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1 Introduction so on [12,36. And many important inequalities are
established for these class of functions. Also the evatutio
The Ostrowski's inequality was introduced by Alexander of the concept of convexity has had a great impact in the
Ostrowski in BO], and with the passing of the years, community of investigators. In recent years, for example,
generalizations on the same, involving derivatives of thegeneralized concepts such as-convexity (see 7)),

function under study, have taken place. h—convexity (see 37,46]) , m—convexity (see 4,11]),
Ostrowski's InequalityLet f : 1 C [0,+o) - R bea MT—convexity (see 28]]) and others , as well as
differentiable function onint(l), such thatf’ € L[a,b], combinations of these new concepts have been
wherea,b € | with a < b. If |f/(x)] <M for all x € [a,b], introduced. The study on convex stochastic processes

then the inequality: began in 1974 when B. Nagy in2]], applied a

characterization of measurable stochastic processes to

solving a generalization of the (additive) Cauchy

functional equation.

In 1980, Nikodem 24] introduced the convex stochastic
(1) processes in his article.

Later in 1995, A. Skrowronski in43] presented some
holds forallx € [a,b]. further results on convex stochastic processes. In 2014

Recently, several generalizations of the OstrowskiMaden et. al. 18 introduced the convex stochastic

integral inequality are considered by many authors; forprocesses in the first sense and proved Hermite-Hadamard
instance covering the following concepts: functions of type inequalities to these processes. In the year 2014, E.
bounded variation, Lipschitzian, monotonic, absolutely Set et. al. in 39 investigated Hermite-Hadamard type
continuous ana times differentiable mappings with error inequalities for stochastic processes in the second sense.
estimates with some special means together with som&or other results related to stochastic processesSee [
numerical quadrature rules. For recent results andg], [10], [19] where further references are given.
generalizations concerning Ostrowski's inequality, we In [37], Sarikaya M.Z, Filiz H. and Kiris M.E. established
refer the reader to the recent papet?[3,40,45. The  some inequalities for differentiable mappings which are
convex functions play a significant role in many fields, for connected with Ostrowski type inequality by used the
example, in biological system, economy, optimization and

‘f(x)—(b—ia)/abf(x)dx

u@]
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Riemann-Liouville fractional integrals. Also, CristesGu  Definition 4. Let h: J — R be a non negative function,
in [9] wrote about weighted inequalities for Katugampola h # 0, with (0,1) € J and J is an interval oR. A function
fractional integral. In the same way, Agarwal R.P., Luo f : | C R — R, where | is an interval ofR, is said to
M-J. and Raina R.K. in1], showed some inequalities be h-convex function if for all }y € | and t € [0,1] the
associated with a generalized fractional integral based iriollowing inequality holds

definition proposed by Raina R.K. ir34], and called
fractional integral operator. In all of these papers, the
concept of convexity plays a relevant role, and due to its
evolution in recent years, other authors have written on it.

ftx+ (1—t)y) <h{t)f(x)+h(1—t)f(y). (6)

G. Toader introduced irdf] the concept om—convex

2 Preliminaries

This section contains definitions and properties of

function.
Definition 5. For f : [0,b] — R,b> 0and me (0, 1], if

ftx+mL—t)y) <tf(x)+ml-t)f(y)  (7)

generalized convexity and fractional integral operators.is valid for all x,y € [0,b] and te [0, 1], then we say that f

Recall that a real-valued functiof defined in a real
intervalJ is said to be convex if for akt,y € J and for any
€ [0,1] the inequality

f(tx+ (1—-t)y) <tf(x)+ (1 —t)y 2)

holds. If inequality @) is strict when we say thaf is
strictly convex, and if inequality 2) is reversed the
function f is said to be concave.

In [2], Alomari M. , Darus M. and Dragomir S.S.
introduced the following generalized concept.

Definition 1. LetO<s<1. The function f. [0,00) — R
is called a s-convex function in second sense if

ftx+ (1-t)y) <t (x) + (1-1)°F(y) ®3)

holds for all xy € [0,) and te [0,1].

Dragomir S.S and Agarwal R.P, in [9], about
Hadamard inequalities, introduced the following
definition of P—convex functions.

Definition 2.  We say that a function fl — R is a
P—convex on | or fe P(l) if f is non negative and for all
xy €l andte [0,1] we have
ftx+ (1-)y) < F() + f(y) @)
Park J. in [15] introduced the conceptMfT —convex
function.

Definition 3. A function f: 1 ¢ R— R is said to be
MT —convex function on |, if it is non negative and for all
x,y € landte (0,1) satisfies the following inequality

Vi Vit
f(tx+(1—t)y)§2m NG

f(x)+

fly). (5

Sanja VaroSanec, in [23], introduced the convex

functions

is an m-convex function.

In [20], Shi D-P, Xi B-Y and Qi F., introduced the
following definition. (See also [16]).

Definition 6.Let hy,hy : [0,1] — R and me (0,1] . A
function f: [0,0) — R is said to be(m,hy,hy) —convex
function if the inequality

ftx+m(1—1)y) < ha(t) f(x) + mhg(t)(y)
holds forallxy e l andte [0,1].

In this paper we propose the generalization of
convexity of this kind for stochastic processes.

Definition 7. Let (Q,F,P) be an arbitrary probability
space. A function XQ — R is called a random variable
if it is F-measurable. Let(Q,F,P) be an arbitrary

probability space and let T= R be time. A collection of
random variable Xt,w),t € T with values inR is called

a stochastic processes.

1. If X(t,w) takes values in S RY if is called vector-
valued stochastic process.

2. If the time T can be a discrete subsetRyfthen
X(t,w) is called a discrete time stochastic process.

3. Ifthe time T is an intervalR™ or R, it is called a
stochastic process with continuous time

Throughout the paper we restrict our attention
stochastic process with continuous time, i.e, index set
T =[0,+0).

Definition 8. Let (Q,A,P) be a probability space and
T C R be an interval. We say that a stochastic process
X:TxQ—Rif
1. Convexif
XAu+(1=2A)v,-) <AX(u,-)+ (1=2A)X(v,-) (8)

forallu,ve T andA € [0,1].
This class of stochastic process are denoted by C.
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2. m-—convex if Then we can write
X(t 1-t)v,) <tX(u,-) +m(1—t)X b

forallu,ve T andte [0,1],me (0,1].

3.h—convex if Also, mean square integral operator is increasing, that
is,
X(tu+ (1—t)v,-) < h(t)X(u,-) +h(1—-t)X(v,-)
b b

for some function hJ — R non negative , B 0, with / X(t,-)dt < / Z(t,-)dt(ae.)

(0,1) ¢ J and J is an interval oR a . a
4.(m,hy, hy) —convex if whereX(t,-) < Z(t,-) in [a,b] [41].

In throughout paper, we will consider the stochastic
X{tu+m(1—-t)v,-) < hg(t)X(u,-) +mhp(1—t)X(v,-) processes that is with continuous time and mean-square
continuous.
for some functionsh; : [0,1] — R and me (0,1].

Definition 9. Let (Q,A,P) be a probability space and Another important aspect for the development of this

work is the following.
T C R be an interval. We say that the stochastic process : :
X' 0 - Ris called In [34], Raina R. K. introduced a class of functions

defined formally by
1. Continuous in probability in interval T if for alpte

T 50 (= 79000 _ o K 0
P~ lim X(t,-) = X(t," pa=Fpa =3 okt 1O
0

where P—lim denotes the limit in probability; wherep,A > 0,|x| < R (R is the set of real numbers),and
2. Mean-square continuous in the interval T if for all 0 = (g(1),..,a(k),..) is a bounded sequence of positive

toeT real numbers.

—lim E(X(t,-) — X(to,-)) =0 Note that if we take in X0) p = 1,A = 0 and
o (k) = ((@)(BW)/()).k=1,2.3, ..., wherea, B andy

where EX(t,-)) denotes the expectation value of the are parameters which can take arbitrary real or complex

random variable Xt,-); values (provided thay # 0,—1,—2,...) , and the symbol
3. Increasing (decreasing) if for all,uy € T such that  (a)x denote the quantity

t<s,

I (a+Kk)

X(U) <X, (X(U:) > X(v)(respectively) @k~ T —a@+D-@rk=1), k=12,

4. Monotonic if it's increasing or decreasing; and restrict its domain tx| < 1 (withx € C), then we have

5. Differentiable at a point € T if there is a random  the classical Hypergeometric Function, that is
variable

O g o e (@(B)K) k
X'(t,): TxQ—R Toa=F@pyx =3 ik *
Using (10), Agarwal, Luo and Raina inl] defined the
, X(t,-) — X(to, ) following left-sided and right-sided fractional integral
X(t,)=P—lim —————= operators respectively, as follows

t—=to t—1p

We say that a stochastic process T x Q — R is 9 ® ) (X)
continuous  (differentiable) if it is continuous (/p’/\’a+'w )
(differentiable) at every point of the interval [17], [47],

[43], [24). —/ x—t)’

Definition 10. Let (Q,A,P) be a probability space an

T C R be an interval with EX(t)?) < o forallt € T.

Let[a,b] C T,a=ty <ty < .. <ty =D be a partition of O ) (X)
[a,b] and 6 € [tx_1,t] fork=1,2,...,n (pr bW )

A random variable Y: Q — R is called mean-square

pa Wx=1)PIp(t)dt, (x>a) (11)

integral of the process ¥.-) on [a,b] if the following —/ X)L 5“’ ) Wt =x)P]g(t)dt, (x<b), (12)
identity holds:
_ 5 whereA,p > 0, w € Rand¢ is such that the integral
lim E[X(B(t —t-2) —Y)7] =0 on the right side exits.
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It is easy to verify that/;’,\ arw® and /p",\ bow® Proof. Integrating by parts
are bounded integral operatorslo, b), if b i
Ions X)) = [ (=9 F 7 w(t—s)PIX(t,)dt
M=, 1 [Wb—a)f] <o (#8r5) /5 7p
' = (b=9* 77, .1 W(b—9)P]X(b,)
In fact, for¢ € L((a,b)) we have b
—/ (t—9 #7, ., Wit -] X(t, )dl
| 78], <1181 N )
o 1 = (b=9" 77, 1 Wb—9PIX(b,")
and o
+( .7 WX ()
| 7220 b, <101 (Firiasw)
and, similarly
where

b
91l = [ 1909/

The importance of these operators stems indeed from their

generality. Many useful fractional int

obtained by specializing the coefficiemtk). Here, we just
point out that the classical Riemann-Liouville fractional

integralsl{, andl{ of ordera :

(12.0)00 = gy [ -0 odt, (x>a.a>0)

/S(s—t))‘*lﬁg’/\ W(s—t)P]X(a, )dt

= (s—a)’

(jpa,)\,s+;wx> (a7 )

749
Jp/\+1

B </97A+l,57;wx/) (a,)
So, adding both equalities

(5%

(w(s—a)?]X(a,")
egral operatorsioan

wb—9)+ lp",\ w

(s—a) X(s)

((fpf\%w )( )+ (/p/\s W )(b ))

and g /! o !/

1 b = (/p,)\+l,s—;wx ) (a-)— </p,)\+l,s—;wx ) (b,-),
(18 ¢) (%) = m/ (t—x°"tpt)dt, (x<b,a>0)  where
follow from (11) and @2) settingA = a,0(0) = 1 and HprwZ=Y) = (z-y) Forr1 Wz=y)°],

w=20.

3 Main Results

Lemmal. LetX:[abxQ—R

then we just found inequalityi3).
Now evaluating the following integral by parts we have

be a differentiabl /otA pai1[W(s—a)PtPIX! (ts+(1-t)a ) dt
€ a differentiable

stochastic processes @a,b) and such thatX(s,-)| <M 1, )
for all s € [a,b], andA > 0. Then =s-a7pA+ (w(s—a)”]X(s.)
(57, (0-9) + 757 (s- ) X(s.) S [0, s P (s (1-ta)
(o) @ () =L s et
= </£A+1,S+;WX’) (@-)- (/;;‘,)Hl,sf;wx/) (b)) (13) —% / S(v—a)A*{ozg 3 [wv—a)P] X (v,-)dv
and (s—a)""/a '
_ 1 5o _a)PIX(s.
<%op’w(b_s)+%o _W(s—a)) X(s,") T s— a/p A+1 [W(S a) ]X(S, )
1 g !
<(/p)\s+w )( )+ </pAs w )(b )) Tt </p,)\,s—;wx)(a7')v (15)
=(s— a“l/ 7751 W(s—a)PtP] X/ (ts+ (1-t)a,-) dt similarly
1
279, [w(b—9PtP] X' (ts+ (1—t)b,-)dt
—(b— s“l/ 77, 1 W(b—9)PtP]X (ts+ (1—t)b,-)dt /0 19“1
where (14) = bfsjgﬂl [w(s—a)P] X(s,")
1 /
Ko w(2=Y) = @=Y) Ty [w(z—y)?]. Tt </p/\ stk ) (b,-). (16)
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1
Multiplying (15) by (s—a)* ** and (L6) by (b—s)* "%, we <M { / (t-a)* 7, w(t - a)°]dt
have 0 .
_f\P
(s— a“l/ N ZT 51 W(s—a)PtP] X/ (ts+ (1-t)a,-) dt +/ (b=t 72, 1 fwb-1) ]dt}'

Evaluating the integrals in the previous braces, we have

= (- #5, . Wis-a]X(s )~ (S o wX) @) /( »
0

i FZ 1 Wt —x)P]dt

(b-s)“l/o 27, 1 Wib—9)PtP] X' (ts+ (1 t)b, ) dit — (s—a’1 7Y, [wis-a)®]
= (b-9" 72, 1 [W(s—a)°]X(s.) - (j;{h%wx’) (b,"). = A pw(5—3)

Adding the equalities we get the desired equaltiy ( and similarly

The proof is complete. 1 )
b—t)" #9, ,[w(b—1t)P]dt
Theorem1. Let X:1x Q — F be a differentiable /o (b=t Fpasa Wb -7
stochastic processes and sudt(s,-)| <M for all se I,
andA > 0. Then we have = (b— S)Mlggﬂz[ (b—9)°]

(1% (0=9+ A% () X(s.) = (0=

<(/p,\s+w )( )+ </p)\s W )(b ))’ mal_<|_ing the szjlbsititutir?n we have the desired resi. (
o prove (18) we have
M (;{fp’w(s— 3 +‘%\?p»w(b_s)> ; . (‘%/)\Up(b—s) +%\Up(8—a)) X(s.")
if in addition X' is a (m hi,hy)—convex stochastic " ’
h
processes we have <</MS+W )( )+ </¢p“ » )(b, ))‘
(#4505 (0-9)+ 4,7, (s—) ) X(s.")
<</p/\s+w >( )+ </p)\s w >(b ))’

< (S_a))\+l/ t/\ 70

Fonalwl(s—2a)°t?]

N <ts+m(1 t ; )‘dt

/ A+1 A+1
S’X (S-)‘((S—a) |1+(b—3) | ) (b S)\+1/ t/\ p)\+l [|W\ (b—S)ptp] N (tS—i—m(l—t)%;)‘dt
+(s—a)**m X’( )‘|2 _ .
Using the (m,hi,hp)—convexity of the stochastic
b processeX’ we have:
o= ml (2 )| a8)
m |(#,(0=9+ 4,7, (s—a) ) X(s.")
where ’ '
|17/ ()79, (W (s—a)PtP] dt, <(/p)\s+w )( )+ (/p“ w )(b ))]
|2_/ ()77, 4 [ (s—a)PtP] dt < (s—a**1X(s, |/ ()77, 4 [IW (s—a)Pt?] dt

A
|3—/ Phy(t) 72, [Iw (b—)PtP]dt, .

+(s—a)

‘/ P ha(t) 72, ., [w (s— ) t°] di
|4f/ P ha(t) 72, [Iwi (b—9)°tP] .

oAl _Q\PtP
Proof. To prove (L7) we use 13 +(b—9)" " |X'(s, ’/t hy(t) 77 51 [IWl (b—9)Pt°] dit

’('%/)\c,fp(b_s)"‘l//\?p(s_a)) X(s) -9 m

( )‘/ tho(t) 75 .1 [Iw] (b—9)PtP] dt.
<(/p)\s+w )( )+ </p/\s w )(b ))‘ Doing

< (Aoh o) @I+ (S saswX) @) AL AR
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|2_/ Pho(t) 79, 1 [l (s—a)°t] dt |3f/ LS [l (b-9)PtP] dt

FI5 .5 W (b=9°],

|3—/ P hy(t) 7,1 [l (b—s)°t°] i,

|47/ P ha(t) 72, ., [Iw] (b— )P tP] dt.

we have the desired inequality.
This complete the proof.

/ (1-0.27, 1 [[w](s—a)Pt?] dt

Forrz [ (s=a)7] = 775 5 Wi (s-a)”]

g
I

and
Corollary 1. Let X: 1 x Q — F be a differentiable 1
stochastic processes and ¥ a P—convex stochastic I4 :/ th1-t)F oA [[w] (b—s)PtP] dt
processes then we have 0 o
/p/\+2 [lw| (b—s)P] —ﬂ‘p’lﬂs [lw (b—s)P]
‘(;«fp(b—s)wzfp(s—a))X(s,.)

where
<</¢p“+w )( )t </p“ . )(b )>‘ | ol(k):(kp+)\—i—.1)a(k)7forallk. |
Replacing these values inl§ we have the desired
<[X'(s)] (Ji//\ilp(s a) +J£/A+lp(b—s)) (19)  inequality 0). The proof is complete.
+(|x’ A2 1 p(s—3)+| X (b.)] #4524 (b ) Corollary3. Let X: 1 x Q — F be a differentiable

stochastic processes and suchixa s-convex stochastic

Proof. Ifin Theoreml1 we putm=1,hy(t) = hy(t) = processesandA > 0. Then we have

then we have ‘<%fp(b_s)+;g/)\?p(s— a)) X(s.)

lh=| tt7° w|(s—a)PtP|dt =1
: /0 oy W (5-a)P1P] dt =1 (o) @9+ (20 1) 0)]
|3_/ t)\ p/\+l ‘W| b S)ptp] dt_|4 ) %O}+S+l(s a) %O}+S+l( S)
< |X'(s,-
and so <Xt (s—a)° - (b—s)®
i =27, ,[Iw/(s—a)f] andlz =77, ,[|w|(b—s)"]. HO (s—a)
o o +r(s+1)(|x’(a,)|"""(gsjza)S (21)
Replacing these values in& we have the desired inequality
(19). The proof is complete. ‘ / ‘%JMHZ(S_a))
+ (X r e
Corollary2. Let X: I x Q — F be a differentiable (b—s)°
stochastic processes and suchiX a convex stochastic \here
processesandA > 0. Then we have
rkp+A+s+1)
(#3509 + 55, (s ) ) X(s.") k) =0 gy oralk
(8 srwr) @)+ (I s wX) (b)) Proof. Takingm= 1,hy(t) = tS andha(t) = (1—t)S in
(5 o ffizp( _a) 20 Theoreml we have
= ’ A+lp (s—a) |1=9§ﬁ+3+2[|w| (s—a)],
A% (b—9)
A+2,
X' \(%Hp(b 9= (b"s)> la= 774 s [Wi (b—9)°]
H where F (ko +A 0
where P +A+s+
k) =o(k)———~—— > forall k.
k) =0l o a gy @
o1(k) = (kp+A +1)o(k), forallk=0,1,2,... .
Also,
Proof. If in Theorem1 new putm= 1 andh;(t) =t and 2 =T (s+ 177 52V (s—8)°],
hp(t) = (1—t) we get Iy =T (s+1)5 p)\+s+2HW| (b—9)P].
Iy = /t’”l g\gﬁl UW|( a)ptp] dt gel;)lacingtheabovevalues ibg) we have the desired inequality
— gg’lﬁs [[w (s—a)P], This complete the proof.
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Corollary4. Let X: | x Q — F be a differentiable
stochastic processes and such ¥ a MT-convex
stochastic processeandA > 0. Then we have

](ygfp(b—s)u«f (s—a))X(s,)
~(rs0) @)+ (SZn5X) ©9)]

<

- ﬁ [X'(s)] ((S_ a) (b_s)a+1)

+ s—a)t X/ (a,-)y+(b—s)”+1\x’(b,-)y)

1
o

b) For convex stochastic processes

(LS xis)- (20 @)+ (7))

ValX'(s.)| S R BT Ll B
< VmX'(s,-
2/is=a)  2/(b=s) <X ras (g 5y)
H% (s—a) x % (b—s)
X (a.- pA+3 X' (b P’”z X' (a a+1( 1 1 )
+|X' (@) | VI e V.G +|X'(b,)| VT 59 +|X'(a,)| (s—a) ey Taid
where ‘( a+l( 11 )
Gl(k)za(k)r(kp+)\+%) +‘X ‘(b S) I'(a+2) I_(a+3)
r(kp+A+1) ¢) Fors—convex stochastic processes
Proof. Takingm=1h(t) = (vt/2v/1—t) andhy(t) = (b—9) + (s—a)7 " "
(vVI—t/2\t) in Theoreml we have ’(W) X(s) = ((£1X) @) +(422X) (b"))‘
. x/f
= [t p)\+1 [[w| (s—a)PtP] dt IX'(s,-) a+1 a+1
{(1) V S@tstr(arl) (=t +b-9"2)
=2 79w (s—a)”],
2 p’)‘+z “ ‘( ) ] ,_é_a(i:"sj—)s) (|X’(a,~)|(S—a)a+2+|X’(b,~)|(b—S)(HZ)
1 t d) ForMT —convex stochastic processes
o= | thz\/%ﬁgﬂl [Iw| (b—9)PtP] dit ) P
1 (b=9%+(s—a)* X(s.) — ((Z2X) (@) + (2 X) (b,-))
T (?)9"3 [[w| (b—9)°] r(a+1) ’ s S
A+2 ’
2 P > < LS |X/(S7')| ((S_a)a+2+(b_s)a+2)
L, VI ra+1)2(a+3)
b= [t F g Wl (s—a)PtP]dt a2 as2
o 2t Vi(s—a)T" Vi(b—9)"
1 +|X'(a,)| ——————+|X' (b)) | ————~.
_ TG go nis—a] e+ 4(a+3) e+ n4(a+d)
4 pAt: Clearly, if we puta = 1 we have
and a’) for P—convex stochastic Processes
_ [fpvi-t g pip _ N
o= [ Y Feha [l -9 ) (b-ax(s)- [ Xt
1
1 1
-1 F5 s [ (b=9)°] <5 X(s9)| ((s-a%+(b-9?)
where
ou = ot kA +3) +%<(s—a)2\X’(a7~)]+(b—s)2\x’(b7~)])
W= rko+ A +1) , .
Replacing the above values ibg), and using the well b’) for convex stochastic processes
know valuel" (1/2) = /11, we have the desired inequality —/bX(t ~)dt‘
(Zz)fh fi | "
e proof is complete.
. , < |X’(s,-)|6( 1 +i)
Remark. TakingA = a,w=0 ando = (1,0,0,...) in (s—a) (b—y9)
Theorem1 and Corollaries1,2,3 and 4 we have the 2 2
corresponding  inequalities for  Riemann-Liouville +X (@) (s—2a) X' (b,-)] (b-9)
fractional integral: 3 3
a) ForP—convex Stochastic Processes c¢’) for s-convex function
b— a+ _a\a b
(O ) xe - ((20 (@+ (22X )] [i-a)x(s) - [xiee
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[6] Bhattacharya, R. N.; Waymire, E.GStochastic processes
< @|X’(s7-)] ((s— a)3+(b—s)3) with. applications.QIassics in Applied Mathematics, 61.
5 Society for Industrial and Applied Mathematics (SIAM),
2009.MR3396216..
<|x/ (a-)|(s— a)®+ X' (b,-)] (b—s)3) [7] Breckner, W.W. 1978. Stetigkeitsaussagen fir einesda
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linearen R"aumen. Pub. Inst.Math., 23,13-20
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Academic Press, New York, 197IV1IR0590943
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vis-a® o, VAb-s)? MR3558939
1o TIXb|

I(s+1)

T sta

d’) for MT —convex function
b

(b-a)x()-

a

X(t,-)dt’
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