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Abstract: In disaster monitoring, Unmanned Aerial Vehicles (UAVs) are becoming more suitable than earth observing satellites
and manned helicopters, especially in emergent situations. However, decisions must be made as to which attributes the UAV must
possess when developing new models. Combined with NOLH experiment design and multi-agent simulation (MAS) technology, a new
architecture evaluation method, termed Rough Set Based Fuzzy Neural Network (RSBFNN), is proposed to simulate and analyze both
the UAV attributes and desired effectiveness. Experimental results show that this method is very dependable when comparing predicted
and actual responses and yields better performance than other models. This method best fits the design of the disaster monitoring UAV,
and can be used to perform a series of dynamic trade studies, in which various architecture alternatives are examined andcompared.
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1 Introduction

In recent years, the outbreak frequency and scale of
natural or accidental disasters have been significantly
larger than usual [1]. In China, there have been more than
one million casualties and up to hundreds of billions of
dollars in economic losses caused by natural disasters,
accidental disasters, and public emergencies every year.
Disaster monitoring is of great importance in preparing
for the deployment of rescue operations and
reconstruction in stricken areas after a disaster occurs [2,
3,4]. Unmanned Aerial Vehicles (UAVs) are more
suitable for disaster monitoring than earth observing
satellites and manned helicopters, particularly in
emergent situations [5]. After decades of development,
the UAV is relatively mature from a technical standpoint,
with advantages such as low cost, ease of manipulation,
high agility, and adaptability. Additionally, the UAV can
carry important equipment to complete certain special
tasks from the air, such as aerial surveillance, aerial
propaganda, or emergency rescue. The UAV has already
played a critical role in dealing with natural disasters,
accidents, and public security events. This paper focuses
on the use of Unmanned Aerial Vehicles for disaster

monitoring. In the process of UAV concept design,
finding the ideal methods to vary parameters of system
architectures and compare competing solutions through
modeling and simulation is an urgent problem that must
be solved.

Multivariate regression has been used to express the
relationships between a product’s physical parameters and
the subsequent responses [6,7,8], but it is inadequate to
capture relationships, because the approach assumes
linearity, making it inappropriate to analyze engineering
data that contain large amounts of noise. Soft computing
is probably the most appropriate way to identify nonlinear
relationships between the design parameters of a product
and the results. Recently, the use of soft computing
techniques to map responses to design parameters has
emerged as a substantial field of research. Soft computing
is a collection of fuzzy logic, neurocomputing,
evolutionary computing, and probabilistic computing; the
aim is to exploit the tolerance for imprecision and
uncertainty, in order to achieve tractable, robust, and
low-cost solutions [9]. There have been many successful
examples of the use of soft computing techniques in
engineering design using fuzzy rule-based models [10,11,
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12], rough sets [13,14,15], neural networks [16,17,18],
and association rule mining [19].

Among the classical simulation data analysis and
alternative evaluation methods, fuzzy logic is easy to
understand, and the neural network is better suited to
adaptive learning [20]. Fuzzy methods are suitable under
incomplete data conditions and require fewer
observations than other models. Fuzzy theory [21,22] was
originally developed to deal with problems involving
linguistic terms and has been successfully applied to
financial time series forecasting [23,24]. In contrast to
traditional model-based methods, ANNs are data-driven,
self-adaptive methods, in that there are fewa priori
assumptions made about the models for the problems
being studied. They learn from examples and capture
subtle functional relationships among the data, even if the
underlying relationships are unknown or are hard to
describe. Despite the advantages of ANNs, however,
these models have some weaknesses. The most important
of these is data limitation. No definite rule exists for the
sample size requirement of a given problem. The amount
of data for network training depends on the network
structure, the training method, and the complexity of the
particular problem or the amount of noise in the data at
hand [25]. Recently, more hybrid models have been
proposed using ARIMA, Artificial Neural Networks, and
fuzzy logic with good prediction performance. Many
studies have also reported the development of a number
of hybrid models that integrate fuzzy techniques with
forecasting methods, in order to improve accuracy. Chang
et al. [26], developed a hybrid model by integrating the
Self Organization Map neural network, GAS and a fuzzy
rule base to forecast the future sales of a printed circuit
board factory. Lin and Cobourn [27] combined the
Takagi–Sugeno fuzzy system and a nonlinear regression
model for time series forecasting. Pai [28] proposed a
hybrid ellipsoidal fuzzy system for a time series
forecasting model, in order to forecast regional electricity
loads in Taiwan. Huarng and Yu [29] described a
combined methodology using neural networks to forecast
fuzzy time series.

Currently, the problem of how to combine the
strengths of fuzzy and neural networks technology, in
order to improve learning and expressing abilities, is a
subject of great concern. The fuzzy neural network is a
new technology in this context; it brings together the
advantages of neural networks and fuzzy systems. The
basic point of the fuzzy neural network is to deal with
uncertain fuzzy systems, artificial neural network
connective structure, and learning methods to make a
fuzzy neural network with the combined capabilities of
fuzzy expression, adaptive learning, and distributed
information processing. However, the fuzzy neural
network has not yet been formed into a unified theoretical
system and requires further study. For one thing, the
learning process may bring a large computation load,
owing to the overly complex network structure.
Additionally, the construction of network structure

demands a vast expert knowledge of the field. In data
mining, the source for knowledge acquisition is
important, as well as its representation, its method for
reasoning, and its decision-making method for large
numbers of observations and experimental simulation
data. This is particularly true for inaccurate and
incomplete data or data with no prior knowledge. Rough
set theory and the fuzzy neural network have become
important research tools in this field [30].

In this paper, we combine rough set theory and fuzzy
neural network technology, use the indiscernibility
relation and knowledge reduction of rough set to
streamline a simplified rule from a large number of
original data, establish the fuzzy neural network model
and determine the connection between the hidden layer
nodes, which can give the network a good topology from
the outset and thus greatly reduce the complexity of the
network. ThisRough Set BasedFuzzy Neural Network
(RSBFNN) displays quick learning and strong fault
tolerance abilities, and, furthermore, the model is
interpretable. The remainder of this paper is organized as
follows. Section 2 provides the general framework of the
RSBFNN, along with the algorithm of the proposed
method. In Section 3, a case study for UAV system
architecture evaluation is presented. Finally, Section 4
concludes the paper and presents future work.

2 RSBFNN Algorithmic Method

2.1 The general framework of the method

The basic idea of UAV system architecture evaluation
based on the RSBFNN method is specified as follows.
The architecture representation is used to structure the
modeling and simulation environment, which consists of
agent-based models created in a multi-agent simulation
(MAS) tool. A design of experiments (DoE) is then
wrapped around the MAS model, in order to obtain a
representative sampling of the multi-dimensional design
space. This DoE and MAS tool provides the necessary
data to create a series of decision rules for each of the key
responses, with respect to the varied inputs in the actual
model.

Firstly, the simulation output data stored in the
database is preprocessed, and the missing data is filled in
or the invalid data is removed to obtain the original data
decision table. Next, the original data is discretized and
normalized to obtain the minimum set of rules covering
the original decision sample characteristics with the
greatest degree of completeness, using rough set attribute
reduction. Finally, the initial fuzzy neural network
topology is determined and the network structure with the
test data is trained and adjusted to get a comprehensive
evaluation model with the optimal structure. The overall
flow chart of the RSBFNN to UAV architecture evaluation
is shown in Fig.1.
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Fig. 1: The RSBFNN overall flow chart

2.2 Rough set representation

2.2.1 UAV architecture definition

UAV architecture can be defined as:

S(U,A,V, f ) (1)

whereU is a non-empty set of alternatives,A is a set of
non-empty attributes of a selected configuration,V is the
range of α, α ∈ A, and f is an information function,
f : U → Vα , giving each attribute of each object an
information value, whereα ∈ A, x∈U , f (x,a) ∈Vα .

The decision table for UAV system architecture is
defined as follows:

S= (U,A∪{d},V, f ) (2)

whereU , A, V, and f have the same meaning as the UAV
architecture model, and{d} is a decision attribute.

Therefore, designers can get{d} attribute values from the
DoE result of the interested attribute range.

2.2.2 The Upper and Lower Approximation of UAV
architecture

In the UAV architecture model, each attribute subsetM ⊆
A, IND(M) expresses the meta-relationship between any
two alternatives, called indiscernible relations, which are
defined as follows:

IND(M) = {(x,y) ∈U ×U |∀α ∈ M,α(x) = α(y)} (3)

where,M ⊆ A (M is a subset of the entire attributeA), and
X ⊆U (X is a subset of all optional alternatives,U).

For X, the upper and lower approximation ofM is
defined as:

MX = ∪{Y ∈U/IND(M)|Y ⊆ X} (4)
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M̄X = ∪{Y ∈U/IND(M)|YIX 6= /0} (5)

As seen from the definitions, for the selected
architecture alternativesM, the lower approximation
represents the minimum optional architecture alternatives
set similar toM and the upper approximation represents
the maximum optional architecture alternatives set similar
to X.

2.2.3 The division matrix and division function in UAV
architecture alternatives

The division matrix of selected attributesM in the
configuration decision tables is defined as follows:

(Ci j ) = {α ∈ M|α(xi) 6= |α(x j)} for i, j = 1,2, . . . ,n
(6)

The division function is defined as follows:

f (M) =∏ ∑
(x,y)∈U×U

α(x,y) (7)

The division matrix and division function are used to
infer the smallest reduction, which is a small subset of the
attributes that can reflect implicit relationships in the
selected configuration decision tables.

2.3 Discretization with FCM

We use theFuzzy C-Meansmethod to discrete the
continuous data. The definition ofFCM is summarized as
follows [31]:

X = {x1,x2, . . . ,xn}, sampling set of an attribute;
x j = (x j1,x j2, . . . ,x jk), j-th k-dimensional vector of
each attribute;
c, the number of clusters that are specified;
vi , the center of thei-th cluster;

vi =

n
∑
j=1

(ui j )
qx j

n
∑
j=1

(ui j )q
(8)

V = (v1,v2, . . . ,vc), center vector composed of a
cluster center;
q real number greater than 1;
ui j , weight index, which controls the fuzziness of the
attribute clustering;
ε, termination condition determined by the
engineering staff;
||x j − vi ||

2, Euler distance ofj-th attribute and the
cluster center

The definition of the membership function of each
attribute vector to each attribute cluster:

ui j =

[

1
||xj−xi ||2

]1/(q−1)

c
∑

k=1

[

1
||xj−xk||

2

]1/(q−1)
(9)

In the process of discretization of continuous data, the
minimal value of the following objective function is
required:

Jq(ui j ,vk) =
n

∑
j=1

c

∑
i=1

(ui j )
q||x j − vi||

2;c≤ n (10)

The application procedures are summarized as follows:

Step 1:Determine the target that needs to be analyzed
and the related attributes that need to be discretized.
Step 2: Determine a set of sampling point of the
attributesX = {x1,x2, . . . ,xn} and j-th k-dimensional
vector of each attribute sampling point.
Step 3: After discretization of the configuration
attributes, allocate the values ofc, q andε.
Step 4: Initialize the membership function matrixu0

i j ,
which represents the distance of each configuration
attribute point to the initial cluster center.
Step 5: Useu0

i j andvi to upgrade the center of each
configuration property cluster.

Step 6: Calculate u(L+1)
i j , which represents the

relationship of each configuration attribute point to its
center.
Step 7: If max

[

||u(L)i j −u(L+1)
i j

]

≤ ε, then stop

iteration, otherwise return to step 5.

2.4 T-S modeling

Let the inputsx = [x1,x2, . . . ,xn]
T . xi is the set of fuzzy

linguistic variables, set asT(xi) = {A1
i ,A

2
i , . . . ,A

mi
i },

i = 1,2, . . . ,n. Where Asi
i (si = 1,2, . . . ,mi ) is the si-th

linguistic variable values ofxi , which is a fuzzy set
defined on the universe of discourse, the corresponding
membership is uAm

I
. Let the output vector,

y = [y1,y2, . . . ,yn]
T ; then the Takagi–Sugeno model [32]

is:

Rj : if
(

x1 is A
s1 j
1

)

and
(

x2 is A
s2 j
2

)

and . . .

and
(

xn is A
sn j
n

)

then

{

y1 j = p1
j0+ p1

j1x1+ . . .+ p1
jnxn

yk j = pr
j0+ pr

j1x1+ . . .+ pr
jnxn

(11)

yk =
m

∑
j=1

a jyk j
/

m

∑
j=1

a j =
m

∑
j=1

ā jyk j (12)
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Fig. 2: The structure of FNN

where,Rj is the j-th fuzzy rules;
a j = µs1 j

A1
(x1) ∧ µs2 j

A2
(x2) ∧ . . . ∧ µsn j

An
(xn), ∧ is fuzzy

computing which requires a small operation:

ā j = a j
/

∑m
j=1a j , j = 1,2, . . . ,m, m ≤

n
∑

i=1
mi ,

k= 1,2, . . . , r.

2.5 Construction of the FNN

According to the Takagi–Sugeno model, the network
structure can be designed as shown in Fig.2. The network
has five layers.

Layer 1: Each nodeI in this layer is adaptive with a
note function, which is the membership functionµsi

i ,
through which input components belong to each
linguistic variable value fuzzy set. Membership
functions can be any type of appropriate
parameterized membership function, such as when to
the Gaussian function, the output of this layer, is

O1
isi
= µsi

i (xi) = e
− 1

2

(

xi−cisi
σisi

)2

(13)

where,xi input variables;
s1 = 1,2, . . . ,mi , i = 1,2, . . . ,n, mi is fuzzy partition
number ofxi ; {cisi ,σisi} is a parameter set. When the
values of these parameters change, the Gaussian
function will change; this shows the different forms of
membership functions of fuzzy sets. The parameter in
this layer is the premise parameter.
Layer 2: Each node output of this layer represents the
incentive intensity of the rule, the rule node will
perform a fuzzyAND operation, the output is:

O2
j =min{O1

1s1 j
,O1

2s2 j
, . . . ,O1

nsn j
}

=min{µs1 j
1 ,µs2 j

2 , . . . ,µsn j
n } (14)

j = 1,2, . . . ,m, m=
n
∏
i=1

mi .

Layer 3: The j-th node of this layer calculates ratios of
incentive intensity of thej-th rule divided by the whole
incentive intensity of all the rules, which is the output
of this layer, also known as the normalized incentive
intensity.

O3
j = O2

j

/

m

∑
j=1

O2
j , j = 1,2, . . . ,m (15)

Layer 4: Each node in this layer is an adaptive node
that has node function. The output is:

O4
j =

m

∑
j=1

yk jO
3
j ,k= 1,2, . . . , r (16)

The parameter{pk
ji} in yk j is a parameter set of this

node. Parameters in the layer are conclusion
parameters.
Layer 5: This layer calculates the sum of all the signals
as the total output.

O5
j =

r

∑
k=1

O4
k,k= 1,2, . . . , r (17)

2.6 Learning algorithm of the neural network

In this paper, the learning algorithm of neural networks
is the gradient descent of the BP algorithm [33]. Let the
residual of cost function be:

E =
1
2

R

∑
r=1

(Y− y)2 (18)

where,R is the number of learning samples,Y is system
expected output value, andy is the actual output value of
the network.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1460 Z. Li et. al.: Study on the Evaluation of UAV Disaster Monitoring...

Train the connection powerW1m between the forth and
the fifth layer through the BP algorithm, and the center
Ci j of the membership function and the widthσ2

i j , and the
specific learning algorithm is:

∂E
∂wlm

=
∂E
∂y

∂y
∂wlm

=−(Y− y)g(4)m (19)

δ (4)
m =−

R

∑
r=1

∂E

∂ f (5)l

∂ f (5)l

∂g(4)m

∂g(4)m

∂ f (4)m

=
R

∑
r=1

(Y− y)wlm (20)

δ (3)
k =−

R

∑
r=1

∂E

∂ f (4)m

∂ f (4)m

∂g(3)k

∂g(3)k

∂ f (3)k

=δ (4)
m

M

∑
m=1

αlm
/

(

M

∑
m=1

αlm

)2

(21)

δ (2)
j =−

K

∑
k=1

δ (3)
k

∂ f (3)k

∂g(2)j

g(2)j (22)

∂E
∂ci j

=−δ (2)
j

2(xi − ci j )

σ2
i j

(23)

∂E
∂σi j

=−δ (2)
j

2(xi − ci j )
2

σ2
i j

(24)

The new learning algorithm with the adjusted
parameter is:

Wlm(k+1) = wlm(k)−β
∂E

∂wlm
+α∆wlm(k) (25)

ci j (k+1) = ci j (k)−β
∂E
∂ci j

+α∆Ci j (k) (26)

σi j (k+1) = σi j (k)−β
∂E

∂σi j
+α∆σk(k) (27)

In the above formula,β represents the learning efficiency,
andα represents momentum coefficient.

3 Case study

3.1 Problem description

In order to illustrate this method, a representative notional
example was created and used to execute a
proof-of-concept on the proposed process. The scenario is
summarized as follows.

The state has identified a capability gap in detecting
and monitoring widely distributed ground disasters. An
initial analysis of alternatives shows that UAVs are a
potential solution for closing this gap. However, there is
some debate over which attributes the UAV must possess.

Some believe that placing existing sensors on an
improved platform (greater speed, range, and RCS than
existing platforms) will close the capability gap. Others
believe that placing improved sensors on an existing
platform will be more effective. There is not available
funding to do both and the risk associated with
developing a new platform and new sensors has been
deemed unacceptable. A decision will have to be made as
to which technical approach is best.

3.2 Data preparation

In this typical disaster-monitoring scenario, after
comprehensively considering the technical characteristics
of the UAV monitoring system, some interesting
attributes are identified:

–Number of UAVs (Num-U)
–Sensor Angle (Sen-Ang)
–Sensor Range (Sen-Ran)
–Sensor width (Sen-Wid)
–Radar Power (Rad-Pow)
–Radar cross section (RCS)
–Speed (Spe)
–Max endurance (M-Endu)
–Maximum range (Max fly range FR)
–Maximum altitude (M-Fl-Hei)
–Weight (Weight)
–Probability of reliability (Pro-re)

Note that these simplified variables of UAVs and their
ranges were developed to create a representative example,
and were not fully developed, as they would be for an
actual program.

Table 1: Variables of UAVs and their ranges
Variable Min Max Variable Min Max
Num-U 1 12 Spe 150km/h 550km/h
Sen-Ang 90◦ 360◦ M-Endu 35min 60min
Sen-Ran 25km 90km M-Fl-Ran 200km 750km
Sen-Wid 40◦ 120◦ M-Fl-Hei 500m 2000m
Rad-Pow 3 8 Weight 80kg 200kg

RCS 1 7 Pro-re 0.8 1

We used a multi-agent simulation tool and ensured
that the model was working correctly; it was then time to
run the experiment. In the case of this paper, we examined
65 different combinations by implementing the NOLH
design [34], using the ranges of factor levels specified in
Table 1. The scatterplot matrix of Fig.3 shows the
orthogonality and space-filling properties of the NOLH
design used for the 12 variables. Although some factors
took on a limited number of discrete levels, which tends
to degrade the orthogonality, the maximum pair wise
correlation between any two columns was less than 0.1.

Based on the multi-agent modeling and simulation,
we developed software that supported the agent-based
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Fig. 3: The Scatterplot Matrix of the NOLH DoE result

 

Fig. 4: Screen Shot of the Scenario in the MAS Tool

simulation. These 65 combinations were then entered into
the multi-agent simulation tool to get the response
effectiveness, measured by the number of disaster

districts that the UAVs have monitored and detected.
Fig. 4 is a screen shot of the scenario in the MAS tool.
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Table 2: Data samples
Num- Sen- Sen- Sen- Rad- RCS Spe M- M-Fl- M-Fl- Weight Pro- Num-Det-

U Ang Ran Wid Pow Endu Ran Hei re Disa
1 9 103 48 66 4 6 469 47 733 1578 146 99 1
2 11 284 32 74 5 3 369 54 595 1883 172 90 4
3 11 187 87 58 4 6 213 46 423 1367 176 98 7
4 8 330 72 76 3 4 256 42 269 1977 189 93 8
5 11 217 37 41 3 2 250 50 535 1227 88 97 4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
61 2 132 49 54 3 5 500 44 346 1461 155 80 2
62 2 280 82 71 5 6 388 58 630 711 95 89 1
63 4 107 68 61 4 1 413 47 716 828 127 87 8
64 5 326 44 75 3 5 244 41 243 547 103 89 8
65 2 183 29 51 4 3 188 43 389 1086 101 85 1

Table 3: Information about the decision table after FCM
Num- Sen- Sen- Sen- Rad- RCS Spe M- M-Fl- M-Fl- Weight Pro- Num-Det-

U Ang Ran Wid Pow Endu Ran Hei re Disa
1 4 1 2 2 2 5 4 3 5 4 3 5 1
2 5 4 1 3 3 2 3 4 4 5 4 3 3
3 5 2 5 2 2 5 1 3 3 3 5 5 5
4 4 5 4 3 1 3 2 2 1 5 5 4 5
5 5 3 1 1 1 1 2 4 4 3 1 5 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
61 1 1 2 1 1 4 5 2 2 4 4 1 1
62 1 4 5 2 3 5 3 5 4 1 1 3 1
63 2 1 4 2 2 1 4 3 5 2 2 2 5
64 2 5 2 3 1 4 2 2 1 1 1 3 5
65 1 2 1 1 2 2 1 2 2 2 1 2 1

Table 4: Information about the decision table after reduction
Num- Sen- Sen- Sen- Rad- RCS Spe M- M-Fl- M-Fl- Weight Pro- Num-Det-

U Ang Ran Wid Pow Endu Ran Hei re Disa
1 1 2 * 2 5 4 * 5 4 * 5 1 1
2 * 5 2 2 * 1 3 3 3 5 * 5 3
3 3 * 1 1 1 2 * 4 3 * 5 3 5
4 5 2 * 2 4 1 * 5 * 3 5 2 5
5 * 3 1 2 * 5 3 * 3 2 5 4 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
46 1 5 2 * 3 1 4 1 2 4 4 3 5
47 * 1 2 1 1 4 * 2 2 4 4 * 1
48 1 4 * 2 3 5 3 5 4 1 1 3 1
49 2 5 2 3 1 4 2 2 * 1 1 3 5
50 1 * 1 1 2 2 * 2 2 2 * 2 1

3.3 Data processing

After the simulation ran of a total of 150 cases (30
repetitions for each case), the initial decision table was
configured and is shown in Table2 (only a portion of all
of the data are shown, owing to limits of paper length).

Before attribute reduction, the continuous attribute
data had to be discretized. Using the method in section 2,
the data samples were discretized into 5 clusters. The
information about the decision table after discretizationis
shown in Table3.

3.4 Attribute and value reduction

The degree of attribute dependability betweenA, andB⊆
U is defined as follows:

rB(A) =
card(POSB(A))

card(U)
(28)

POSB(A) = ∪X∈U/IND(A)B(X) (29)

c© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 3, 1455-1465 (2015) /www.naturalspublishing.com/Journals.asp 1463

Table 5: Comparison of the Out Value and Out Error between different models

Actual Value
RSBFNN BPNN FCEM SRM

Out Out Out Out Out Out Out Out
Value Error Value Error Value Error Value Error

1 4 4.300 0.075 4.500 0.125 4.450 0.113 5.050 0.263
2 6 5.700 0.050 5.860 0.023 6.320 0.053 6.330 0.055
3 2 2.500 0.250 2.630 0.315 2.800 0.400 2.940 0.470
4 8 7.500 0.063 7.520 0.060 7.750 0.031 8.710 0.089
5 4 4.400 0.100 5.010 0.253 5.500 0.375 4.650 0.163
6 8 8.400 0.050 8.620 0.077 8.540 0.067 8.780 0.097
7 4 3.700 0.075 3.950 0.013 4.400 0.100 4.050 0.013
8 2 2.400 0.200 3.220 0.610 2.500 0.250 2.650 0.325
9 6 5.800 0.033 6.220 0.037 6.300 0.050 5.830 0.028
10 8 7.900 0.013 8.240 0.030 8.410 0.051 8.340 0.043
11 2 2.600 0.300 2.510 0.255 2.200 0.100 2.650 0.325
12 1 1.200 0.200 1.120 0.120 1.050 0.050 1.120 0.120
13 8 7.500 0.063 7.530 0.059 8.320 0.040 8.370 0.046
14 8 8.200 0.025 8.670 0.084 8.230 0.029 8.540 0.067
15 1 1.300 0.300 1.550 0.550 1.450 0.450 1.330 0.330

Different attributes play different roles in the
interdependencies between condition and decision
attributes.

When a is added intoB, the attribute importance of
classificationU/IND(A) is defined as:

SGF(a,B,A) = γB(A)− γB−{a}(A) (30)

Based on attribute and value reductions, the new
decision data are created after reduction, which is
according to the Best Probability Rule, as in Table2. The
information about the decision table after reduction is
shown in Table4, which has 50 rules.

3.5 Experimental results and discussion

The data from the 50 group after reduction are divided into
two parts, one for network training (35 groups) and one
used to test the performance of the network (the last 15
groups).

Figs. 5 and 6 show the predicted outputs of the
RSBFNN models against their corresponding actual
responses. It was found that best fit lines (red lines) were
situated close to unit lines. High correlations between
actual and predicted values were observed for the models
for the number of disaster districts that the UAVs
detected. This shows that predicted responses of the
RSBFNN models have a good match with actual
responses.

We used different methods to analyze the same
simulation out data, resulting in the conclusion that the
RSBFNN algorithmic method yielded better performance
than the Stepwise Regression Model (SRM), Back
Propagation Neural Network (BPNN), and the Fuzzy
Comprehensive Evaluation Model (FCEM). The contrast
results are listed in Table5.
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Actual response 

Fig. 5: Scatter diagrams showing actual and predicted responses

 

Fig. 6: Predictions of the 15 samples from the RSBFNN model
in comparison to actual responses

Once the RSBFNN was verified to the greatest degree
possible, the inputs to the neural network could be varied
and the resulting outputs could be instantly obtained. This
allowed the attributes of disaster monitoring UAVs to be
varied to any value within the design space covered by the
RSBFNN; the results that would typically be predicted by
the agent-based model could be obtained without having to

c© 2015 NSP
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actually perform the time-consuming model execution, as
shown in Fig.7. Thus, the UAV’s developers and designers
can do a series of dynamic trade studies in which various
architecture alternatives are examined and compared.

Response

Attribute
Value

 

Fig. 7: Three Dimensional RSBFNN Model

4 Conclusion

This paper proposed a new fuzzy neural network based on
rough set theory, which combines the advantages of the
rough set theory and fuzzy neural networks. Taken
together with NOLH experimental design and multi-agent
simulation technology, the simulation output data can be
effectively processed. Attribute reduction and rule
extraction using rough set theory can take full advantage
of the characteristics of the sample data, so that the
network structure has good initial topology. This method
can greatly reduce the size of the network and provides a
great deal ofa priori knowledge based on rough set
theory to the initial weights set of fuzzy neural network,
making the system error very small at the beginning.
Simulation experiments proved the feasibility of this
approach and the high practical value in UAV architecture
evaluation and simulation data mining.
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