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Abstract

In this research work, we study a new class of fractional type Ambartsumian equation
with nonlocal conditions in the sense of Hilfer generalized proportional fractional deriva-
tive(HFD). The given problem is first converted into an equivalent fixed point problem,
which is then solved by means of the standard fixed point theorems namely, Banach and
Krasnosel'skii’s fixed point theorem.

Keywords: Ambartsumian equation, Proportional fractional derivative, Existence, Fixed
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1. Introduction

Fractional calculus is a simplification of ordinary differentiation and integration of ar-
bitrary order. which can be noninteger. Differential equations of fractional order have
interested the consideration of several researchers, see [3, 4, 8, 11]. In the works, there
exist several definitions of fractional integrals and derivatives, from the most standard Rie-
mann—Liouville and Caputo-type fractional derivatives to the other ones such as Hadamard
fractional derivative, the Erdélyi-Kober fractional derivative, and so forth. A generalization
of both Riemann—Liouville and Caputo derivatives was given by Hilfer which interpolates be-
tween the Riemann-Liouville and Caputo derivatives as it reduces to the Riemann-~Liouville
and Caputo fractional derivatives. Some properties and applications of the Hilfer derivative
can be found in [7] and references therein. The authors in [1, 5, 10] introduced a new type
of fractional derivative, the generalized proportional fractional derivative. The work of was
generalized in [13, 15] by using the concept of the proportional derivative of a function with

respect to another function. In [10], the Hilfer generalized proportional fractional deriva-
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tive was proposed. For some recent results on Hilfer generalized proportional fractional
differential equations. see [6. 9, 12, 14].

Although several authors developed many interesting techniques and approaches to solve
fractional order Ambartsumian equations with their applications. The current articles as-

serts its novelty from the following perspectives:
(a) We discuss some basic properties and results of generalized HFD.
(b) We obtain the existence of solutions of fractional type Ambartsumian equations via

generalized HFD.

2. Axillary Results

We begin this section with important definitions and auxiliary Lemmas that have per-
tinent to our main results . For more about fractional differential equations, see [1, 2, 3, 4,

5,7, 8, 13, 15]

Let —oo < a < b < oo be finite and infinite intervals on Ry. Cla. b] be the space of the

continuous function @ on [a.b] with the norm defined by
Qe = max QO

and AC"[a, b], the space of n times absolutely continuous differentiable functions, given by

AC"[a,b] = {Q: (a,b] = B;Q""! € AC([a.b])}.
The weighted space Cyla,b] of a functions @ on [a, b] is defined by

Cola,b] = {Q: (a,8] - R; (t—a)’Q(t) € C (fa,b]) }, 0<9 <1,
with the norm
1@y = [ =@, -
= max |(¢ = )’Q(0)|
The weighted space Cj|a,b] of the functions Q on (a, b] is defined by
Chla,b] = {Q: (a.b] - R:Q(t) € C"! ([a.}]) :Q"(t) € Cy([a.b])}, 0<VI <1,

with the norm
n=—1
Qg =2 @y + 197 Nc 100
k=0 g

Clearly.

CYla,b) = Cyla,b], if n=0.
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Definition 2.1. [11] Suppose Q € L' ([a,b],R). Then the fractional operator

1 t
P .. N - p)P=1)
'+ Q(t) () -/a (t —v) Q(v)dv, p>0.t>a.n€N,

is referred to as the Riemann-Liouville integral of order p with the lower limit a* of the

function Q, where I'(.) denotes the classical Gamma function.

Definition 2.2. [11] Suppose Q € C ([a,b],). Then the fractional operator

LD2, Q1) = pr———

t
WE/ (t — u)("""l)Q(u)du, p>0t>a.n—-1<p<nmnéeN,

is called the Riemann-Liouville fractional derivative of order p with the lower limit a* of

the function Q, where I'(.) denotes the Gamma function.

Definition 2.3. [11] Let Q € C™ ([a.b]). Then the fractional operator

1 t
C‘D":.,.Q(t) = m/ (t — V)(""’-”Q"(V)du, p>0t>an—-1<p<nmneN,
a

is referred to as the Caputo fractional derivative of order p with the lower limit a* of the
Sfunction Q.

Definition 2.4. [10] If o € (0,1] and p € C,re(p) > 0. Then the fractional operator

 JIPIAL
IP2Q(t) = QPI}W L e E (i = )V  £a (1)
is called the left-sided generalized proportional integral of order p of the function Q.

Definition 2.5. [10] The left-sided generalized proportional fractional derivative of order p
and p € (0,1)] of a function Q is defined by

Dn-e
o"~PL'(n = p)

where T'(.) is the Gamma function and n = [p] + 1.

DPEQ(t) = / ' T (¢ — )=P-)Q(v)dv, pe€C,Re(p) >0, (2)

Definition 2.6. [10] Let p € (0,1]. Then the fractional operator

1 b o1, ” .
DELQ) = iy [ T =)D (DQ) (), p € T Re(p) >0,

(3)
is referred to as the left-sided generalized proportional fractional derivative in the sense of
Caputo of order p of the function Q. and n = [p] + 1.

Certain important properties of the generalized proportional fractional integral and

derivative are defined as follows:
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Proposition 2.7. [10] Let p,6 € C such that Re(p) > 0 and Re(d) > 0. Then for any
o € (0,1] we have,

(i) (T2 (s = a)=1) (1) = EBlse T (2 — a)P+7 1.
(i) (Drees " (s = a)*Y) () = Frihe T (t — a) P~
(iii) (IP o5 (b—s)(b )6-1) () = ﬁffsslp) L‘(b—t)(b_t)g_ﬂ,_].

(iv) (Dgfeﬁi—""-“)(b - s)ﬁ-l) (t) = g{%e%‘(b-”(b — t)8=p=1,

Theorem 2.8. [10] Let p € (0,1], Re(p) > 0 and Re(q) > 0. If Q € C ([a, b]. R),then

28 (Z22Q) (1) = T2 (T2£Q) () = (Z2H*°Q) (1), t2a. (4)
Theorem 2.9. [10] Suppose o € (0,1] and 0 < m < [Re(p)] + 1. If Q € L' ([a.b]). Then

D (Z5£Q) (1) = (Z27™°Q) (1), t>a. (5)
Corollary 2.10. [10] If 0 < Re(q) < Re(p) and m — 1 < Re(q) < m. Then we get
DILIPAQ(t) = TZT4Q(H).
Theorem 2.11. [10] Let Q € £ ([a,b]), Re(p) > 0 and p € (0,1]. Then
DEEIPEQ(t) = Q(t), > ain = [Re(p)] +1

Lemma 2.12. [10] If p > 0,p € (0.1] and m € Z4. Then

m=1 'ﬂ(l-ﬂ)(t _ a)p—m+k

(Z22D1Q) (1) = (D°IELQ) (t)—z T D (e ) ) B
In particular, if m=1, we obtain
2l (t—a),
(z2£D2,Q) () = (D8, 722Q) (1) — =" g5y (7)

or='T'(p)
Theorem 2.13. [10] Let Re(p) > 0,n = —[—Re(p)].Q € L'(a,b) and (I'FQ)(t) €
AC"[a,b]. Then

o— =L (t—a) (& =)
(@ED22Q) () = Qt) — Ty TP = + 1)

=1 €

(ZZ~72Q) (a*). (8)
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3. Main Results
In this section, we introduce the HFD and discuss some of its properties.

Definition 3.1. [11] Letn—=1<p <n,p € (0.1] and 0 < g < 1, with n € N. The left-sided
and the right-sided HFD of order p and type q of a function QQ is defined by

(Pi0Q) A =T [pe (200" 4Q) | (. ®

where D2Q(A) = (1 — 0)Q(A) + 0Q'(A) and T is the generalized proportional fractional
integral defined in definition (2.4).
In particular, if n = 1, Definition (3.1) is equivalent with

(Dsi?eQQ) A =IZ(11-P),9 [Dg (Iii-Q)(l-P)vQQ)] (A)- (10)

Thus throughout this paper, we discuss the case where n =1,0<p<1,0<¢ <1 and
U=p+q-—pq.

Remark 3.2. e The derivative is used as an interpolator between the Riemann-Liouville

and Capudo generalized fractional derivative, respectively, since

DPIi;lt-p)’gQ, g=0 (see Definition2.5),

(11)
I,(,;—p)’gDpQ-. g=1 (see Definition2.6).

Q= {

e The parameter ¥ satisfies 0 <9 <1, J>p, ¥>¢q 1=-09<1—=g(1-p).

Lemma 3.3. The operator D:‘f’g can be simplified as

(’DZ;:”"Q) = Izgl-P)rQDgI‘(li-ﬂ),eQ,
- I:i l—p)reDng’

where J = p+ q — pq.
We consider the following weighted spaces of continuous function on (a,b] :
Ciola. bl ={Qe Ci—g[a,b], DP¥°Q € Cy_gla, b},
and
C1_yla. bl = {Q € C1sla, 4. DIFQ € C1—gla,b]} .

; a, 1=p),0.~0.
Since Df:f‘e _ ZZ'(* P) gD,,f«

C?_yla.b] € CPAyfa bl
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Lemma 3.4. Suppose 0 <p <1l.p€ (0,1] and 0 <9 < 1. If Q € Cy[a.b], then
I'fQ(a) = Al 72Q(t) =0. 0<d<p.
Lemma 3.5. Let 0 <p<1,0€ (0,1,0<¢< 1 and? =p+q—pq. If Q € C}_,[a.b] then
TEDLEQ = THEDEIQ
and
0 QIP QQ fDq(l-P),eQ.
Lemma 3.6. Suppose Q € L' (a.b) such that D¥!"P)°Q ezists in £ (a,b). Then

Dpf,eI:;QQ _ Izgl -P),QIDZgl -P)egQ_

a

Lemma 3.7. Let 0 < p < 1,p € (0,1],0 < ¥ < 1. If Q € Cyla,b] and then I‘(ll:p).eQ €

Clla.b], then

5 (A=) (A = )Pt
oP=11(p)

Lemma 3.8. Let 0 <p<1l,p€ (0,11,0<g<1and ¥ =p+q—pq. If Q € Ci—yla,b] and

'D::f‘gQ then D:f‘gQIg °Q exists in (a.b) and

TPEDRLQ(A) = Q(A) - (-P) (*), VA€ (a,b]

DPEeIPEQ(A) = Q(A), A€ (a,b].

Lemma 3.9. Let 0 < p < 1l.p€ (0,1,0<g<1and 0 < ¥ < 1. If @ € Ci—y[a,b] and
I‘::ﬂ'gQ, then

o Sh(A=a) (A—a)’~!

TE2DPIEQ(A) = Q(A) - =i

(:rg'-")@@) (@), YAE (a,b].

4. Existence Theory

Ambartsumian derived the standard Ambartsumian equation. The absorption of light
by interstellar matter has been defined in this equation. In the theory of surface brightness
in the Milky Way, the Ambartsumian delay equation is used, see [2].

Let us consider the following fractional differential equation

9:0 = = L = [a, T7, a >0,
{DLL A =Q(AD) =Q(L AR AD). teS =TT >az0.

I::G’Q'A(a) =Z:’;l ’Li'A(Ti)s p< ) =p+q—pq,7i € ((l,T),
where DP#2(.) is the HFD of order p such that 0 < p < 1, Z.77%(.) is the generalized

proportional fractional integral of order 1 = such that 1 =9 > 0,y; e R, Q: JXxEXRE - R

is a continuous function and 7; € .J satisfying a < 1) < ..... T ST ford4=1,2, cous0iag m.
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Theorem 4.1. Let 0 <p<1,0<g<land)=p+qg—pgandlet Q: JXxEXRE -+ R
be a function such that Q € C1—9[J,R] for any A € C1—g[J.R]. If A € C?_,[J.R] then A
satisfies the problem (12) if and only if A satisfies the mized type integral equation

Al = e T g - ) Y ik [ = - opig (s,A (1-7) ,A(s)) ds

i=1

ePF(p/ i s (S’A(n) (*)) (13)

Az 1 (14)

oP-IT(d) = S pie’e " (r; — @)1
Proof. Suppose A € C}_,[J.R] be a solution of (12). We have to prove that A is a solution

where,

of our proposed problem (13). By the Lemma 3.9, we have
At) = S ST ) 1m0e 4o+

0—1[‘('9)
1 te%l(t-,) i -1 (g (i) s) s
+ 5T e (t=3)""'Q (s A( ) Al) ) ds. (15)

Now substituting ¢ = 7; and multiplying p; on the both sides of the equation (15),we get

i) = CZ O 5t

-T(D) © ~ I e Aat) + i TPQ(), (16)

which implies that

> wA(R) = = 1,)211, T iy AT A )
=1

=1

1 m le%l(‘_s) A -1 (g (i) 9) S
+e”—F(P)|z=:1"‘/a+ (t-s)P'Q(s.A - JA(s) ) ds. (17)

From the initial condition Il:"’g.A(a) =Y, A7), we get

=0 gty = £ T0) "“F(t? "Z / -9y s)p-IQ(s,A(%),A(S))ds. (18)

Therefore the result follows by substituting Eq. (18) in Eq. (15). This shows that .A(%)
satisfies the Eq.(13).

Conversely, suppose that A € C?_g Satisfies the Eq.(13), then we have to show that A also
satisfies the Eq.(12). Applying ’Dg;g on the both sides of the Eq.(13).

DYLA(t)

= D:f (EPT,‘\(SC%(‘—“)( —a) 1w [ c'%l(ri_s)(T,' -s)P-1Q (S.A (%) ,A(s)) ds)
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+D22 (i St 5T =)t — 5)P-1Q (s 4(2) . A)) ds) .
By the Proposition(2.7), Theorem(2.9) and Definition(3.1), we get
DILA(t) = (DZ‘J'"’)“’Q (t. A(%).A(t))) (A). (19)
Since DP¥? A € C1-4[J.R], by the definition of C}_,[J.R], Eq.(19) implies that
DI!-PreQ = pez! [ "PreQ € Cy_g,,[J, R].

For Q € Ci1—[.J,R] and from Theorem(2.11), we can see that I::q(l—p)'gQ € Ci1-9,0[J. R],
this implies that Ii: wl=-rleg e C 1_s[J.R] from the definition of C7_,[J. R].

Applying I:S,“”"" on both sides of the equation(19) and by the Proposition(2.7), Lemma(3.7)
and definition(3.1)

IZSI_P)‘QD:‘;QA(” o IZ-(}}—PLQ (ngl—P).BQ (l.A(i)‘A(t))) a

I‘l(l—P) 7
(t .A( )s A(t)) ngﬂ(t_a)q(p—l)—l’

(1=p).opyd.0 - t
7Pl A®) = Q (1. AG).AM)) (20)

Hence its remains to show that if A € C}_,[J.R] satisfies the Eq.(13), it also satisfies
the initial condition. So applying I‘:: %2 on the both sides of the Eq.(13) and by the
Proposition(2.7). Theorem(2.8) and Corollary(2.10), we obtain

T 74A(r)

- A =L ¥ V. LIl = 78 —L(ri—s - b
=217 (e T o [ RO om0 (s () A0 )

1-9.0 1 ¥ =9y _ -1 ( s s S o
r Tt (gpr(p) /.,+' (F=ay™ Q("A(n)"“(‘ ’) d‘)

T F T RAL)

—t,—lr(d) - -a — = T .&l'r,-—s — S5
= ) NIt - a)? lgui/‘ﬁe e (=) (r; — 5)P-1Q (S,_A(’—’),.A(s)) ds

+I70PeQ(t). (21)

Taking the limit as # — a* in Eq.(21) and the fact that 1 — g < 1 — p(1 — r) gives

e o [ o G) )

© 2023 NSP
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Substituting ¢+ = 7; and multiplying p; in Eq.(13), we get

Hi A(T3)
A —1 Ti=—a - = | Ti=5 - S
= QPF—(pﬂe%( )(-r,- = ;;q ,/.,+ e'e )(-r,- - s~ lQ (s,.A (;) ,A(s)) ds
o " e R ) [ s)P~1 s 2 s s
YY) =) Q( #zt (n) 4 )) -

which 1mphes that

Yo miA(m) = A wIPEQ(n) Y pee TN (m—a)7t + 3 wZ2EQ(n),
i=1 i=1 i=1

=1

Z piA(r) = Z uIPEQ(7:) (1 + 3 e T (- a)"-l) : (23)

i=1 i=1

Thus,

mo i) B A TCT PR Py g) 1) ds ;
;mA(T,) ) AZ[./+ (1 = s)” Q( ,.A(n LA )) ds. (24)
So by Eq.(22) and Eq.(24), we get
L770A() =) mA(T). (25)

i=1

Hence the proof is completed. O

Next we have to prove the uniqueness of solutions of the problem(12) using the concepts

of the Banach contraction principle. To demonstrate our main result, the following must
be satisfied.

(H1): Let @ : J xR xR — R be a function such that @ € C‘l’(_ll;_p)[.l,R] for any
A€ Cl_d[l,R].
(H3): There exists a constant K > 0 such that

1Q(t.u) — Q(t,7)| < K |u,u|. forany uw,w€R and teE.J

(H3): Suppose that K¢ < 1,

where

_ B(¥,p)
oPT'(p)

and S(7, p) is the beta function defined by (See.[11])

ALY pilri — a)P?= 4 (T - a)") (26)

i=1

1
B0.p) = [ AP(1= APHA. Re(d). Re(@) > 0.

© 2023 NSP
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Theorem 4.2. Let 0 < p < 1,0 < q < 1 and ¥ = p + q — pq. Suppose that the hypothe-
ses (Hy) — (H3) are satisfied. Then the problem(12) has a unique solution in the space
C?_,[J.R].

Proof. Define the operator T : C)_y3[J.R] = C_3[.J.R] by

— A '%l(l—a) i =1 M ) Tipe;_l(ri—s) A ==} < s . «
(TA)(t) = T ()° (t—a) ;;t./‘; ] (i —s)P Q(-.A(”).A(‘ ))d

: e=1 f—s e s
+9PI}(p) /a+ e el )(t - 5)P-1Q (s,.A (’—1) ,.A(s)) ds. (27)

It follows the operator T is well defined. Now for any A, As € Cy_y[J.R] and t € .J, this
gives

|((TA1) (£) = (TA2) (1)) (t — a)' =7

I/\I m

E_1(‘_0) d=1 .‘/Tx‘
&< o t=— E i
- Qpr(p) & ( a) I i=1 & at

|Q (S.Al (%) ,Al(s)) -Q (s,A2 (%) ,Ag(s))

— .
ee (Ti—s) (i = s)P~!

1
ds + ——
> T (p)

i = 2
/ 57 9| s — sy |Q (s.Al (%) ,.Al(s)) -Q (s. A> (g) ,.A-z(s)) ds.  (28)
Since o < 1, we get

|(TAy) () = (T A2) (1)) (t = a)' =7

KA [« " & _
= oPT'(p) (; H /,,+ (i = 5" (s — )" lds) [|.Ay = A'z"c,_‘,[_/,xl

t
(t=ay=* ([ (= o7 = a)~Vds) s = Asll,_pom

+
o"T'(p)
K |A e =
= e"l‘l(pl) BW.p) Y milmi = = AL = Aslle, gy
i=1
K

Therefore,

I(TA1) = (TA ey otrm < K9 1AL = Aslle,_, ) (29)
Hence it follows from the Eq.(26) that 7 is a contraction map. Thus, as a consequence of
the Banach contraction principle, problem (12) has a unique solution. O
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Now we have to prove that the existence of the solution of our proposed problem (12)

using the concepts of Krasnoselskii's fixed point theorem (See.[?
following hypotheses
(H4) : Suppose that KA < 1,

where,

_ B(@.p) |~ i
A= T (p) Al ;#i(ﬂ‘ )

1)- We consider the

(30)

Theorem 4.3. Let 0 < p < 1,0 < g <1 and J = p+ q— pg. Suppose that the hypotheses
(H1).(H2) and (Hi) are satisfied. Then the problem (12) has at least one solution in the

space Cy_,[.J. R].

Proof. We have |lallc,_,izz = 511p¢€J|(t—a)l-‘9a(t)| and choose & > M l|lall¢,_, sz -

where

o’T'(p)

We consider B, = {.r € ClLR]: | Alle,_,prm < k}.
Define the operators G and ‘H on Bj by

ae 00 (I/\I 3 il = a0t 4 (T = ay?

=1

GA(t) = gy [ € ¢t — 5)P-1Q (s,.A (;) LA(s)) ds.

HA(t) = T —ay Y / e - i

A
oT) -

for all t € [a,T].

Now, for every A. A € B;..

|(GA(t) + HA(L)) (t — a)*—?|
(t — a)'—?

: —-s (s —a)??
< =0) /,,“ 5)*~'(s —a)
I/\I _-

< fla] [“Zi"”’) IA IZ#.(T. —ayp+o-1 4. B0:P) “)”] '

L'(p) orT'(p)
< |l M,

|(GA®) + HA®) (t - a)'~?| <k < .

This implies that GA(f) + HA(t) € By.

Now we have to prove that H is a contraction.

Q (s,A (7 ) A(s)) (s—a)*~?
( ; (%) ,.A(s)) (1i — a)'=?|ds

) . (3

(24(5) )

ds

(32)

© 2023 NSP
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Now, let A, A € Cy_y[J.R] and t € J, then
|(HA(t) + HA(t)) (t = a)'=7|

Ae'e (t—a)Zu,ng( ( (%) .A(s)) -Q(s,z(%) J@))) )|,

KIAI Z / —sp-l(T-sﬂ-ll.A (s) = A Ids

l—l

KA
o’T(p)

< KAJA(s) -7{(.«;)|(_.

i(1i — a)Pt?! ] | (s) = A |C‘1 olJR]®

—olJR] "

Hence it follows from (Hj) that H is a contraction.

We have to show that the operator G is continuous and compact.

Clearly, the operator G is continuous, due to the fact that the function @ is continuous.
Thus, for any A € Ci-3[J. R], we have

.p)
QPF(P)
This shows that the operator G is uniformly bounded on Bi. Thus, it remains to shows
that G is compact. Denoting sup( .yc x5, lQ (t.A(%) ._A(t))' = § < oc and let for
a<n<n<T,

GAl < llnl 2

(T = a)? < oc.

(2 = a)'=? (GA(m2)) + (11 = a)'~? (GA(n))|

_%/ﬂ T M= _ =10 (5,4 ),A(s))ds.

/ (2 =a)' (=5 =(n=a)'~ "(n—s”"]Q( (5) A(s)) ds

b [0 - o0 (s4(2) A s

(2 = a)'"? (GA(m)) + (11 — a)*~? (gA(‘n))l -0 as 71— 1.

- 9"l‘(p)

As a consequence of Arzela-Ascoli theorem, the operator G is Compact on Bg. Thus,

problem (12) has at least one solution. O
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5. Conclusion

We have successfully studied fractional type Ambartsumian equations with nonlocal
initial conditions, using the generalized HFD. Also, we have provided some sufficient con-
ditions guaranteeing the existence of solutions for a class of fractional order Ambartsumian
equations. We will apply the numerical algorithms to the proposed problems with further
scope.
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