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Abstract: In this work we present a novel methodology for detection andcharacterization of different types of epileptic events
immersed in electroencephalogram signals. In a multiresolution analysis context, this technique uses band limited wavelets and
modulated wavelet packets transform.
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1 Introduction

In the framework of a multiresolution analysis (MRA),
the discrete wavelet transform allows to express a signal
through a series of wavelets, implementing a time-scale
technique that provides information of interest based on
the coefficients of these series.

When a good temporal localization is achieved the
frecuencial accuracy is usually lost. For instance, there
are harmonic patterns temporarily immersed in a local
phenomena of the signal that cannot be detected.
However, it is possible to improve the frequency precision
maintaining a good temporal localization when
trigonometric wavelet packets are used.

In this article we propose time-frequency techniques
based on band limited wavelets and show how they can be
applied to automatic detection of epileptic events in deep
electrode electroencephalograms (EEGs). These EEGs are
part of the studies carried out in some epileptic patients
resistant to drugs, who are candidates for resection surgery
to remove the epileptogenic zone (the focus of seizures).

Since in studies of this type, the signal is acquired at
several points in the brain (electrodes with contacts at
different depths) for some days during which the patient
remains hospitalized, it is of great importance to automate
the analysis of these signals (EEGs channels) to
collaborate with the subsequent visual study carried out
by the specialists.

The development of algorithms for the detection and
automatic classification of intercritical events and the
prediction of epileptic seizures began some decades ago.
Several methodologies have been proposed to address
these problems, that continue to be of great interest. We
can cite [2,4,5,8,17,18,19,20,22] among others.

This paper is organized as follows. In the next section
we present the design of a bandwidth limited wavelet
base, the associated energy profiles and some families of
wavelet packets that allow us to refine the scheme in order
to obtain a better frequency resolution. We apply the
techniques developed in the processing of an EEG signal
corresponding to an epileptic patient in Section 3. Finally,
in Section 4, we state some conclusions.

2 Band limited wavelet

It is well known that several types of wavelet functionsψ
generate MRA structures, combining in different
proportions desirable localization, smoothness and
symmetry properties. But is hard to obtain good accuracy
of all these properties simultaneously.

If the associated conjugate filters are finite, as
Daubechies case, the wavelets have compact support and
consequently efficient computational calculus. But they
are not smooth or have no symmetry properties.
Moreover, they do not possess well and precise frequency

∗ Corresponding author e-mail:mfabio@unsam.edu.ar

c© 2019 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/sjm/060102


6 M. Fabio, R. Sirne: Time-frequency techniques using band limited...

localization or analytical expression. In consequence they
are not suitable for some theoretical applications.

Cubic or fifth power spline wavelets are symmetrical,
have a good balance between time-frequency localization
and are associated with efficient numerical
implementation methods. For certain type of applications
they are very efficient and convenient, [1,3].

For time-frequency analysis or regularity studies,
oscillating properties, i.e., infinite zero moments:∫ +∞
−∞ xnψ(x) dx= 0, for all n∈N≥0, are indispensable.

We denote bŷψ the Fourier transform ofψ ∈ L2(R),
defined by

ψ̂(ω) =

∫

R

ψ(x)e−iωxdx.

The smoothness of ψ̂ guarantees the temporal
localization. An efficient numerical implementation
method is also desirable. In addition, the transform̂ψ
should be smooth and well localized in the band
π ≤ |ω | ≤ 2π . For these reasons our choice for
time-frequency applications is a family of bandwidth
limited wavelet proposed by Y. Meyer in [12]. Here we
focus to our particular design and its respective
properties, for more details see [7].

2.1 Wavelet design

In [7] we define, in frequency domain, the scaling function
φα and the wavelet functionψα , as follows,

φ̂α(ω) =





1 |ω |< π −α
vα (ω)√

v2
α (ω)+v2

α (2α−ω)
π −α < |ω |< π +α

0 |ω | ≥ π +α
(1)

with

vα(ω) =





exp

(
− (ω−π+α

2α )

1− (ω−π+α
2α )2

)
|ω −π +α|< 2α

0 |ω −π +α| ≥ 2α

and using (1)

ψ̂α(ω) =

√
φ̂2

α (ω/2)− φ̂2
α(ω) e−iω/2 (2)

with parameterα ∈ (0,π/3].
We recall thatψα ∈S , the Schwartz’s class (infinitely

derivable functions with exponential decay). In addition,
the family

{ψ jk(x) = 2 j/2 ψα(2
jx− k), j,k ∈ Z}

is an orthonormal basis ofL2(R) associated to the MRA
generated byφα , well localized in both, time and
frequency domains. Some graphics can be seen in the
Figure1.

Fig. 1: (a) vα with α = π/4, (b) ψα with α = π/4, (c) vα with
α = π/7, (b)ψα with α = π/7.

Then, for a signals with finite energy we have the
expansion formula

s(x) = ∑
j∈Z

∑
k∈Z

c jk ψ jk(x) (3)

for appropriatewavelets coefficients

c jk =< s,ψ jk > . (4)

In time domain,ψα is well localized in the interval
[0,1] and punctually located in 1/2. Thus, the wavelets
ψ jk are pointwise localized around each center
x jk =

1
2 j (k+1/2) and located in the intervals1

2 j [k,k+1].
Based on the good localization properties, we can

warranty that the synthesis information around eachx0 is
practically determined by the waveletsψ jk of its around.
More precisely, beingk j(x0) = [2 jx0], for each j, where
[ · ] is the floor function, we have the punctual synthesis of
the signalsby the approximation formula (3)

s(x)∼= ∑
j∈Z

kj (x0)+1

∑
k=kj (x0)−1

〈s,ψ jk〉 ψ jk(x) (5)

centered nearx0.
It is worth noting that the properties ofs in x0, such as

regularity and some kind of singularities, are
characterized by the wavelets localized in theinfluence
coneof x0 defined by

Q(x0) = {( j,k) / |k2− j − x0|< 1} (6)

that generates the sequences

sj(x) = ∑
|k2− j−x0|<1

〈s,ψ jk〉 ψ jk(x) (7)
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convergent tox0, for more details see [10].
In frequency domain, the|ψ̂α(ω/2 j)| have compact

support, determined by a smooth window function.
The wavelets transform are well localized on the two-

sided frequency band

Ω j =
{

2 j(π −α)≤ |ω | ≤ 2 j+1(π +α)
}
. (8)

In contrast, they are not pointwise localized at any
frequencyω ∈ Ω j . Consequently, the wavelet coefficients
(4) only give time-scale and not time-frequency
information.

Suppose that at a levelj we haveM coefficientsc jk of
the signal and

sj (x) =
kM

∑
k=k1

c jk ψ jk(x). (9)

Then its associated Fourier transform is

ŝj(ω) = 2− j/2 ψ̂α(ω/2 j)
kM

∑
k=k1

c jk e−i2− j ωk

= 2− j/2 |ψ̂α(ω/2 j)|
kM

∑
k=k1

c jk e−i2− j ω(k+1/2). (10)

Note that the last factor of (10) is a discrete Fourier
transform that can give precision inM frequencies and,
by design|ψ̂α(ω/2 j)| is almost one, then the formula
(10) could be considered as a local time-frequency
transform at levelj.

This idea is not practical unless the frequencies are
precisely defined and the transformation is properly
formalized.

2.2 Local energy profiles

In numerical signal processing, only a finite number of
scalesj are available for the analysis. In this case, it will
be only possible to estimate local and specific properties
from the wavelet coefficientsc jk, (4).

In this subsection we define a tool that allows us to
analyze, in a network of points, the energies of its
neighborhoods, summarized in successive levels.

Let jmax the highest level compatible with the
sampling frequency containing significant information.
For eachxk = x jmax,k and j < jmax we define thelocal
energy profileby the expression

E( j,xk) =
jmax

∑
l= j

kl (xk)+1

∑
k=kl (xk)−1

|clk|2. (11)

Thus, decreasing successions are obtained

E( j −1,xk)≥ E( j,xk)≥ E( jmax,xk).

The analysis enables us to extract information about
specific and local events.

2.3 Wavelet Packets

The wavelet transform is a time-scale technique that
allows to extract and classify the information of interest
from the coefficients of the expansion. It is particularly
appropriate for detecting and characterizing singularities,
or local and oscillating events. In this sense it is more
efficient than the local Fourier analysis, see [6,11,12,21].

In addition, wavelets well localized in time, are not
nearly-monochromatic functions, i.e., its Fourier
transforms are not associated with a specific frequency.
For this reason the atomic wavelet decomposition does
not synthesize properly the information refered to the
harmonic patterns that coexist with local events ([9,12,
13]). In the same analytical context, it is possible to refine
the decomposition scheme enabling better frequency
resolution. The elementary functions associated with
these refined schemes are calledwavelet packets.

There are several packets families in the literature, see
[9,11,13]. In general, wavelet packets are elementary
functions generated by appropriate linear combination of
the wavelet basis functions. In particular, we are
interested in functions

θλ (x) = ∑
( j ,k)∈Π

bλ , j ,kψ jk(x) (12)

whereΠ is a subset of indexes, such that

θ̂λ (ω) = 2− j/2 |ψ̂(ω/2 j)| ∑
( j ,k)∈Π

bλ , j ,ke−i ω(2k+1)/2 j+1

are punctually localized in some frequencyωλ .
Previously, for certain applications, we have developed

and implemented packets of orthogonal wavelets from the
application of Fourier matrices to the wavelets, [15,16].

This is the starting point for the design of the
modulated wavelet packets that support current
time-frequency techniques.

2.3.1Trigonometric wavelet packets

We consider again the orthogonal waveletψα defined in
(2), localized on the two-side band, smooth and with fast
decay. Its Fourier transform

ψ̂α(ω) = |ψ̂α(ω)| e−i ω/2 (13)

is concentrated in the bandπ ≤ |ω | ≤ 2π and its module
is almost constant in this interval.

Given a signals, through a recursive algorithm, we
compute the coefficients (4) and its projections in the
wavelet subspaceWj = {ψ jk,k∈ Z}:

sj(x) = ∑
k∈Z

c jkψ jk(x). (14)

On the other hand,

ŝj(ω) = 2− j/2 |ψ̂α(ω/2 j)| ∑
k∈Z

c jk e−i ω(2k+1)/2 j+1
. (15)
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In particular, the functions(x) = e−iωλ x has nonzero
projection inWj , in the distributional sense, if and only if
ωλ ∈ Ω j , defined in (8).

Then, sice the wavelet coefficients are

〈e−iωλ .,ψ jk〉= 2− j/2|ψ̂α(ωλ/2 j)|ei ωλ (2k+1)/2 j+1

it results that

ŝj(ω) = 2− j/2 |ψ̂α(ωλ/2 j)| ∑
k∈Z

e−i (ω−ωλ )(2k+1)/2 j+1

is punctually localized inω0 = ωλ/2 j , analogously to the
FFT.

This suggests the design of elementary functions or
trigonometric wavelet packets from sines and cosines of
appropriate frequencies.

2.3.2 Generating Functions

Our strategy is to design elementary spanning functions in
the subspaceW0. Its translations and scaling span frames
for each subspaceWj .

For each m ≥ 1, we define the characteristic
frequencies:

ωmh= π +
2hπ
2m ; 0≤ h≤ 2m−1 (16)

and consider the 2m×2m orthogonal Fourier matrices

Fm =




· · · 2−m/2 sin[ωm0(k+1/2)] · · ·
...

...
...

· · · 2(1−m)/2 cos[ωmh(k+1/2)] · · ·
· · · 2(1−m)/2sin[ωmh(k+1/2)] · · ·
...

...
...

· · · 2−m/2 cos[ωm2m−1 (k+1/2)] · · ·




(17)

with −2m−1 ≤ k≤ 2m−1−1, 0≤ h≤ 2m−1.

Without lost of generality, we considerj = 0 and the
corresponding subspaceW0. For m≥ 0, 0≤ l ≤ 2m− 1,
we denoteFm(l ,k) the elements of the matrix (17), then
the elementary functions defined by

θm,l (x) =
2m−1−1

∑
k=−2m−1

Fm(l ,k)ψα (x− k), (18)

are localized in the time interval[−2m−1,2m−1].
Based on the matricesFm and waveletsψα properties,

we can conclude that the families{θm,l , 0 ≤ l ≤ 2m− 1}
constitute an orthonormal basis ofW0 for eachm≥ 1 and
its Fourier transform

θ̂m,l (ω) = |ψ̂α(ω)|
2m−1−1

∑
k=−2m−1

Fm(l ,k)e
−iω(k+1/2) (19)

are well localized in the two-side frequency band
Ω0 = {π −α ≤ |ω | ≤ 2π +2α}. Moreover, the functions
(19) are well localized inωmh, i. e., the characteristic
frequencies defined in (16).

However, these transforms do not have an appropriate
decay and present undesirable sidelobes.

For this reason, we consider the Dirichlet’s kernel of
orderM = 2m−p with p< m and its 2p powers,p∈N0:

DM(ω) = 1+2
M

∑
n=1

cos(nω) =
sin((M+1/2)ω)

sin(ω/2)
(20)

designing appropriate normalized weightsµ (p)
mk , we define

the elementary functions:

θ (p)
m,l (x) =

2m−1−1

∑
k=−2m−1

µ (p)
mk Fm(l ,k)ψα (x− k) (21)

or in the frequency domain

θ̂ (p)
m,l (ω) = |ψ̂α(ω)|

2m−1−1

∑
k=−2m−1

µ (p)
mk Fm(l ,k)e

−iω(k+1/2). (22)

2.3.3 Modulated Packet Frames

From (21), and fixingm, p such that 0≤ p < m, in each
subspaceWj , we generate the family ofmodulated wavelet
packets

{θ (p)
m,l , j,n(x)=2 j/2θ (p)

m,l

(
2 jx−n

)
, 0≤ l ≤ 2m−1,n∈ Z}. (23)

The parametern indicates the translations of 2m wavelets
ψ jk involved in each packet. More precisely, the range
n−2m−1 ≤ k≤ n+2m−1−1 corresponds to the 2m

successive wavelets immersed in the functionθm,l , j ,n.
In each subspaceWj the family (23) is over complete.

Moreover, constitutes a Parseval frame of the subspace
Wj , [11,21]. Therefore, an appropriate structure is
necessary to ensure an efficient implementation and stable
reconstruction formulae.

Then, ifsj ∈Wj ,

sj(x) = ∑
l ,n

< s(x),θ (p)
m,l , j ,n > θ (p)

m,l , j ,n(x) (24)

the packets coefficients are calculated from the wavelet
coefficients (4) by

< s(x),θ (p)
m,l , j ,n >=

2m−1−1

∑
k=−2m−1

µ (p)
mk Fm(l ,k)c jk+n. (25)

Note that the new wavelet coefficients (25) are discrete
convolutions of the original wavelet coefficients and the
result of refinement schemes in frequency, in each space
Wj .
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The parameterm determines 2m−1 + 1 characteristic
angular frequencies in the interval[π ,2π ]2 j and can be
chosen for each levelj, according to the needs of the
analysis. Usually in the applications we takem= 4,5,6
specifying in this way 9,17,33 characteristic angular
frequencies, respectively. The other parameter could be
chosen asp= 2 or p= 4, obtaining very good frequency
resolution.

Furthermore, the functionsθ (p)
m,l , j ,n are well localized in

the temporal interval

Xm, j ,n =

[
1
2 j (n−2m−1),

1
2 j (n+2m−1)

]
(26)

and pointwise localized around the center[ n
2 j ]. Its Fourier

transformsθ̂ (p)
m,l , j ,n are located in the bilateral frequency

band (8). More precisely, around the frequencies:

ωm, j ,h = 2 jωmh (27)

and decay like the 2p power of the kernel (20), i.e.,
(DM(ω))2p

.
An efficient signal representation tool is thus achieved

as a superposition of waves associated to a defined
frequency.

3 Experimental results. EEG time-frequency
analysis

Interictal events are epileptiform discharges that can be
observed between seizures, during record of the brain
electrical activity of epileptic patients.

The International Federation of Societies for
Electroencephalography and Clinical Neurophysiology
(IFSECN) define: “Epileptiform patterns (epileptiform
discharge or activity): transients distinguishable from
background activity, with a characteristic spiky
morphology, typically, but neither exclusively nor
invariably, found in interictal EEGs of people with
epilepsy”, [14]. Each type of event is usually depicted in
terms of its morphological characteristics, such as
amplitude, duration, sharpness, and emergence from its
background. The detection of these patterns, as well as
the beginning and the propagation of the seizure between
EEG channels, collaborate in the process of localization
of the seizure focus in the brain.

In this section we apply the signal representation tools
developed previously in the processing of EEG signals
corresponding to electroencephalograms taken with deep
implantation electrodes. This type of studies is only
carried out in patients who are candidates for surgery to
remove the epileptogenic focus. We show the
performance of this methodology in detection and
classification of different types of events:spike, sharp
waves and“spike and wave”.

Figure 2(a) shows a typical electroencephalographic
recording, corresponding to one of the 17 channels, with

N = 219 data and sampling frequencyν = 200 Hz.
According to the specialist, there are several events
mentioned above immersed in this signal. Figure2(b)
shows its corresponding power spectrum. We can see that
the relative information is in the spectral band of less than
40 Hz. The frequency peak observed at 50 Hz
corresponds to an artifact generated by the alternating
current present in the electric power supply in the data
acquisition process.

Fig. 2: (a) Typical EEG signal. (b) Its module Fourier transform.

The wavelet analysis is applied between levels
j = −11 and j = −2. The energy distribution is shown in
Table 1. We can observe that its energy is practically
localized on levelsj = −6,−5,−4, corresponding to the
frequency band [1.5625,12.5000] Hz.

Table 1: Energy distribution corresponding to one of the EEG
signal channel

level j energy % frecuency band Hz

-11 0.06 [ 0.0488, 0.0977 ]
-10 0.12 [0.0977, 0.1953 ]
-9 0.20 [ 0.1953, 0.3906]
-8 0.94 [ 0.3906, 0.7813]
-7 6.22 [0.7813, 1.5625]
-6 23.40 [1.5625, 3.1250]
-5 54.26 [ 3.1250 6.2500]
-4 13.72 [ 6.2500, 12.5000]
-3 0.64 [ 12.5000, 25.0000]
-2 0.21 [25.0000, 50.0000]
-1 0.00 [50.0000, 100.0000]

3.1 Spike detection

In Figure 3(a) we can see the temporal interval [1570,
1610] sec of the EEG signal, where the specialist

c© 2019 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


10 M. Fabio, R. Sirne: Time-frequency techniques using band limited...

detected, for instance, six spike events (marked with
arrows), i. e., transients clearly different from background
activity, with pointed peak at a conventional paper speed
or time scale, and a duration from 20 to under 70 msec,
[14]. The local energy profiles defined in (11) allow us to
clearly localize this type of event, see Figure3(b). Finally,
to complete the analysis, modulated wavelet packets
defined in subsection (2.3.3) are used on levelj = −4,
with (m, p) = (5,3), obtaining very good frequency
resolution. The resulting dominant frequencies are
displayed on the Figure3(c).

Fig. 3: (a) EEG signal in the temporal range [1570, 1610] sec and
spikes detection. (b) Local energy profile on levelsj = −4,−3,
(c) Representation of the dominant frequencies on levelj =−4.

We consider another portion of the same signal lasting
6 seconds, where the specialist detected multiple spike
complex or a train of spikes (marked with arrows), see
Figure 4(a). Similar results were obtained. The local
profile on levels j = −4,−3 and the result of the
application of modulated wavelet packets, with
(m, p) = (5,3), can be seen in the Figure4(b-c)
respectively.

3.2 “Spike and wave” detection

An “spike and wave” event is a pattern consisting of a
spike followed by a slow wave, [14]. In this case we
consider a section of the same signal in which the
specialist detected a train of spike and wave, see Figure
5(a). Figure 5(b) shows the local profile at
j =−5,−4,−3. The application of wavelet packets allow
us to characterize the dominant frequencies on levels
j = −4,−3, (m, p) = (5,3), as seen in Figure5(c-d). We
observe how these packets can distinguish frequency
details in each scalej and its temporal variations with
high precision.

Fig. 4: (a) EEG signal in the temporal interval [1073, 1079]
sec and spikes detection. (b) Local energy profile on levelsj =
−4,−3. (c) Representation of the dominant frequencies on level
j =−4.

Fig. 5: (a) EEG signal in the temporal range [1299.5, 1304.5]
sec and a train of “spike and wave” detection. (b) Local energy
profile on levesj = −4,−3. (c) Representation of the dominant
frequencies on levelj =−4. (d) Representation of the dominant
frequencies on levelj =−3.

3.3 Sharp wave detection

A sharp wave is a transient, clearly recognizable from
background activity, with pointed peak at a conventional
paper speed or time scale, and duration of 70±200 msec,
[14].

A similar analysis in the temporal range [220, 229] sec
is performed and the results are shown in the Figure6.

c© 2019 NSP
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Fig. 6: (a) EEG signal in the temporal range [220, 229] sec
with sharp wave detected. (b) Local energy profile on levels
j = −4,−2. (c) Representation of the dominant frequencies on
level j =−4.

3.4 Spike vs “spike and wave” detection

Finally, we consider a new segment of the same EEG
signal, in the temporal interval [1305, 1314] sec, in which
the specialist detected two spikes (marked with arrows)
and three “spikes and wave” (marked with ellipses), see
Figure7(a).

Fig. 7: (a) EEG signal in the temporal range [1305, 1314] sec
with spikes and “spike and wave” detected. (b) Local energy
profile on levelsj =−4,−3. (c) Representation of the dominant
frequencies on levelj =−4.

In Figure7(b) the local profile on levelsj = −4,−3
can be observed. In it, four events of similar structures are

distinguished. Two of them have been marked by the
specialist as spikes. The rest other transient wave
recognized as “spike and wave”, are also characterized in
the profile as lower than previous peaks. Once again, we
observe that these packets can distinguish frequency
details in scalej = −4 and its temporal variations with
high precision, see Figure7(c). In this case,we choose
(m, p) = (4,2).

4 Conclusions

The electroencephalogram is a traditional procedure to
investigate the abnormal functioning of the brain activity.
Particularly long-term EEGs with depth electrodes are
part of the studies carried out in some epileptic patients
resistant to drugs that are candidates for surgical removal
of the epileptogenic focus. The analysis of the signal of
the different EEG channels: detection of epileptic events,
paroxysms, beginning of the seizures and their
propagation among the EEG’s channels, provide
important information needed to identify the epileptic
focus in the brain.

In this work we have proposed a method to detect
different interictal epileptic events in EEG recordings
based mainly on a band limited wavelet and modulated
wavelet packets representation. We emphasized the
approach on modulated wavelet packets due to its
notorious efficiency extracting features from
non-stationary signals, allowing simultaneous analysis in
time and frequency domains. At the same time
implementing local profiles allow us to accurately detect
the temporal location of events. The method was applied
to real clinical EEG data of epileptic patients. The
promising results suggest that this processing approach in
both, temporal and frequency domains can be a real help
to identify fast EEG transients.

Finally, we hope that these new developments can be
adapted to help solve the epileptic seizure prediction
problem.
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