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Abstract: In the multiple-model based speech recognition system, multiple HMM models 

corresponding to different types of noise signals and SNR values are trained and the one model which 

is most close to the input speech is selected for recognition. In the previous research on the multiple-

model based speech recognition, it has been thought that the best performance can be obtained by 

selecting the HMM model which is most similar in SNR values to the input speech. But, from our 

experimental results, it has been found that better performance can be obtained when there is some 

mismatch between the SNR values of input speech and the selected HMM model. In this paper, we 

experimentally determined the optimal HMM models corresponding to the SNR values of the input 

speech in the multiple-model based speech recognizer. From the recognition experiments on Aurora 2 

database, we could see far better recognition results compared with the conventional multiple-model 

based speech recognizer by using the experimentally determined optimal HMM models. 
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1  Introduction 

Various research efforts have been done for the 

noise-robust speech recognition like speech feature 

extraction, speech enhancement and model parameter 

compensation [1][2][3]. These approaches are used 

independently or combined with each other to 

improve the performance of the speech recognizer 

under noisy environments. 

As a different approach to those conventional 

methods, the Multiple-Model based Speech 

Recognizer (MMSR) has been recently proposed and 

shown quite successful results [4]. In the method, 

multiple acoustic models corresponding to various 

noise types and SNR levels which are expected to be 

present in the testing speech are obtained during the 

training and the trained acoustic models are used all 

together in the testing. This is contrary to the 

conventional methods where a single acoustic model 

corresponding to clean speech is used. 

The MMSR has shown better performance than 

the conventional noisy speech recognition approaches. 

It performed better than the model parameter 

compensation methods like the Parallel Model 

Combination (PMC) and Jacobian Adaptation (JA) as 

well as the speech enhancement method like the 

Spectral Subtraction (SS). And even better, it 

performs better than the Multi-style TRaining (MTR) 

which has recently been known to perform very well 

in noisy speech recognition [5]. 

The MMSR should classify the type of noise 

signal in the testing speech and also estimate the SNR 

of the input speech to determine the reference HMM 

before the actual speech recognition takes place. As 

the errors in this process will cause misrecognition, 

the performance of the MMSR would be improved 

significantly by minimizing those errors. 

According to the previous research results, 

classification accuracy of the noise signal type based 

on Gaussian Mixture Model (GMM) is nearly 100(%) 

[4]. This means that the classification of the noise 

signal type doesn’t affect adversely the performance 

of the MMSR. However, the process of estimating the 

SNR and determining the reference HMM based on 

the SNR requires some notice. In the previous 

research on the MMSR, they selected the reference 

HMM which is closest to the estimated SNR. But, 

from our preliminary studies, we found that we could 

further improve the performance by selecting the 
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reference HMM which has a slightly different (higher 

or lower) SNR value than the estimated SNR. 

In this paper, we will do an experimental 

investigation to determine the reference HMM which 

gives the best performance given the SNR of the input 

speech. We expect to improve the performance of the 

conventional MMSR by employing the 

experimentally determined SNR mappings rather than 

using directly the estimated SNR value to select the 

reference HMM. 

 

2  Multiple-Model Speech Recognizer 

In the MMSR, multiple reference HMMs for the 

assumed various noise environments are constructed 

during the training and the reference HMM which is 

most appropriate for the testing noisy speech is 

selected for recognition. To select the reference 

HMM, we need to estimate the SNR of the testing 

noisy speech and classify its noise type. We show the 

architecture of the MMSR in Figure 2.1. This 

approach has the advantage of improving the noise-

robustness compared with the conventional method in 

which only a single reference HMM corresponding to 

the clean speech is considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.2 : An example of the reference HMM selection process in the 

multiple-model based speech recognizer 

 

In Figure 2.2, we show an example of the 

reference HMM selection process in the MMSR. 

We have constructed the reference HMM in every 2 

dB interval for the 4 known types of noise signal 

(babble, car, subway, exhibition) during the 

training phase and the trained reference HMMs are 

stored in the HMM Database. In the example, the 

type of the noise signal from the testing noisy 

speech is classified as subway and the SNR is 

estimated as 5.5 dB. This information is sent to the 

HMM Database and the reference HMM is 

determined as SUBWAY/6dB which is most close 

to the testing noisy speech. In the conventional 

MMSR, it is thought that choosing the closest 

reference HMM as described above will result in 

the best performance. However, in this paper, we 

experimentally determined the optimal SNR level 

of the reference HMM given the estimated SNR of 

the testing speech for further improvement of the 

performance. 

 

2.1 SNR Estimation and Noise Type 

Classification 

The MMSR utilizes the VAD (Voice Activity 

Detection) based SNR estimation. In the method, 

the power of the noise signal 
2ˆ
n  is estimated using 

samples in non-speech periods obtained by the 

VAD and the noise signal power is subtracted from 

the signal power 
2ˆ
x  during the speech periods to 

estimate the real speech power. The ratio of the real 

speech power to noise power is determined as the 

SNR. The expression for the SNR of the noisy 

speech is as follows. 
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For the noise signal classification, the feature 

vector of the noise signal n is modeled by the 

GMM. The GMM represents the weighted linear 

combination of the Gaussian probability density 

functions and is expressed as follows. 
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In (2.2), the weight factor i satisfies 
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Figure 2.1: The architect of the multiple-model based speech recognizer  

which is divided into 2 parts: training phase and testing phase. 
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mean vector and covariance matrix of the Gaussian 

probability density function )(npi , respectively. 

For the noise signal classification, the GMM is 

trained for each noise type during the training via 

the Expectation-Maximization (EM) based 

maximum likelihood estimation. 

 

2.2 Standards for Speech Front Ends 

In this paper, we used 2 standards of speech 

front-ends to more accurately compare the 

proposed method with the conventional approaches. 

The European Telecommunications Standards 

Institute (ETSI) proposed two standard front-ends 

for the DSR speech recognition. The first standard 

ES 201 108 which was published in 2000 consists 

of two separate parts, feature extraction and 

encoding [5]. The widely used MFCC is generated 

in the feature extraction part while channel 

encoding for transmission is done in the encoding 

part. In this paper, we implemented only the feature 

extraction part as our concern is on the noise 

robustness of the front-ends. We call the first 

standard as FE and its block diagram is shown in 

Figure 2.3. 

The feature extraction part includes the 

compensation of the constant level offset, the pre-

emphasis of high frequency components, the 

calculation of the spectrum magnitude, the bank of 

mel-scale filters, the logarithmic transform and 

finally the calculation of the discrete cosine 

transform. For every frame, a 14 dimensional 

feature vector consisting of 13 cepstral coefficients 

and a log energy is generated. 

The FE front-end is known to perform 

inadequately under noisy conditions. Thus, a noise 

robust version of the front-end was proposed in 

2002 [6]. This version called Advanced Front-End 

(AFE) is known to provide a 53(%) reduction in 

error rates on the connected digits recognition task 

compared to the FE standard [7].  

 

 

 
 
Figure 2.3: The block diagram of the FE front-end which consists of 

feature extraction and encoding process. 

 

Figure 2.4 shows a block diagram of the AFE 

front-end. Wiener filter based noise reduction, 

voice activity detection (VAD), waveform 

processing improving the overall SNR and blind 

equalization for compensating the convolution 

distortion are added in order to improve the 

recognition rates. 

The multiple-model based speech recognizer 

has shown improved results compared with the 

previous noise-robust methods like the MTR when 

they use the FE. However, for the accurate 

comparison, it is necessary to compare the 

recognition rates when they use the AFE as the 

basic front-end because the AFE generally 

performs better than the FE in noisy conditions. 

Thus, in this paper, we evaluated the performance 

of the multiple-model speech recognizer using both 

the FE and AFE and proposed a method to improve 

the recognition rates of the multiple-model based 

speech recognizer. 
 

 
Figure 2.4: The block diagram of the AFE which consists of feature 

extraction and encoding process. 
 

 

3  Baseline System and Databases 
We used the Aurora 2 database for the 

experiments. There are two kinds of training 

approaches for the Aurora 2 database [5]. The first 

one called CLEAN uses only clean speech not 

contaminated with any kinds of noises to train the 

HMMs. The second training method called MTR 

uses both clean and noisy speech which is 

contaminated by various kinds (subway, car, 

exhibition, babble) of noises at several SNR levels. 

The recognition experiments are conducted for set 

A (including 4 known types of additive noise: 

subway, car, exhibition, babble), set B (including 4 

unknown types of additive noise: restaurant, street, 

airport, train) and set C (including convolution 

noise). 

We used 2 widely known speech features for the 

experiment. The first one called FE in which 12-th 

order Mel-Frequency Cepstral Coefficients 

(MFCCs) without 0-th cepstral component and the 

log energy are used as the basic feature vector and 

their delta and acceleration coefficients are added 
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to construct a 39-dimensional feature vector for 

each frame [6]. The noise robust version of the 

speech feature is called AFE which is known to 

significantly reduce the word error rate in noisy 

conditions. We extracted 39-dimentional feature 

vectors for the AFE as was done in FE. 

The HMM for each digit consists of 16 states 

with 3 Gaussian mixtures in each state. Silence is 

also modeled by a 3 state HMM with 6 Gaussian 

mixtures in each state. We used the Hidden Markov 

Toolkit (HTK) developed at the Cambridge 

University as the basic speech recognizer. We 

added the 4 known types of noise signal to the 

clean speech to generate the noisy speech signal for 

training the reference HMMs in the MMSR. To 

construct sufficient number of reference HMMs, 

the noisy speech signal is generated for every 2 dB 

interval between 0 and 30 dB so that 16 reference 

HMMs are constructed for each noise type. The 

total number of reference HMMs used in the 

experiment is 4x16=64 and one of them will be 

selected for recognition depending on the noise 

type and SNR level of the input noisy speech. 

 

4  Experimental Results 
To compare the performance of the FE and AFE 

in noisy speech recognition, we show the word 

error rates (WERs) when the acoustic models are 

trained by CLEAN and MTR method. 

As we can see in Table 4.1, the average word 

error rate (WER) with the FE was 39.94(%) in 

CLEAN training mode while the WER with the 

AFE was 14.46(%), which means that the AFE 

reduces the WER by 63(%) in CLEAN training 

mode. For the case of MTR training, we can also 

see that the AFE reduces the WER by about 35(%) 

compared with the FE. From these results, we can 

conclude that the AFE performs much better both 

in the CLEAN and MTR training mode on the 

Aurora 2 database. This also means that the 

previous research which demonstrated the 

superiority of the multiple-model based recognizer 

using the FE should be re-evaluated using the AFE. 

 
Table 4.1: Performance comparison in word error rates(%) between the 

AFE and FE for the two training methods: CLEAN and MTR. 
     FrontEnds 

 

Training 

Methods 

  
FE 

 
AFE 

 
 

CLEAN 

 

Set A 38.66 13.81 

Set B 44.25 14.76 

Set C 33.86 15.28 

Average 39.24 14.46 

 Set A 12.23 8.22 

 

MTR 

Set B 13.75 8.89 

Set C 16.42 9.43 

Average 13.68 8.73 

 

 

In Table 4.2, we show the result of the noise 

type classification. The highest classification 

accuracy of 99.9(%) is obtained for the exhibition 

noise and the lowest accuracy is 99.2(%) in the car 

noise. For the 4 types of noise signal, the average 

classification rate is 99.6(%). This means that there 

will be little performance degradation in the 

MMSR due to the noise type classification and 

allows us to focus on the SNR for the performance 

improvement of the MMSR. 

 
Table 4.2 : The result of the noise type classification accuracy(%) 

using the GMM for the 4 types of known noise signal. 
        Reference Noise 

                          Type 

Testing Noise 

 

car 

 

babble 

 

exhibi

-tion 

 

subway 

car 99.2 0.8 0.0 0.0 

babble 0.4 99.6 0.0 0.0 

exhibition 0.1 0.0 99.9 0.0 

subway 0.0 0.0 0.3 99.7 

 

In Table 4.3, we compared the word error rate 

of the MMSR with other approaches using the FE 

front-end. From the table, we can see that the 

MMSR outperforms both CLEAN and PMC but it 

is only slightly better than the MTR method. We 

think that if we more adequately select the 

reference HMM in the MMSR, we can see more 

performance improvement than shown in Table 4.3 

 
Table 4.3: Comparison in word error rates of the MMSR with other 

approaches using the FE front-end. 
 Set A Set B Set C Average 

CLEAN 38.66 44.25 33.86 39.94 

PMC 20.70 18.82 21.98 20.20 

MTR 12.23 13.75 16.42 13.68 

MMSR 8.92 16.64 15.09 13.24 
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We did an experimental investigation on mapping 

the estimated SNR of the input noisy speech to 

select the optimal reference HMM model in the 

MMSR. We generated the testing noisy speech in 

every 2 dB interval using the 4 types of known 

noise signal in set A and selected the reference 

HMM which gives the best performance for each 

testing noisy speech. In Table 4.4, we show the 

variation in the word error rate depending on the 

selection of the reference HMM for the testing 

noisy speech with additive babble noise. In the 

table, we can see that the best performance is 

achieved when there is some mismatch between the 

SNR of testing noisy speech and the reference 

HMM. For example, when the SNR of the testing 

noisy speech is 0dB, the word error rate is 

43.65(%) for the reference HMM with 0dB while 

the word error rate is 32.07(%) for the reference 

HMM with 6dB. This is contrary to the 

conventional idea with the MMSR that the best 

performance will be achieved when the SNRs of 

the testing speech and the reference HMM are 

identical. Although prominent in the low SNR 

regions, the phenomena can be seen in almost all 

SNR regions in Table 4.4. 

In addition to the babble noise, we could see 

similar results in 3 other types of noise signal 

(subway, car, exhibition) in set A. Based on the 

experiments, we could determine the optimal SNR 

of the reference HMM given the testing noisy 

speech for each noise type and the results are 

shown in Table 4.5. 

 
Table 4.5 : The SNR of the reference HMM showing the best word 
recognition rate as the SNR of the testing speech varies. 

 

 

As expected, we can see from Table 4.5 that 

there is some difference between the SNRs of the 

testing noisy speech and the reference HMM which 

gives the best word recognition rate. For the testing 

noisy speech with low SNR, it is advantageous to 

Table 4.4: Variation in word error rates depending on the selection of the reference HMM given the SNR of the testing noisy speech (babble 
noise). 

SNR   

(Testing 

speech) 

SNR (Reference HMM) 

0  2 4 6 8 10 12 14 16 18 20 

0 43.65 36.06 32.59 32.07 32.35 - - - - - - 

2 30.32 23.91 21.19 19.50 20.50 21.52 - - - - - 

4 - 19.98 15.24 14.09 13.18 13.18 15.05 - - - - 

6 - - 10.82 9.46 8.13 8.01 8.56 - - - - 

8 - - - - 5.83 5.32 5.35 6.08 - - - 

10 - - - - 4.20 4.14 4.11 4.17 - - - 

12 - - - - - 3.14 3.08 3.05 2.90 3.23 - 

14 - - - - - - 2.36 2.39 2.24 2.03 2.30 

16 - - - - - - - 1.81 1.69 1.54 1.63 

 12 14 16 18 20 22 24 26 28 30  

18 - - 1.75 1.63 1.69 1.72 - - - -  

20 - - - 1.36 1.36 1.45 1.42 - - -  

22 - - - - 1.48 1.51 1.39 1.36 1.45 -  

24 - - - - - 1.36 1.39 1.36 1.30 1.30  

26 - - - - - 1.33 1.21 1.24 1.21 1.21  

28 - - - - - 1.48 1.30 1.33 1.30 1.30  

30 - - - - - 1.36 1.27 1.24 1.21 1.09  

SNR 

(Testing peech) 

SNR 

 (Reference HMM showing the best 

performance) 

 
Babble Subway Car Exhibi

-tion 

0 6 4 2 2 

2 6 6 4 4 

4 8 6 6 6 

6 10 8 8 8 

8 10 8 8 10 

10 12 12 12 10 

12 16 10 14 12 

14 18 14 14 16 

16 18 16 20 18 

18 18 18 18 18 

20 20 22 20 20 

22 26 22 26 26 

24 28 22 28 28 

26 28 22 30 28 

28 28 22 30 30 

30 30 24 30 30 
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select the reference HMM with higher SNR than 

the estimated SNR to improve the word recognition 

rate. 

In Figure 4.1, we show the word error rate of 

the MMSR when the reference HMM is selected 

using SNR mappings shown in Table 4.5. For 

comparison, we also show the word error rate of the 

conventional MMSR and the MTR method. We 

used the FE front-end as the speech features. From 

the results in Figure 4.1, we can see that the 

conventional MMSR performs better than the MTR 

method for set A with noisy speech generated from 

the 4 known types of noise signal and for set C with 

the convolution noise. However, the MMSR 

performs worse compared with the MTR method 

for the set B with unknown types of noise signal. 

This results from the fact that the reference HMM 

in the MMSR has been constructed using the noise 

signal from set A. Overall, the conventional MMSR 

outperforms slightly the MTR method in average 

(13.24 (%) vs. 13.61 (%)). However, we could 

achieve the word error rate of 12.40(%) using the 

SNR mapping proposed in this paper reducing the 

word error rate by 6.34 (%) compared with the 

conventional MMSR. Although the SNR mapping 

method is inferior to MTR for set B due to the 

unknown noise signal, it has shown better 

performance in all cases (set A, set B, set C) than 

the conventional MMSR. This means that the SNR 

mappings suggested in Table 4.5 is valid 

irrespective of the noise type. 

 

 

Figure 4.1 Word error rates (%) of the multiple-model based speech 

recognizer and its comparison with the conventional methods when 

using the FE front-end 
 

In Figure 4.2, we also show the word error rate 

when we use the AFE as the front-end. Contrary to 

the result in Figure 4.1, the performance of the 

MTR improves significantly and in average, 

outperforms the conventional MMSR (8.22(%) vs. 

9.01(%)). However, we can see that the word error 

rate of the proposed MMSR also decreases 

significantly to 8.17(%) which is better than the 

MTR method. The performance difference between 

the proposed SNR mapping method and MTR is 

not as significant as when we used the FE front-end. 

However, we have more room to improve the 

performance of the proposed MMSR by adapting 

the acoustic models to the input noisy speech. JA is 

a commonly used approach for this purpose and has 

shown to be quite effective for the MMSR. 

Improving the noise robustness of the proposed 

SNR mapping method by the acoustic model 

adaptation will be our future research topics. 

 

 

Figure 4.2 : Word error rates (%) of the multiple-model based speech 

recognizer and its comparison with the conventional methods when 
using the AFE front-end. 

 

5  Conclusion 

In this paper, we proposed to select the 

reference HMM in the multiple-model based 

speech recognizer by mapping the estimated SNR 

of the testing speech. This approach is contrary to 

the conventional method where the estimated SNR 

is used directly in the selection process. From the 

experimental results on the noisy speech 

recognition, we could achieve far better recognition 

rates than the conventional multiple-model based 

speech recognizer. Also, its performance was better 

than the MTR method, especially with the FE front-

end. Although the proposed method is only slightly 

better than the MTR method when we use the AFE 

front-end, we expect that its performance will 

outperform the MTR method by a significant 

margin when we apply model adaptation methods 

to the proposed multiple-model based speech 

recognizer. 
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