accurate approximate
solutions for the species. The conclusions are given
case-wise as follows.

Case I

By selecting the parameter values given below in the
dynamical system (1), the condition (i) of Theorem 3
satisfied:

β12 = 1,α = 0.9,r = 0.3,β21 = 0.05,

α23 = 0.01,α32 = 1,ω = 1.5,

and with initial conditions x(0) = y(0) = z(0) = 10. The
corresponding eigenvalues and equilibrium points in this
case are λ1 = 26.500,λ2 = 0.671i,λ3 = −0.671i, and
E2(0,1.5,30). So, the system (1) is always unstable by
observing the species growth rates in Figure 2. Only, the
first competitive species (x) survives in nature long time
and the remaining two species y,z gradually extinct as
time goes on, this can be evidenced in Figure 2.

Fig. 2: Time series shows the behavior of three species.

Case II

By selecting the parameter values as β12 = 3,α = 0.5,r =
0.1,β21 = 0.05,α23 = 0.01,α32 = 1,ω = 2, it is clear that
condition (ii) of Theorem 3 holds. In this case, the
eigenvalues are λ1 = 0,λ2 = 0.447i,λ3 =−0.447i and the
corresponding equilibrium point is E2 = (0,2,10).
Initially, all three species will exist in nature but, after
some time the second competitive species y gradually
decreasing in its growth rate and then extinct further,
whereas the first competitive species x and third species z

growing with respect to time but, after some time due to
death rate of z, it decreases, that can be observe from
Figure 3. So, the dynamical system gets bifurcated
between the time interval [0.5,1].

Case III

Now, at the parameter values, β12 = 6,α = 0.5,r =
0.1,β21 = 0.05,α23 = 0.01,α32 = 1,ω = 2, the
condition (iii) of Theorem 3 satisfied. As discussed above,
here λ1 < 0, is real eigenvalue and λ2,λ3 are purely
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Fig. 3: Time series shows the behavior of three species.

imaginary complex eigenvalues. So, the dynamical
system is unstable always that can be evidenced in
Figure 4.

Fig. 4: Time series shows the behavior of three species.

Remark: When time goes on, the first competitive species
x survival in nature due to the extended support from host
z for a while, whereas second competitive species y extinct
faster due to computation effect from x,z.

5 Conclusion

In this paper, we study an ecology model of three species
food web system in that two species are competing each
other and a third species, which is a predator as well as a
host to the second and first competing species. In this
multi interaction, the third species helps the first
competing species in non-linear Holling type-II
functional response manner and consumes the second
competitive species in linear manner within the
availability of natural resources. The local stability
analysis of the dynamical system is discussed using well
known method. At the end, the numerical illustrations are
given to support the analytical findings. Finally, based on
this analytical investigation such kind of ecological
models exists in nature, but because of under extreme
ecological conditions, the system of species with such
multi interactions among themselves, may not survive in
nature for long time. If the host species z survives, then
both competitive species x,y may survive due to
competition among them.
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