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Abstract: In this work we present a novel methodology for detection ahdracterization of different types of epileptic events
immersed in electroencephalogram signals. In a multimiesl analysis context, this technique uses band limitedeless and
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1 Introduction The development of algorithms for the detection and
automatic classification of intercritical events and the

) , . prediction of epileptic seizures began some decades ago.

In the framework of a multiresolution analysis (MRA), geyeral methodologies have been proposed to address

the discrete wavelet transform allows to express a signajhese problems, that continue to be of great interest. We
through a series of wavelets, implementing a time-scalg.gp cite P,4,5,8,17,18,19,20,22] among others.
technique that provides information of interest based on ;g paper is organized as follows. In the next section

the coefficients of these series. . we present the design of a bandwidth limited wavelet
When a good temporal localization is achieved thepase, the associated energy profiles and some families of
frecuencial accuracy is usually lost. For instance, thergyayelet packets that allow us to refine the scheme in order
are harmonic patterns temporarily immersed in a localg optain a better frequency resolution. We apply the
phenomena of the signal that cannot be detectediechniques developed in the processing of an EEG signal
However, it is possible to improve the frequency precisioncorresponding to an epileptic patient in Section 3. Finally
maintaining a good temporal localization when j, Section 4, we state some conclusions.
trigonometric wavelet packets are used.
In this article we propose time-frequency techniques
based on band limited wavelets and show how they can b -
applied to automatic detection of epileptic events in deep? Band limited wavelet
electrode electroencephalograms (EEGs). These EEGs are
part of the studies carried out in some epileptic patientdt is well known that several types of wavelet functiapis
resistant to drugs, who are candidates for resection surgergenerate  MRA  structures, combining in different
to remove the epileptogenic zone (the focus of seizures). proportions desirable localization, smoothness and
Since in studies of this type, the signal is acquired atsymmetry properties. But is hard to obtain good accuracy
several points in the brain (electrodes with contacts aiof all these properties simultaneously.
different depths) for some days during which the patient If the associated conjugate filters are finite, as
remains hospitalized, it is of great importance to automateéDaubechies case, the wavelets have compact support and
the analysis of these signals (EEGs channels) taconsequently efficient computational calculus. But they
collaborate with the subsequent visual study carried ouare not smooth or have no symmetry properties.
by the specialists. Moreover, they do not possess well and precise frequency
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localization or analytical expression. In consequencg the @ ®
are not suitable for some theoretical applications. 1 — , /\
Cubic or fifth power spline wavelets are symmetrical, osp X o5 \
have a good balance between time-frequency localizatiol osf o f \ ‘ A n
and are associated with efficient numerical oaf | \‘\ o / |
implementation methods. For certain type of applications 0z \ 05 /
they are very efficient and conveniertt, 3]. 0 2/ R \‘B N : |
For time-frequency analysis or regularity studies, @0 t
oscillating properties, i.e., infinite zero moments: © @
[T x"(x) dx= 0, for all n € N>, are indispensable. U 1 /\ ,
We denote byl the Fourier transform ofy € L?(R), 08 / \ 0s .
defined by I - AN /\ (.
. 0.4 | U /
B(@) = [ we o] \
R 0 / \ 1 L/ L/
The smoothness of{i guarantees the temporal ot et A

localization. An efficient numerical implementation
method is also desirable. In addition, the transfafm  Fig. 1: (a) v with a = 11/4, (b) Yo with a = 1/4, (C) va With
should be smooth and well localized in the band@ =7/7, (b)yq with a = 11/7.

m < |w| < 2m. For these reasons our choice for
time-frequency applications is a family of bandwidth
limited wavelet proposed by Y. Meyer irl]. Here we
focus to our particular design and its respective

properties, for more details @ Then, for a signak with finite energy we have the

expansion formula

s(X) = Cik Wik (X) ®)
2.1 Wavelet design ng ng i

In [7] we define, in frequency domain, the scaling function for appropriatevavelets coefficients

@, and the wavelet functiog,, as follows, Cik =< S Uik > . 4)
1 W <m—a In time domain,yq is well localized in the interval
aa(w) = #)(201—&)) m—o<|w <m+a [0,1] and pun'ctua}lly Iocateq in /. Thus, the wavelets
0 “ “ | > T+ a Yik are pointwise localized around each center
= Xjk = 2 (k+1/2) and located in the interval§ [k, k+ 1].
Based on the good localization properties, we can
warranty that the synthesis information around escls
(Qfa) practically determined by the wavelegsy of its around.
Va(@) = exp(— Ww) lw—m+af <2a More precisely, being;j(xo) = [2'xo], for eachj, where
[-] is the floor function, we have the punctual synthesis of

1)
with

0 jw—T+alz2a 6 signak by the approximation formulag
and using ) kj(x0)+1
_ _ | =S Y (s Yik(x) ()
Ba(0) =@ (w2 -G e @ B

centered neaf.

It is worth noting that the properties sin xp, such as
regularity and some kind of singularities, are
characterized by the wavelets localized in th8uence
coneof xg defined by

with parameterr € (0, 11/3].

We recall thatyy € .7, the Schwartz’s class (infinitely
derivable functions with exponential decay). In addition,
the family

(UK =22 ya(2'x—K), j.keZ} Qlxo) = {(j.K) / k27T —xo| < 1} 6)

is an orthonormal basis &f’(R) associated to the MRA 4t generates the sequences

generated byq,, well localized in both, time and

frequency domains. Some graphics can be seen in the sj(x) = (s, Wik) Wik(X) 7)
Figurel. k21| <1
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convergent to, for more details seel[]. 2.3 Wavelet Packets
In frequency domain, théliy (w/2')| have compact _ _ _
Support' determined byasmooth window function. The wavelet transform is a time-scale teChanue that
The wavelets transform are well localized on the two- allows to extract and classify the information of interest
sided frequency band from the coefficients of the expansion. It is particularly
. . appropriate for detecting and characterizing singuksiti
Qj={2/(n-a)<|wl < 2+ (g a)}. (8)  or local and oscillating events. In this sense it is more

o ] efficient than the local Fourier analysis, sé¢lfl, 12,21].
In contrast, they are not pointwise localized at any |y addition, wavelets well localized in time, are not
frequencyw € Q;. Consequently, the wavelet coefficients nearly-monochromatic  functions, i.e., its Fourier
(4) only give time-scale and not time-frequency yransforms are not associated with a specific frequency.

information. ) o For this reason the atomic wavelet decomposition does
Suppose that at a levgwe haveM coefficientscik of ot synthesize properly the information refered to the
the signal and harmonic patterns that coexist with local even, 1P,
Ko 13)). In the same analytical context, it is possible to refine
si(X) = Z Cik Wik (X)- 9) the depomposﬂmn scheme enab_llng better_frequency
= resolution. The elementary functions associated with
these refined schemes are calleavelet packets
Then its associated Fourier transform is There are several packets families in the literature, see
o Y i [9,11,13]. In general, wavelet packets are elementary
§j(w) = 2712 (w/2)) Z cje 12K functions generated by appropriate linear combination of
k=kq the wavelet basis functions. In particular, we are
Ko _ interested in functions
—i/215 - —i2~]
= 2P lBa(w/2)] 3 e AT 0) BH(X)= T by kWi (12)
=K1 (j.ken

Note that the last factor of1Q) is a discrete Fourier , .
transform that can give precision M frequencies and, WherelT is a subset of indexes, such that
by design|{iy(w/2))| is almost one, then the formula & i/ i i oo(2kt1) /211
(10 could| bé (/:on)s|idered as a local time-frequency 6) () = 271721 (w/2)) Z by jce™! Y
transform at levej. (Hhoer
This idea is not practical unless the frequencies areare punctually localized in some frequenoy.
precisely defined and the transformation is properly  Previously, for certain applications, we have developed
formalized. and implemented packets of orthogonal wavelets from the
application of Fourier matrices to the wavelets;,[L6].
This is the starting point for the design of the
2.2 Local energy profiles modulated wavelet packets that support current
time-frequency techniques.
In numerical signal processing, only a finite number of
scalesj are available for the analysis. In this case, it will
be only possible to estimate local and specific propertie®.3.1Trigonometric wavelet packets

from the wavelet coefficientsy, (4). . . ) .
In this subsection we define a tool that allows us to YWe consider again the orthogonal wavelet defined in
analyze, in a network of points, the energies of its (2), localized on the two-side band, smooth and with fast

neighborhoods, summarized in successive levels. decay. Its Fourier transform

Let jmax the highest level compatible with the PN T —iw/2
sampling frequency containing significant information. P (@) = |¢a(w)] € (13)
For eachx = Xj,.k and j < jmax We define thelocal  is concentrated in the bami< |w| < 2w and its module
energy profileby the expression is almost constant in this interval.

Given a signals, through a recursive algorithm, we

jmax K (x)+1 - . C .
: compute the coefficientsd) and its projections in the
E(j, %) = el (11) Ay .
l; k=k.(zxk)—1 wavelet subspacs; = {Yjk. k € Z}:
Thus, decreasing successions are obtained 8j(X) = kEZ Cik Wik (X)- (14)
<
E(j —1,%) > E(],%) > E(imaxX)- On the other hand,

The analysis enables us to extract information about < _o—i/2\ih j i w(2k41) /201t
o Sj(w) =2 w/2 cike . (15
specific and local events. i(@) |Wa(w/ )|ng Ik (15)
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In particular, the functiors(x) = e '“»* has nonzero
projection inWj, in the distributional sense, if and only if
w, € Qj, defined in g).

Then, sice the wavelet coefficients are

(€79, Wyy) = 2712\ (ay /2))| € i /2
it results that

A o | e .
§(w) =272 |@a (wy /2| gze (0= ) (et 1)/27
ke

is punctually localized i = w, /2], analogously to the
FFT.

This suggests the design of elementary functions o
trigonometric wavelet packets from sines and cosines o

appropriate frequencies.

2.3.2 Generating Functions

are well localized in the two-side frequency band
Qo= {m—a < |w| <2+ 2a}. Moreover, the functions
(19 are well localized inwy, i. €., the characteristic
frequencies defined irig).

However, these transforms do not have an appropriate
decay and present undesirable sidelobes.

For this reason, we consider the Dirichlet’'s kernel of
orderM = 2™ P with p < mand its 2 powers,p € No:

sin(M+1/2)w)

sin(w/2) (20)

Dm(w)=1+2 % cognw) =
n=1

Idesigning appropriate normalized weigm%(), we define

fhe elementary functions:

Our strategy is to design elementary spanning functions in

the subspac®yp. Its translations and scaling span frames ——

for each subspads.
For eachm > 1, we define thecharacteristic
frequencies

2hm
G =TT+ S 0< h<2m?

and consider the™x 2™ orthogonal Fourier matrices

(16)

2-"2 sin[wo(k+1/2)]

- 21=M/2 coswmn(k+1/2)] ---

Fm = 2(-M/2sin[@yn (K4 1/2)] -

(17)

- 272 coslwypm-1 (K+1/2)] - -
with —2m1<k<2ml_1 0o<h<2ml

Without lost of generality, we considgr= 0 and the
corresponding subspadé. Form >0, 0<| <2M—-1,
we denoteFy(l,k) the elements of the matrixl{), then
the elementary functions defined by

om-1g
Bm (X) = Fn(l,K) Yo (x—K),

k=—2m-1

(18)

are localized in the time intervéh-2m-1 2m-1],

Based on the matricds, and waveletsy, properties,
we can conclude that the familig$,, 0 <| <2M—1}
constitute an orthonormal basis\&§ for eachm > 1 and
its Fourier transform

2m—171 .
Om, (@) = [P ()| Fn(1, k)e 10(<+1/2)
k=—2m-1

(19)

am1l g
Bt () = a0 Ya(x—K)  (21)
k=—2m-1
or in the frequency domain
m-1__ )
O (@) =0a(@) Y pRFm(l ke @12 (22)
k=—2m-1

2.3.3 Modulated Packet Frames

From @1), and fixingm, p such that 0< p < m, in each
subspac¥V;, we generate the family shodulated wavelet
packets

{Q(P)

ml,j,n

(x)=21/2F) (2ix—n), 0<1<2™_1nez). (23)

The parameten indicates the translations of"2vavelets
Wik involved in each packet. More precisely, the range
n—2ml<k<n4+2™1_1 corresponds to the ™
successive wavelets immersed in the functign j .

In each subspadd the family 23) is over complete.
Moreover, constitutes a Parseval frame of the subspace
W, [1121]. Therefore, an appropriate structure is
necessary to ensure an efficient implementation and stable
reconstruction formulae.

Then, ifsj e Wj,

5i(X) = Z < s(x), er;ﬁ{ in> eriﬂ{ a0 (24
n

the packets coefficients are calculated from the wavelet
coefficients §) by

om-1_q

>= Yt Fn(l,K) Cikin.
k=—2m-1

Q(P)

»Uml,jn

< s(x) (25)

Note that the new wavelet coefficient®5] are discrete
convolutions of the original wavelet coefficients and the
result of refinement schemes in frequency, in each space
W;.
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The parametem determines ?~! + 1 characteristic N = 21° data and sampling frequency = 200 Hz.
angular frequencies in the intervat,2m2) and can be According to the specialist, there are several events
chosen for each levej, according to the needs of the mentioned above immersed in this signal. Fig@®)
analysis. Usually in the applications we take= 4,5,6 shows its corresponding power spectrum. We can see that
specifying in this way 917,33 characteristic angular the relative information is in the spectral band of less than
frequencies, respectively. The other parameter could bd0 Hz. The frequency peak observed at 50 Hz
chosen ap = 2 or p = 4, obtaining very good frequency corresponds to an artifact generated by the alternating
resolution. current present in the electric power supply in the data

Furthermore, the functior@ﬁf’) are well localized in  acquisition process.

1jn
the temporal interval

R 1 m—1 1 m—1 300 @

Xmjn= | 57 (N=277), 5 (n+2777) (26) a0 ‘ ]
100}l
. . . . ‘ ‘ W
and pointwise localized around the cenjtd. Its Fourier | N
~ I i
transformseéfl)‘ jn are located in the bilateral frequency ZZZ |
band g). More precisely, around the frequencies: a0 i . ‘
0 500 1000 1500 2000 2500
. seg
Wm,jh = 2! Wi (27) ®

1500

1000 1

and decapy like the 2 power of the kernel 20), i.e.,
(Dwm(@))?

An efficient signal representation tool is thus achieved
as a superposition of waves associated to a define
frequency.

; i i i
0 10 20 30 40 50 60 70 80 90 100
Hz

3 Experimental results. EEG time-frequency Fig. 2: (a) Typical EEG signal. (b) Its module Fourier transform.
analysis

Interictal events are epileptiform discharges that can be

observed between seizures, during record of the brai

electrical activity of epileptic patients. - Table 1. We can observe that its energy is practically
The International Federation of Societies for localized on level§ — —6, —5, —4, corresponding to the

Electroencephalography and Clinical Neurophys:iologyfrequenCy band [1.5625 12 5booj Hz

(IFSECN) define: “Epileptiform patterns (epileptiform T ’

discharge or activity): transients distinguishable from

background activity, with a characteristic spiky

morphology, typically, but neither exclusively nor Table 1: Energy distribution corresponding to one of the EEG

invariably, found in interictal EEGs of people with Signal channel

The wavelet analysis is applied between levels
r] = —11 andj = —2. The energy distribution is shown in

epilepsy”, [L4]. Each type of event is usually depicted in [ levelj | energy %] frecuency band Hz|
terms of its morphological characteristics, such as -11 0.06 [0.0488, 0.0977 ]
amplitude, duration, sharpness, and emergence from its -10 0.12 [0.0977, 0.1953]
background. The detection of these patterns, as well as -9 0.20 [0.1953, 0.3906]
the beginning and the propagation of the seizure between -8 0.94 [0.3906, 0.7813]
EEG channels, collaborate in the process of localization -7 6.22 [0.7813, 1.5625]
of the seizure focus in the brain. -6 23.40 [1.5625, 3.1250]
In this section we apply the signal representation tools -5 54.26 [ 3.1250 6.2500]
developed previously in the processing of EEG signals -4 13.72 [ 6.2500, 12.5000]
corresponding to electroencephalograms taken with deep g 8'2‘11 [[Zlg'gggg'gg'ggg(%]
implantation electrodes. This type of studies is only 1 0.00 [50.0000, 100.0000]

carried out in patients who are candidates for surgery to
remove the epileptogenic focus. We show the
performance of this methodology in detection and
classification of different types of eventspike, sharp 3 1 Spike detection
waves and“spike and wave’

Figure 2(a) shows a typical electroencephalographicin Figure 3(a) we can see the temporal interval [1570,
recording, corresponding to one of the 17 channels, with1610] sec of the EEG signal, where the specialist

@© 2019 NSP
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detected, for instance, six spike events (marked with ®

arrows), i. e., transients clearly different from backgrdu 20— | ,\ T ;

activity, with pointed peak at a conventional paper speec R A o A / e RN
; ; AT ST AANN e M

or time scale, and a duration from 20 to under 70 msec _10; I\ PP i \/ v \‘,/ 1

[14] The Iocal energy prOfIIeS deflned Im:o aIIOW us to 200 107‘35 10‘74 107‘45 10‘75 107‘55 10‘76 107‘55 10‘77 107‘75 1078

clearly localize this type of event, see Fig&®). Finally, - ®

to complete the analysis, modulated wavelet packet: T T

defined in subsection2(3.3 are used on leve] = —4,
with (m,p) = (5,3), obtaining very good frequency
resolution. The resulting dominant frequencies are i i S S S eSS S —
. . 1073.5 1074 10745 1075 10755 1076 10765 1077 10775 1078
displayed on the Figurg&(c). ©

Vs
b
1')

e
L L

IR Y

( A\ (
CL @A
400 . . (a‘) . ; — o /N

02k i
1073.5 1074 10745 1075 10755 1076 10765 1077 1077.5 1078

200 i i f i i
1300 1300.5 1301 1301.5 1302 13025 1303 1303.5 1304
1

¥ ¥ ™ I " =
200 = H ime (sec)
A b i 3 W M P . . . .
UT‘)"MJ/%%WW\MW varwwww«ﬂwﬂw/ il M iﬂ Fig. 4: (3) EEG signal in the temporal interval [1073, 1079]
PR e 1385 e 1595 1600 1605 sec and spikes detection. (b) Local energy profile on lejels
or ' ! T ‘ ‘ —4,—3. (c) Representation of the dominant frequencies on level
5% v v )/ M }Z ’{ j =—4.
A i
| [0 P N O 1 T
1575 1580 1585 1590 1595 1600 1605
©
0.35 ‘ ‘/v ‘ 200 —T———T T r\ r(a) N ‘\ ! s
‘ % (ﬁ 0 \vﬁ,;wo\\g/ﬁv/ £\ J &\
0.25 1 - ; ; ; ;
Moo

1580 1585 1590 L X10 )
Time (sec) T T T T T T T
¥ ¥
2oy TR r 7 il
Fig. 3: (a) EEG signal in the temporal range [1570, 1610] sec and oo N \Jﬁ ; | N L;
Spikes detection. (b) LOCal energy pI’Ofile on |eVIptS _4’ _3’ 1300 1300.5 1301 1301.5 13((12) 1302.5 1303 1303.5 1304

(c) Representation of the dominant frequencies on lgvel-4.

We consider another portion of the same signal lasting
6 seconds, where the specialist detected multiple spik«
complex or a train of spikes (marked with arrows), see
Figure 4(a). Similar results were obtained. The local
profile on levelsj = —4,—3 and the result of the
application of modulated wavelet packets, with
(mp) = (5,3), can be seen in the Figurd(b-c)
respectively.

: i (&
1302 13025 303 1303.5 1304

Time (sec)

13015

Fig. 5. (a) EEG signal in the temporal range [1299.5, 1304.5]
sec and a train of “spike and wave” detection. (b) Local eperg
profile on levesj = —4, —3. (c) Representation of the dominant
frequencies on levegl = —4. (d) Representation of the dominant
frequencies on level = —3.

3.2 “Spike and wave” detection

An “spike and wave” event is a pattern consisting of a

spike followed by a slow wave,1f]. In this case we 3 3 Sharp wave detection

consider a section of the same signal in which the

specialist detected a train of spike and wave, see Figure

5(a). Figure 5(b) shows the local profile at , , i

j = —5,—4,—3. The application of wavelet packets allow A sharp wave is a transient, clearly recognizable from
us to characterize the dominant frequencies on levelackground activity, with pointed peak at a conventional
j=—4,-3, (mp) = (5,3), as seen in Figurs(c-d). We  Paper speed or time scale, and duration o£Z00 msec,

observe how these packets can distinguish frequenc{fl‘q-

details in each scal¢ and its temporal variations with A similar analysis in the temporal range [220, 229] sec
high precision. is performed and the results are shown in the Figure
@© 2019 NSP
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Fig. 6: (a) EEG signal in the temporal range [220, 229] sec
with sharp wave detected. (b) Local energy profile on levels
j = —4,—2. (c) Representation of the dominant frequencies on
level j = —4.

3.4 Spike vs “spike and wave” detection

distinguished. Two of them have been marked by the
specialist as spikes. The rest other transient wave
recognized as “spike and wave”, are also characterized in
the profile as lower than previous peaks. Once again, we
observe that these packets can distinguish frequency
details in scalej = —4 and its temporal variations with

high precision, see Figuré(c). In this case,we choose

4 Conclusions

The electroencephalogram is a traditional procedure to
investigate the abnormal functioning of the brain activity
Particularly long-term EEGs with depth electrodes are
part of the studies carried out in some epileptic patients
resistant to drugs that are candidates for surgical removal
of the epileptogenic focus. The analysis of the signal of
the different EEG channels: detection of epileptic events,
paroxysms, beginning of the seizures and their
propagation among the EEG’'s channels, provide
important information needed to identify the epileptic
focus in the brain.

In this work we have proposed a method to detect
different interictal epileptic events in EEG recordings

Finally, we consider a new segment of the same EEGPased mainly on a band limited wavelet and modulated

signal, in the temporal interval [1305, 1314] sec, in which

wavelet packets representation. We emphasized the

the specialist detected two spikes (marked with arrowsjgPProach on modulated wavelet packets due to its

and three “spikes and wave” (marked with ellipses), seghotorious

Figure7(a).
200 . ‘ . @ ‘ ) '
100—\ | I \ o
el VAP P

-200

i i i i
1309 1310 1311 1313

(b)

i i i
1306 1307 1308

i
1312
n

RES SN SEE

- @J \\ [ Al ﬂ\f ﬂkﬂf@f‘l¥ J(ﬂ \ ]

1307 1308 1309 1310 1311 1312 1313

©

i
1313

1312

1309
Time (sec

(2
1306 1307 1308

Fig. 7: (a) EEG signal in the temporal range [1305, 1314] sec
with spikes and “spike and wave” detected. (b) Local energy
profile on levelsj = —4, —3. (c) Representation of the dominant
frequencies on levegl= —4.

In Figure 7(b) the local profile on level§ = —4,—-3

efficiency  extracting features  from
non-stationary signals, allowing simultaneous analysis i
time and frequency domains. At the same time
implementing local profiles allow us to accurately detect
the temporal location of events. The method was applied
to real clinical EEG data of epileptic patients. The
promising results suggest that this processing approach in
both, temporal and frequency domains can be a real help
to identify fast EEG transients.

Finally, we hope that these new developments can be
adapted to help solve the epileptic seizure prediction
problem.
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