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1 Pontificia Universidad Católica del Ecuador (PUCE), Facultad de Ciencias Exactas y Naturales, Escuela de Ciencias Fı́sicas y
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1 Introduction

The Ostrowski’s inequality was introduced by Alexander
Ostrowski in [30], and with the passing of the years,
generalizations on the same, involving derivatives of the
function under study, have taken place.

Ostrowski’s Inequality.Let f : I ⊂ [0,+∞) → R be a
differentiable function on int(I), such thatf ′ ∈ L[a,b],
wherea,b∈ I with a< b. If | f ′(x)| ≤ M for all x∈ [a,b] ,
then the inequality:

∣

∣

∣

∣

f (x)− 1
(b−a)

∫ b

a
f (x)dx

∣

∣

∣

∣

≤ M(b−a)

[

1
4
+

(x− a+b
2 )2

(b−a)2

]

(1)

holds for allx∈ [a,b] .
Recently, several generalizations of the Ostrowski

integral inequality are considered by many authors; for
instance covering the following concepts: functions of
bounded variation, Lipschitzian, monotonic, absolutely
continuous andn times differentiable mappings with error
estimates with some special means together with some
numerical quadrature rules. For recent results and
generalizations concerning Ostrowski’s inequality, we
refer the reader to the recent papers [1,2,3,40,45]. The
convex functions play a significant role in many fields, for
example, in biological system, economy, optimization and

so on [12,36]. And many important inequalities are
established for these class of functions. Also the evolution
of the concept of convexity has had a great impact in the
community of investigators. In recent years, for example,
generalized concepts such ass−convexity (see [7]),
h−convexity (see [37,46]) , m−convexity (see [4,11]),
MT−convexity (see [28]]) and others , as well as
combinations of these new concepts have been
introduced. The study on convex stochastic processes
began in 1974 when B. Nagy in [21], applied a
characterization of measurable stochastic processes to
solving a generalization of the (additive) Cauchy
functional equation.
In 1980, Nikodem [24] introduced the convex stochastic
processes in his article.
Later in 1995, A. Skrowronski in [43] presented some
further results on convex stochastic processes. In 2014
Maden et. al. [18] introduced the convex stochastic
processes in the first sense and proved Hermite-Hadamard
type inequalities to these processes. In the year 2014, E.
Set et. al. in [39] investigated Hermite-Hadamard type
inequalities for stochastic processes in the second sense.
For other results related to stochastic processes see [5],
[6], [10], [19] where further references are given.
In [37], Sarikaya M.Z, Filiz H. and Kiris M.E. established
some inequalities for differentiable mappings which are
connected with Ostrowski type inequality by used the

∗ Corresponding author e-mail:mjvivas@puce.edu.ec / mvivas@ucla.edu.ve

c© 2018 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/120104


46 M. Vivas-Cortez, J. Hernández.: On(m,h1,h2)−convex stochastic processes...

Riemann-Liouville fractional integrals. Also, CristescuG.
in [9] wrote about weighted inequalities for Katugampola
fractional integral. In the same way, Agarwal R.P., Luo
M-J. and Raina R.K. in [1], showed some inequalities
associated with a generalized fractional integral based in
definition proposed by Raina R.K. in [34], and called
fractional integral operator. In all of these papers, the
concept of convexity plays a relevant role, and due to its
evolution in recent years, other authors have written on it.

2 Preliminaries

This section contains definitions and properties of
generalized convexity and fractional integral operators.
Recall that a real-valued functionf defined in a real
intervalJ is said to be convex if for allx,y∈ J and for any
∈ [0,1] the inequality

f (tx+(1− t)y)≤ t f (x)+ (1− t)y (2)

holds. If inequality (2) is strict when we say thatf is
strictly convex, and if inequality (2) is reversed the
function f is said to be concave.

In [2], Alomari M. , Darus M. and Dragomir S.S.
introduced the following generalized concept.

Definition 1. Let0< s≤ 1 . The function f: [0,∞)→R

is called a s−convex function in second sense if

f (tx+(1− t)y)≤ ts f (x)+ (1− t)s f (y) (3)

holds for all x,y∈ [0,∞) and t∈ [0,1] .

Dragomir S.S and Agarwal R.P, in [9], about
Hadamard inequalities, introduced the following
definition ofP−convex functions.

Definition 2. We say that a function f: I → R is a
P−convex on I or f∈ P(I) if f is non negative and for all
x,y∈ I and t∈ [0,1] we have

f (tx+(1− t)y)≤ f (x)+ f (y) (4)

Park J. in [15] introduced the concept ofMT−convex
function.

Definition 3. A function f : I ⊂ R→ R is said to be
MT−convex function on I , if it is non negative and for all
x,y∈ I and t∈ (0,1) satisfies the following inequality

f (tx+(1− t)y)≤
√

t

2
√

1− t
f (x)+

√
1− t

2
√

t
f (y). (5)

Sanja Varošanec, in [23], introduced the convex
functions

Definition 4. Let h: J → R be a non negative function,
h 6≡ 0, with (0,1)⊂ J and J is an interval ofR. A function
f : I ⊂ R → R , where I is an interval ofR, is said to
be h−convex function if for all x,y ∈ I and t ∈ [0,1] the
following inequality holds

f (tx+(1− t)y)≤ h(t) f (x)+h(1− t) f (y). (6)

G. Toader introduced in [44] the concept ofm−convex
function.

Definition 5. For f : [0,b]→ R,b> 0 and m∈ (0,1], if

f (tx+m(1− t)y)≤ t f (x)+m(1− t) f (y) (7)

is valid for all x,y∈ [0,b] and t∈ [0,1], then we say that f
is an m−convex function.

In [20], Shi D-P, Xi B-Y and Qi F., introduced the
following definition. (See also [16]).

Definition 6.Let h1,h2 : [0,1] → R and m∈ (0,1] . A
function f : [0,∞) → R is said to be(m,h1,h2)−convex
function if the inequality

f (tx+m(1− t)y)≤ h1(t) f (x)+mh2(t)(y)

holds for all x,y∈ I and t∈ [0,1] .

In this paper we propose the generalization of
convexity of this kind for stochastic processes.

Definition 7. Let (Ω ,F,P) be an arbitrary probability
space. A function X: Ω → R is called a random variable
if it is F-measurable. Let(Ω ,F,P) be an arbitrary
probability space and let T⊂ R be time. A collection of
random variable X(t,w), t ∈ T with values inR is called
a stochastic processes.

1. If X(t,w) takes values in S= Rd if is called vector-
valued stochastic process.

2. If the time T can be a discrete subset ofR, then
X(t,w) is called a discrete time stochastic process.

3. If the time T is an interval,R+ or R, it is called a
stochastic process with continuous time

Throughout the paper we restrict our attention
stochastic process with continuous time, i.e, index set
T = [0,+∞).

Definition 8. Let (Ω ,A,P) be a probability space and
T ⊂ R be an interval. We say that a stochastic process
X : T ×Ω → R if

1. Convex if

X(λu+(1−λ )v, ·)≤ λX(u, ·)+ (1−λ )X(v, ·) (8)

for all u,v∈ T andλ ∈ [0,1].
This class of stochastic process are denoted by C.
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2. m−convex if

X(tu+m(1− t)v, ·)≤ tX(u, ·)+m(1− t)X(v, ·) (9)

for all u,v∈ T and t∈ [0,1],m∈ (0,1].
3.h−convex if

X(tu+(1− t)v, ·)≤ h(t)X(u, ·)+h(1− t)X(v, ·)

for some function h: J →R non negative , h6≡ 0, with
(0,1)⊂ J and J is an interval ofR

4.(m,h1,h2)−convex if

X(tu+m(1− t)v, ·)≤ h1(t)X(u, ·)+mh2(1− t)X(v, ·)

for some functions h1,h2 : [0,1]→ R and m∈ (0,1] .

Definition 9. Let (Ω ,A,P) be a probability space and
T ⊂ R be an interval. We say that the stochastic process
X : Ω → R is called

1. Continuous in probability in interval T if for all t0 ∈
T

P− lim
t→t0

X(t, ·) = X(t0, ·)

where P− lim denotes the limit in probability;
2. Mean-square continuous in the interval T if for all

t0 ∈ T
P− lim

t→t0
E(X(t, ·)−X(t0, ·)) = 0

where E(X(t, ·)) denotes the expectation value of the
random variable X(t, ·);

3. Increasing (decreasing) if for all u,v ∈ T such that
t < s,

X(u, ·)≤ X(v, ·), (X(u, ·)≥ X(v, ·))(respectively)

4. Monotonic if it’s increasing or decreasing;
5. Differentiable at a point t∈ T if there is a random

variable

X′(t, ·) : T ×Ω → R

X′(t, ·) = P− lim
t→t0

X(t, ·)−X(t0, ·)
t − t0

We say that a stochastic processX : T × Ω → R is
continuous (differentiable) if it is continuous
(differentiable) at every point of the intervalT. [17], [42],
[43], [24].

Definition 10. Let (Ω ,A,P) be a probability space
T ⊂ R be an interval with E(X(t)2)< ∞ for all t ∈ T.
Let [a,b] ⊂ T,a = t0 < t1 < ... < tn = b be a partition of
[a,b] andθk ∈ [tk−1, tk] for k= 1,2, ...,n.
A random variable Y: Ω → R is called mean-square
integral of the process X(t, ·) on [a,b] if the following
identity holds:

lim
n→∞

E[X(θk(tk− tk−1)−Y)2] = 0

Then we can write

∫ b

a
X(t, ·)dt =Y(·)(a.e.).

Also, mean square integral operator is increasing, that
is,

∫ b

a
X(t, ·)dt ≤

∫ b

a
Z(t, ·)dt(a.e.)

whereX(t, ·)≤ Z(t, ·) in [a,b] [41].
In throughout paper, we will consider the stochastic
processes that is with continuous time and mean-square
continuous.

Another important aspect for the development of this
work is the following.

In [34], Raina R. K. introduced a class of functions
defined formally by

Fσ
ρ ,λ (x) = F

σ(0),σ(1),..
ρ ,λ (x) =

∞

∑
k=0

σ(k)
Γ (ρk+λ )

xk (10)

whereρ ,λ > 0, |x|< R (R is the set of real numbers),and
σ = (σ(1), ..,σ(k), ..) is a bounded sequence of positive
real numbers.

Note that if we take in (10) ρ = 1,λ = 0 and
σ(k) = ((α)k(β )k)/(γ)k),k = 1,2,3, ..., whereα,β andγ
are parameters which can take arbitrary real or complex
values (provided thatγ 6= 0,−1,−2, ...) , and the symbol
(a)k denote the quantity

(a)k =
Γ (a+ k)

Γ (a)
= a(a+1)...(a+ k−1), k= 1,2...,

and restrict its domain to|x| ≤ 1 (with x∈C), then we have
the classical Hypergeometric Function, that is

Fσ
ρ ,λ (x) = F(α,β ;γ;x) =

∞

∑
k=0

(α)k(β )k)

(γ)kk!
xk

Using (10), Agarwal, Luo and Raina in [1] defined the
following left-sided and right-sided fractional integral
operators respectively, as follows
(

J σ
ρ ,λ ,a+;wϕ

)

(x)

=

∫ x

a
(x− t)λ−1Fσ

ρ ,λ [w(x− t)ρ ]ϕ(t)dt, (x> a) (11)

and
(

J σ
ρ ,λ ,b−;wϕ

)

(x)

=
∫ b

x
(t − x)λ−1Fσ

ρ ,λ [w(t − x)ρ ]ϕ(t)dt, (x< b) , (12)

whereλ ,ρ > 0, w∈ R andϕ is such that the integral
on the right side exits.
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It is easy to verify thatJ σ
ρ ,λ ,a+;wϕ andJ σ

ρ ,λ ,b−;wϕ
are bounded integral operators onL(a,b), if

M := Fσ
ρ ,λ+1 [w(b−a)ρ ]< ∞.

In fact, forϕ ∈ L((a,b)) we have
∥

∥

∥J σ
ρ ,λ ,a+;wϕ

∥

∥

∥

1
≤M‖ϕ‖1

and
∥

∥

∥J σ
ρ ,λ ,b−;wϕ

∥

∥

∥

1
≤M‖ϕ‖1

where

‖ϕ‖1 =

∫ b

a
|ϕ(x)|dx

The importance of these operators stems indeed from their
generality. Many useful fractional integral operators canbe
obtained by specializing the coefficientσ(k). Here, we just
point out that the classical Riemann-Liouville fractional
integralsIα

a+ andIα
b− of orderα :

(

Iα
a+ϕ

)

(x) =
1

Γ (α)

∫ x

a
(x− t)α−1ϕ(t)dt, (x> a,α > 0)

and

(

Iα
b−ϕ

)

(x) =
1

Γ (α)

∫ b

x
(t − x)α−1 ϕ(t)dt, (x< b,α > 0)

follow from (11) and (12) settingλ = α,σ(0) = 1 and
w= 0.

3 Main Results

Lemma 1. Let X : [a,b]× Ω → R be a differentiable
stochastic processes on(a,b) and such that|X(s, ·)| ≤ M
for all s∈ [a,b], andλ > 0. Then
(

K σ
λ ,ρ (b−s)+K σ

λ ,ρ (s−a)
)

X(s, ·)

−
((

J σ
ρ ,λ ,s+;wX

)

(a, ·)+
(

J σ
ρ ,λ ,s−;wX

)

(b, ·)
)

=
(

J σ
ρ ,λ+1,s+;wX′

)

(a, ·)−
(

J σ
ρ ,λ+1,s−;wX′

)

(b, ·) (13)

and
(

K σ
λ ,ρ ,w(b−s)+K σ

λ ,ρ ,w(s−a)
)

X(s, ·)

−
((

J σ
ρ ,λ ,s+;wX

)

(a, ·)+
(

J σ
ρ ,λ ,s−;wX

)

(b, ·)
)

=(s−a)λ+1
∫ 1

0
tλ F σ

ρ ,λ+1

[

w(s−a)ρ tρ]X′ (ts+(1− t)a, ·)dt

−(b−s)λ+1
∫ 1

0
tλ F σ

ρ ,λ+1

[

w(b−s)ρ tρ]X′ (ts+(1− t)b, ·)dt

(14)
where

K σ
λ ,ρ ,w(z−y) = (z−y)λ F σ

ρ ,λ+1

[

w(z−y)ρ] .

Proof. Integrating by parts

(

J σ
ρ ,λ ,s−;wX

)

(b, ·) =
∫ b

s
(t −s)λ−1F σ

ρ ,λ [w(t −s)ρ ]X(t, ·)dt

= (b−s)λ F σ
ρ ,λ+1 [w(b−s)ρ ]X(b, ·)

−
∫ b

s
(t −s)λ F σ

ρ ,λ+1 [w(t −s)ρ ]X′(t, ·)dt

= (b−s)λ F σ
ρ ,λ+1 [w(b−s)ρ ]X(b, ·)

+
(

J σ
ρ ,λ+1,s−;wX′

)

(b, ·)

and, similarly
(

J σ
ρ ,λ ,s+;wX

)

(a, ·) =
∫ s

a
(s− t)λ−1F σ

ρ ,λ [w(s− t)ρ ]X(a, ·)dt

= (s−a)λ F σ
ρ ,λ+1 [w(s−a)ρ ]X(a, ·)

−
(

J σ
ρ ,λ+1,s−;wX′

)

(a, ·)

So, adding both equalities
(

K σ
ρ ,λ ,w(b−s)+K σ

ρ ,λ ,w(s−a)
)

X(s, ·)

−
((

J σ
ρ ,λ ,s+;wX

)

(a, ·)+
(

J σ
ρ ,λ ,s−;wX

)

(b, ·)
)

=
(

J σ
ρ ,λ+1,s−;wX′

)

(a, ·)−
(

J σ
ρ ,λ+1,s−;wX′

)

(b, ·),

where

K σ
ρ ,λ ,w(z− y) = (z− y)λFσ

ρ ,λ+1 [w(z− y)ρ ] ,

then we just found inequality (13).
Now evaluating the following integral by parts we have

∫ 1

0
tλ F σ

ρ ,λ+1

[

w(s−a)ρ tρ]X′ (ts+(1− t)a, ·)dt

=
1

s−a
F σ

ρ ,λ+1

[

w(s−a)ρ]X (s, ·)

− 1
s−a

∫ 1

0
tλ−1F σ

ρ ,λ
[

w(s−a)ρ tρ]X (ts+(1− t)a, ·)dt

=
1

s−a
F σ

ρ ,λ+1

[

w(s−a)ρ]X (s, ·)

− 1

(s−a)λ−1

∫ s

a
(v−a)λ−1F σ

ρ ,λ
[

w(v−a)ρ]X (v, ·)dv

=
1

s−a
F σ

ρ ,λ+1

[

w(s−a)ρ]X (s, ·)

− 1

(s−a)λ+1

(

J σ
ρ ,λ ,s−;wX′

)

(a, ·), (15)

similarly
∫ 1

0
tλ F σ

ρ ,λ+1

[

w(b−s)ρ tρ]X′ (ts+(1− t)b, ·)dt

=
1

b−s
F σ

ρ ,λ+1

[

w(s−a)ρ]X (s, ·)

− 1

(b−s)λ+1

(

J σ
ρ ,λ ,s+;wX′

)

(b, ·). (16)
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Multiplying (15) by (s−a)λ+1 and (16) by (b− s)λ+1, we
have

(s−a)λ+1
∫ 1

0
tλ F σ

ρ ,λ+1

[

w(s−a)ρ tρ]X′ (ts+(1− t)a, ·)dt

= (s−a)λ F σ
ρ ,λ+1

[

w(s−a)ρ]X (s, ·)−
(

J σ
ρ ,λ ,s−;wX′

)

(a, ·)

and

(b−s)λ+1
∫ 1

0
tλ F σ

ρ ,λ+1

[

w(b−s)ρ tρ]X′ (ts+(1− t)b, ·)dt

= (b−s)λ F σ
ρ ,λ+1

[

w(s−a)ρ]X (s, ·)−
(

J σ
ρ ,λ ,s+;wX′

)

(b, ·).

Adding the equalities we get the desired equality (1).
The proof is complete.

Theorem 1. Let X : I × Ω → F be a differentiable
stochastic processes and such|X(s, ·)| ≤ M for all s ∈ I ,
andλ > 0. Then we have
∣

∣

∣

(

K σ
λ ,ρ (b−s)+K σ

λ ,ρ (s−a)
)

X(s, ·)

−
((

J σ
ρ ,λ ,s+;wX

)

(a, ·)+
(

J σ
ρ ,λ ,s−;wX

)

(b, ·)
)∣

∣

∣

≤ M
(

K σ
λ ,ρ ,w (s−a)+K σ

λ ,ρ ,w (b−s)
)

; (17)

if in addition X′ is a (m,h1,h2)−convex stochastic
processes we have
∣

∣

∣

(

K σ
λ ,ρ (b−s)+K σ

λ ,ρ (s−a)
)

X(s, ·)

−
((

J σ
ρ ,λ ,s+;wX

)

(a, ·)+
(

J σ
ρ ,λ ,s−;wX

)

(b, ·)
)∣

∣

∣

≤
∣

∣X′(s, ·)
∣

∣

(

(s−a)λ+1 I1+(b−s)λ+1 I3
)

+(s−a)λ+1m
∣

∣

∣
X′
( a

m
, ·
)∣

∣

∣
I2

+(b−s)λ+1 m

∣

∣

∣

∣

X′
(

b
m
, ·
)∣

∣

∣

∣

I4, (18)

where

I1 =
∫ 1

0
tλ h1(t)F

σ
ρ ,λ+1

[

|w|(s−a)ρ tρ]dt,

I2 =
∫ 1

0
tλ h2(t)F

σ
ρ ,λ+1

[

|w|(s−a)ρ tρ]dt

I3 =
∫ 1

0
tλ h1(t)F

σ
ρ ,λ+1

[

|w|(b−s)ρ tρ]dt,

I4 =
∫ 1

0
tλ h2(t)F

σ
ρ ,λ+1

[

|w|(b−s)ρ tρ]dt.

Proof. To prove (17) we use (13)
∣

∣

∣

(

K σ
λ ,ρ (b−s)+K σ

λ ,ρ (s−a)
)

X(s, ·)

−
((

J σ
ρ ,λ ,s+;wX

)

(a, ·)+
(

J σ
ρ ,λ ,s−;wX

)

(b, ·)
)∣

∣

∣

≤
∣

∣

∣

(

J σ
ρ ,λ+1,s+;wX′

)

(a, ·)
∣

∣

∣+
∣

∣

∣

(

J σ
ρ ,λ+1,s−;wX′

)

(b, ·)
∣

∣

∣

≤ M

{

∫ 1

0
(t −a)λ F σ

ρ ,λ+1 [w(t −a)ρ ]dt

+

∫ 1

0
(b− t)λ F σ

ρ ,λ+1 [w(b− t)ρ ]dt

}

.

Evaluating the integrals in the previous braces, we have
∫ 1

0
(t −a)λ F σ

ρ ,λ+1 [w(t −x)ρ ]dt

= (s−a)λ+1F σ
ρ ,λ+2

[

w(s−a)ρ]

= K σ
λ ,ρ ,w (s−a)

and similarly
∫ 1

0
(b− t)λ Fσ

ρ ,λ+1 [w(b− t)ρ ]dt

= (b−s)λ+1F σ
ρ ,λ+2

[

w(b−s)ρ]

= K σ
λ ,ρ ,w (b−s)

making the substitution we have the desired result (17).
To prove (18) we have

∣

∣

∣

(

K σ
λ ,ρ (b−s)+K σ

λ ,ρ (s−a)
)

X(s, ·)

−
((

J σ
ρ ,λ ,s+;wX

)

(a, ·)+
(

J σ
ρ ,λ ,s−;wX

)

(b, ·)
)∣

∣

∣

≤ (s−a)λ+1
∫ 1

0
tλ F σ

ρ ,λ+1

[

|w|(s−a)ρ tρ]
∣

∣

∣X′
(

ts+m(1− t)
a
m
, ·
)∣

∣

∣dt

+(b−s)λ+1
∫ 1

0
tλ F σ

ρ ,λ+1

[

|w|(b−s)ρ tρ]
∣

∣

∣

∣

X′
(

ts+m(1− t)
b
m
, ·
)∣

∣

∣

∣

dt

Using the (m,h1,h2)−convexity of the stochastic
processesX′ we have:
∣

∣

∣

(

K σ
λ ,ρ (b−s)+K σ

λ ,ρ (s−a)
)

X(s, ·)

−
((

J σ
ρ ,λ ,s+;wX

)

(a, ·)+
(

J σ
ρ ,λ ,s−;wX

)

(b, ·)
)∣

∣

∣

≤ (s−a)λ+1 ∣
∣X′(s, ·)

∣

∣

∫ 1

0
tλ h1(t)F

σ
ρ ,λ+1

[

|w|(s−a)ρ tρ]dt

+(s−a)λ+1 m
∣

∣

∣X′
( a

m
, ·
)∣

∣

∣

∫ 1

0
tλ h2(t)F

σ
ρ ,λ+1

[

|w|(s−a)ρ tρ]dt

+(b−s)λ+1 ∣
∣X′(s, ·)

∣

∣

∫ 1

0
tλ h1(t)F

σ
ρ ,λ+1

[

|w|(b−s)ρ tρ]dt

+(b−s)λ+1 m

∣

∣

∣

∣

X′
(

b
m
, ·
)∣

∣

∣

∣

∫ 1

0
tλ h2(t)F

σ
ρ ,λ+1

[

|w|(b−s)ρ tρ]dt.

Doing

I1 =
∫ 1

0
tλ h1(t)F

σ
ρ ,λ+1

[

|w|(s−a)ρ tρ]dt,
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I2 =
∫ 1

0
tλ h2(t)F

σ
ρ ,λ+1

[

|w|(s−a)ρ tρ]dt

I3 =
∫ 1

0
tλ h1(t)F

σ
ρ ,λ+1

[

|w|(b−s)ρ tρ]dt,

I4 =
∫ 1

0
tλ h2(t)F

σ
ρ ,λ+1

[

|w|(b−s)ρ tρ]dt.

we have the desired inequality.
This complete the proof.

Corollary 1. Let X : I × Ω → F be a differentiable
stochastic processes and X′ is a P−convex stochastic
processes then we have
∣

∣

∣

(

K σ
λ ,ρ (b−s)+K σ

λ ,ρ (s−a)
)

X(s, ·)

−
((

J σ
ρ ,λ ,s+;wX

)

(a, ·)+
(

J σ
ρ ,λ ,s−;wX

)

(b, ·)
)∣

∣

∣

≤
∣

∣X′(s, ·)
∣

∣

(

K σ
λ+1,ρ (s−a)+K σ

λ+1,ρ (b−s)
)

(19)

+
(

∣

∣X′ (a, ·)
∣

∣K σ
λ+1,ρ (s−a)+

∣

∣X′ (b, ·)
∣

∣K σ
λ+1,ρ (b−s)

)

Proof. If in Theorem1 we putm= 1,h1(t) = h2(t) = 1
then we have

I1 =
∫ 1

0
tλ F σ

ρ ,λ+1

[

|w|(s−a)ρ tρ]dt = I2

I3 =
∫ 1

0
tλ F σ

ρ ,λ+1

[

|w|(b−s)ρ tρ]dt = I4

and so

I1 = F σ
ρ ,λ+2

[

|w|(s−a)ρ] andI3 = F σ
ρ ,λ+2

[

|w|(b−s)ρ] .

Replacing these values in (18) we have the desired inequality
(19). The proof is complete.

Corollary 2. Let X : I × Ω → F be a differentiable
stochastic processes and such X′ is a convex stochastic
processes, andλ > 0. Then we have
∣

∣

∣

(

K σ
λ ,ρ (b−s)+K σ

λ ,ρ (s−a)
)

X(s, ·)

−
((

J σ
ρ ,λ ,s+;wX

)

(a, ·)+
(

J σ
ρ ,λ ,s−;wX

)

(b, ·)
)∣

∣

∣

≤+
∣

∣X′ (a, ·)
∣

∣

(

K σ
λ+1,ρ (s−a)−

K σ1
λ+2,ρ (s−a)

(s−a)

)

(20)

+
∣

∣X′ (b, ·)
∣

∣

(

K σ
λ+1,ρ (b−s)−

K σ1
λ+2,ρ (b−s)

(b−s)

)

where

σ1(k) = (kρ +λ +1)σ(k), for all k = 0,1,2, ... .

Proof. If in Theorem1 new putm= 1 andh1(t) = t and
h2(t) = (1− t) we get

I1 =

∫ 1

0
tλ+1F σ

ρ ,λ+1

[

|w|(s−a)ρ tρ]dt

= F σ1
ρ ,λ+3

[

|w|(s−a)ρ] ,

I3 =
∫ 1

0
tλ+1F σ

ρ ,λ+1

[

|w|(b−s)ρ tρ]dt

= F σ1
ρ ,λ+3

[

|w|(b−s)ρ] ,

I2 =

∫ 1

0
tλ (1− t)F σ

ρ ,λ+1

[

|w|(s−a)ρ tρ]dt

= F σ
ρ ,λ+2

[

|w|(s−a)ρ]−F σ1
ρ ,λ+3

[

|w|(s−a)ρ]

and

I4 =
∫ 1

0
tλ (1− t)F σ

ρ ,λ+1

[

|w|(b−s)ρ tρ]dt

= F σ
ρ ,λ+2

[

|w|(b−s)ρ]−F σ1
ρ ,λ+3

[

|w|(b−s)ρ]

where
σ1(k) = (kρ +λ +1)σ(k), for all k.

Replacing these values in (18) we have the desired
inequality (20). The proof is complete.

Corollary 3. Let X : I × Ω → F be a differentiable
stochastic processes and such X′ is a s−convex stochastic
processes, andλ > 0. Then we have
∣

∣

∣

(

K σ
λ ,ρ (b−s)+K σ

λ ,ρ (s−a)
)

X(s, ·)

−
((

J σ
ρ ,λ ,s+;wX

)

(a, ·)+
(

J σ
ρ ,λ ,s−;wX

)

(b, ·)
)∣

∣

∣

≤
∣

∣X′(s, ·)
∣

∣

(

K σ1
ρ ,λ+s+1(s−a)

(s−a)s +
K σ1

ρ ,λ+s+1(b−s)

(b−s)s

)

+Γ (s+1)

(

∣

∣X′ (a, ·)
∣

∣

K σ
ρ ,λ+s+2(s−a)

(s−a)s (21)

+
∣

∣X′ (b, ·)
∣

∣

K σ
ρ ,λ+s+2(s−a)

(b−s)s

)

where

σ1(k) = σ(k)
Γ (kρ +λ + s+1)

Γ (kρ +λ +1)
for all k.

Proof. Taking m= 1,h1(t) = ts andh2(t) = (1− t)s in
Theorem1 we have

I1 = Fσ1
ρ ,λ+s+2 [|w| (s−a)ρ ] ,

I3 = F σ1
ρ ,λ+s+2 [|w|(b−s)ρ ]

where

σ1(k) = σ(k)
Γ (kρ +λ +s+1)

Γ (kρ +λ +1)
for all k.

Also,
I2 = Γ (s+1)F σ

ρ ,λ+s+2 [|w|(s−a)ρ ] ,

I4 = Γ (s+1)F σ
ρ ,λ+s+2 [|w|(b−s)ρ ] .

Replacing the above values in (18) we have the desired inequality
(21).

This complete the proof.
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Corollary 4. Let X : I × Ω → F be a differentiable
stochastic processes and such X′ is a MT−convex
stochastic processes, andλ > 0. Then we have
∣

∣

∣

(

K σ
λ ,ρ (b−s)+K σ

λ ,ρ (s−a)
)

X(s, ·)

−
((

J σ
ρ ,λ ,s+;wX

)

(a, ·)+
(

J σ
ρ ,λ ,s−;wX

)

(b, ·)
)∣

∣

∣

≤
√

π
∣

∣X′(s, ·)
∣

∣





K σ1

ρ ,λ+ 5
2

(s−a)

2
√

(s−a)
+

K σ1

ρ ,λ+ 5
2

(b−s)

2
√

(b−s)



 (22)

+
∣

∣X′ (a, ·)
∣

∣

√
π

K σ1

ρ ,λ+ 5
2
(s−a)

4
√

(s−a)
+
∣

∣X′ (b, ·)
∣

∣

√
π

K σ1

ρ ,λ+ 5
2
(b−s)

4
√

(b−s)

where

σ1(k) = σ(k)
Γ
(

kρ +λ + 3
2

)

Γ (kρ +λ +1)
.

Proof. Takingm= 1,h1(t) =
(√

t/2
√

1− t
)

andh2(t) =
(√

1− t/2
√

t
)

in Theorem1 we have

I1 =
∫ 1

0
tλ

√
t

2
√

1− t
F σ

ρ ,λ+1

[

|w|(s−a)ρ tρ]dt

=
Γ
( 1

2

)

2
F σ1

ρ ,λ+ 5
2

[

|w|(s−a)ρ] ,

I3 =
∫ 1

0
tλ

√
t

2
√

1− t
F σ

ρ ,λ+1

[

|w|(b−s)ρ tρ]dt

=
Γ
( 1

2

)

2
F σ1

ρ ,λ+ 5
2

[

|w|(b−s)ρ] ,

I2 =
∫ 1

0
tλ

√
1− t

2
√

t
F σ

ρ ,λ+1

[

|w|(s−a)ρ tρ]dt

=
Γ
( 1

2

)

4
F σ1

ρ ,λ+ 5
2

[

|w|(s−a)ρ]

and

I4 =
∫ 1

0
tλ

√
1− t

2
√

t
F σ

ρ ,λ+1

[

|w|(b−s)ρ tρ]dt

=
Γ
( 1

2

)

4
F σ1

ρ ,λ+ 5
2

[

|w|(b−s)ρ]

where

σ1(k) = σ(k)
Γ
(

kρ +λ + 3
2

)

Γ (kρ +λ +1)
.

Replacing the above values in (18), and using the well
know valueΓ (1/2) =

√
π , we have the desired inequality

(22).
The proof is complete.

Remark. Taking λ = α,w = 0 andσ = (1,0,0, ...) in
Theorem 1 and Corollaries1,2,3 and 4 we have the
corresponding inequalities for Riemann-Liouville
fractional integral:
a) ForP−convex Stochastic Processes
∣

∣

∣

∣

(

(b−s)α +(s−a)α

Γ (α +1)

)

X(s, ·)−
((

I α
s+X

)

(a, ·)+
(

I α
s−X

)

(b, ·)
)

∣

∣

∣

∣

≤ 1
Γ (α +2)

∣

∣X′(s, ·)
∣

∣

(

(s−a)α+1+(b−s)α+1
)

+
1

Γ (α +2)

(

(s−a)α+1 ∣
∣X′ (a, ·)

∣

∣+(b−s)α+1 ∣
∣X′ (b, ·)

∣

∣

)

b) For convex stochastic processes
∣

∣

∣

∣

(

(b−s)α +(s−a)α

Γ (α +1)

)

X(s, ·)−
((

I α
s+X

)

(a, ·)+
(

I α
s−X

)

(b, ·)
)

∣

∣

∣

∣

≤
∣

∣X′(s, ·)
∣

∣Γ (α +3)

(

1
(s−a)

+
1

(b−s)

)

+
∣

∣X′ (a, ·)
∣

∣(s−a)α+1
(

1
Γ (α +2)

− 1
Γ (α +3)

)

+
∣

∣X′ (b, ·)
∣

∣(b−s)α+1
(

1
Γ (α +2)

− 1
Γ (α +3)

)

c) Fors−convex stochastic processes
∣

∣

∣

∣

(

(b−s)α +(s−a)α

Γ (α +1)

)

X(s, ·)−
((

I α
s+X

)

(a, ·)+
(

I α
s−X

)

(b, ·)
)

∣

∣

∣

∣

≤ |X′(s, ·)|
(α +s+1)Γ (α +1)

(

(s−a)α+1+(b−s)α+1
)

+
Γ (s+1)

Γ (α +s+3)

(

∣

∣X′ (a, ·)
∣

∣(s−a)α+2+
∣

∣X′ (b, ·)
∣

∣(b−s)α+2
)

d) ForMT−convex stochastic processes
∣

∣

∣

∣

(

(b−s)α +(s−a)α

Γ (α +1)

)

X(s, ·)−
((

I α
s+X

)

(a, ·)+
(

I α
s−X

)

(b, ·)
)

∣

∣

∣

∣

≤
√

π
Γ (α +1)2

(

α + 3
2

)

∣

∣X′(s, ·)
∣

∣

(

(s−a)α+2+(b−s)α+2
)

+
∣

∣X′ (a, ·)
∣

∣

√
π (s−a)α+2

Γ (α +1)4
(

α + 3
2

)+
∣

∣X′ (b, ·)
∣

∣

√
π (b−s)α+2

Γ (α +1)4
(

α + 3
2

) .

Clearly, if we putα = 1 we have
a’) for P−convex stochastic Processes
∣

∣

∣

∣

((b−a)X(s, ·)−
∫ b

a
X(t, ·)dt

∣

∣

∣

∣

≤ 1
2

∣

∣X′(s, ·)
∣

∣

(

(s−a)2+(b−s)2
)

+
1
2

(

(s−a)2
∣

∣X′ (a, ·)
∣

∣+(b−s)2
∣

∣X′ (b, ·)
∣

∣

)

b’) for convex stochastic processes
∣

∣

∣

∣

((b−a))X(s, ·)−
∫ b

a
X(t, ·)dt

∣

∣

∣

∣

≤
∣

∣X′(s, ·)
∣

∣6

(

1
(s−a)

+
1

(b−s)

)

+
∣

∣X′ (a, ·)
∣

∣

(s−a)2

3
+
∣

∣X′ (b, ·)
∣

∣

(b−s)2

3

c’) for s-convex function
∣

∣

∣

∣

((b−a))X(s, ·)−
∫ b

a
X(t, ·)dt

∣

∣

∣

∣
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≤
√

π
5

∣

∣X′(s, ·)
∣

∣

(

(s−a)3+(b−s)3
)

+
Γ (s+1)
Γ (s+4)

(

∣

∣X′ (a, ·)
∣

∣(s−a)3+
∣

∣X′ (b, ·)
∣

∣(b−s)3
)

d’) for MT−convex function
∣

∣

∣

∣

((b−a))X(s, ·)−
∫ b

a
X(t, ·)dt

∣

∣

∣

∣

≤
√

π
5

∣

∣X′(s, ·)
∣

∣

(

(s−a)3+(b−s)3
)

+
∣

∣X′ (a, ·)
∣

∣

√
π (s−a)3

10
+
∣

∣X′ (b, ·)
∣

∣

√
π (b−s)3

10

4 Conclusions

In this paper we have proved an Ostrowski inequality type
for (m,h1,h2)−convex stochastic processes using the
fractional integral Operator defined by Agarwal, Luo and
Raina in [1], and we have obtained in Corollaries1,2,3 y
4 and Remark3 particularized inequalities forP−convex
, s−convex, convex and MT−convex stochastic
processes. We expect that the ideas and techniques used
in this paper may inspire interested readers to explore
some new applications of these newly introduced
functions in various fields of pure and applied sciences.
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