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Abstract: In disaster monitoring, Unmanned Aerial Vehicles (UAVsg drecoming more suitable than earth observing satellites
and manned helicopters, especially in emergent situatidogever, decisions must be made as to which attributes fé raust
possess when developing new models. Combined with NOLHrewrpat design and multi-agent simulation (MAS) technolagpew
architecture evaluation method, termed Rough Set Basery/Meural Network (RSBFNN), is proposed to simulate andyzeboth

the UAV attributes and desired effectiveness. Experimieatailts show that this method is very dependable when congppredicted
and actual responses and yields better performance thanrotdels. This method best fits the design of the disasteitonioy UAV,

and can be used to perform a series of dynamic trade studieiich various architecture alternatives are examinecdcantpared.

Keywords: Disaster Monitoring, UAV, System Architecture, MAS, Rought, Fuzzy Neural Network

1 Introduction monitoring. In the process of UAV concept design,

finding the ideal methods to vary parameters of system
rchitectures and compare competing solutions through
odeling and simulation is an urgent problem that must
e solved.

In recent years, the outbreak frequency and scale o
natural or accidental disasters have been significantl;b
larger than usuall]. In China, there have been more than
one million casualties and up to hundreds of billions of
dollars in economic losses caused by natural disasters, Multivariate regression has been used to express the
accidental disasters, and public emergencies every yearelationships between a product’s physical parameters and
Disaster monitoring is of great importance in preparingthe subsequent responsés7}8], but it is inadequate to

for the deployment of rescue operations andcapture relationships, because the approach assumes
reconstruction in stricken areas after a disaster oc@rs [ linearity, making it inappropriate to analyze engineering
3,4]. Unmanned Aerial Vehicles (UAVS) are more data that contain large amounts of noise. Soft computing
suitable for disaster monitoring than earth observingis probably the most appropriate way to identify nonlinear
satellites and manned helicopters, particularly inrelationships between the design parameters of a product
emergent situationsb]. After decades of development, and the results. Recently, the use of soft computing
the UAV is relatively mature from a technical standpoint, techniques to map responses to design parameters has
with advantages such as low cost, ease of manipulationemerged as a substantial field of research. Soft computing
high agility, and adaptability. Additionally, the UAV can is a collection of fuzzy logic, neurocomputing,
carry important equipment to complete certain specialevolutionary computing, and probabilistic computing; the
tasks from the air, such as aerial surveillance, aeriaim is to exploit the tolerance for imprecision and
propaganda, or emergency rescue. The UAV has alreadyncertainty, in order to achieve tractable, robust, and
played a critical role in dealing with natural disasters, low-cost solutions9]. There have been many successful
accidents, and public security events. This paper focusesxamples of the use of soft computing techniques in
on the use of Unmanned Aerial Vehicles for disasterengineering design using fuzzy rule-based modHs1,
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12], rough sets 13,14,15], neural networks 16,17,18], demands a vast expert knowledge of the field. In data
and association rule minind.9]. mining, the source for knowledge acquisition is
Among the classical simulation data analysis andimportant, as well as its representation, its method for
alternative evaluation methods, fuzzy logic is easy toreasoning, and its decision-making method for large
understand, and the neural network is better suited towumbers of observations and experimental simulation
adaptive learningd0Q]. Fuzzy methods are suitable under data. This is particularly true for inaccurate and
incomplete data conditions and require fewerincomplete data or data with no prior knowledge. Rough
observations than other models. Fuzzy the@¥y22l was  set theory and the fuzzy neural network have become
originally developed to deal with problems involving important research tools in this field().
linguistic terms and has been successfully applied to In this paper, we combine rough set theory and fuzzy
financial time series forecastin@3 24]. In contrast to  neural network technology, use the indiscernibility
traditional model-based methods, ANNs are data-drivenrelation and knowledge reduction of rough set to
self-adaptive methods, in that there are fewpriori streamline a simplified rule from a large number of
assumptions made about the models for the problemsriginal data, establish the fuzzy neural network model
being studied. They learn from examples and captureand determine the connection between the hidden layer
subtle functional relationships among the data, even if thenodes, which can give the network a good topology from
underlying relationships are unknown or are hard tothe outset and thus greatly reduce the complexity of the
describe. Despite the advantages of ANNs, howevernetwork. ThisRough Set BasedFuzzy Neural Network
these models have some weaknesses. The most importafRSBFNN) displays quick learning and strong fault
of these is data limitation. No definite rule exists for the tolerance abilities, and, furthermore, the model is
sample size requirement of a given problem. The amouninterpretable. The remainder of this paper is organized as
of data for network training depends on the network follows. Section 2 provides the general framework of the
structure, the training method, and the complexity of theRSBFNN, along with the algorithm of the proposed
particular problem or the amount of noise in the data atmethod. In Section 3, a case study for UAV system
hand P5]. Recently, more hybrid models have been architecture evaluation is presented. Finally, Section 4
proposed using ARIMA, Artificial Neural Networks, and concludes the paper and presents future work.
fuzzy logic with good prediction performance. Many
studies have also reported the development of a number
of hybriq models that integratg fuzzy techniques with 2 RSBFNN Algorithmic Method
forecasting methods, in order to improve accuracy. Chang
et al. [26], developed a hybrid model by integrating the
Self Organization Map neural network, GAS and a fuzzy 2.1 The general framework of the method
rule base to forecast the future sales of a printed circuit
board factory. Lin and Cobourn2f] combined the The basic idea of UAV system architecture evaluation
Takagi—Sugeno fuzzy system and a nonlinear regressiohased on the RSBFNN method is specified as follows.
model for time series forecasting. P&§ proposed a The architecture representation is used to structure the
hybrid ellipsoidal fuzzy system for a time series modeling and simulation environment, which consists of
forecasting model, in order to forecast regional eledirici agent-based models created in a multi-agent simulation
loads in Taiwan. Huarng and Yu29] described a (MAS) tool. A design of experiments (DoE) is then
combined methodology using neural networks to forecastvrapped around the MAS model, in order to obtain a
fuzzy time series. representative sampling of the multi-dimensional design
Currently, the problem of how to combine the space. This DoE and MAS tool provides the necessary
strengths of fuzzy and neural networks technology, indata to create a series of decision rules for each of the key
order to improve learning and expressing abilities, is aresponses, with respect to the varied inputs in the actual
subject of great concern. The fuzzy neural network is amodel.
new technology in this context; it brings together the  Firstly, the simulation output data stored in the
advantages of neural networks and fuzzy systems. Theatabase is preprocessed, and the missing data is filled in
basic point of the fuzzy neural network is to deal with or the invalid data is removed to obtain the original data
uncertain fuzzy systems, artificial neural network decision table. Next, the original data is discretized and
connective structure, and learning methods to make anormalized to obtain the minimum set of rules covering
fuzzy neural network with the combined capabilities of the original decision sample characteristics with the
fuzzy expression, adaptive learning, and distributedgreatest degree of completeness, using rough set attribute
information processing. However, the fuzzy neural reduction. Finally, the initial fuzzy neural network
network has not yet been formed into a unified theoreticaktopology is determined and the network structure with the
system and requires further study. For one thing, thetest data is trained and adjusted to get a comprehensive
learning process may bring a large computation loadevaluation model with the optimal structure. The overall
owing to the overly complex network structure. flow chart of the RSBFNN to UAV architecture evaluation
Additionally, the construction of network structure is shown in Figl.
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Fig. 1: The RSBFNN overall flow chart

2.2 Rough set representation Therefore, designers can det} attribute values from the

DoE result of the interested attribute range.
2.2.1 UAV architecture definition

UAV architecture can be defined as: 2.2.2 The Upper and Lower Approximation of UAV
SULAV, ) ) architecture

whereU is a non-empty set of alternatives,is a set of
non-empty attributes of a selected configurathris the
range ofa, a € A, and f is an information function,
f:U — Vg, giving each attribute of each object an

In the UAV architecture model, each attribute subdet

A, IND(M) expresses the meta-relationship between any
two alternatives, called indiscernible relations, which a
defined as follows:

information value, wherer € A, xe U, f(x,a) € V4. IND(M) = {(x,y) eU xU[Va e M,a(x) =a(y)} (3)
The decision table for UAV system architecture is i ) )
defined as follows: where M C A (M is a subset of the entire attribuAg, and
X CU (X is a subset of all optional alternativés).

S=(U,Au{d},V, ) 2 For X, the upper and lower approximation bf is

whereU, A, V, andf have the same meaning as the UAV defined as:

architecture model, andd} is a decision attribute. MX =U{Y e U/IND(M)JY C X} 4)
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MX =U{Y € U/IND(M)|Y IX # 0} (5)

As seen from the definitions, for the selected
architecture alternatived, the lower approximation
represents the minimum optional architecture alternative
set similar toM and the upper approximation represents
the maximum optional architecture alternatives set simila
to X.

2.2.3 The division matrix and division function in UAV
architecture alternatives

The division matrix of selected attributels! in the
configuration decision tables is defined as follows:

Cj)={aeMla(x)#|a(x;)} fori,j=1,2,....,n
(6)
The division function is defined as follows:
f(M)

axy) ()

(x,y)eU xU

The division matrix and division function are used to

infer the smallest reduction, which is a small subset of the

attributes that can reflect implicit relationships in the
selected configuration decision tables.

2.3 Discretization with FCM

We use theFuzzy C-Meansmethod to discrete the
continuous data. The definition BCM is summarized as
follows [31]:

X ={x1,Xo,...,%}, sampling set of an attribute;

Xj = (Xj1,Xj2,--.,Xjk), j-th k-dimensional vector of
each attribute;

¢, the number of clusters that are specified,;

Vi, the center of théth cluster;

(uij )X

M=

iy

v = (8)
(uij)d
1

J

M=

V = (vi,V,...,V¢), center vector composed of a
cluster center;

g real number greater than 1;

uij, weight index, which controls the fuzziness of the
attribute clustering;

g, termination condition
engineering staff;

||xj — vi||?, Euler distance ofj-th attribute and the
cluster center

determined by the

The definition of the membership function of each
attribute vector to each attribute cluster:

[ } 1/(a-1)

C

2|

k=1

1
X =%
Uij =

1 }1/(11—1) ©)
(1) =2

In the process of discretization of continuous data, the
minimal value of the following objective function is
required:

T ) = Jﬁliwij)qnxj —vlFe<n (10

The application procedures are summarized as follows:

Step 1:Determine the target that needs to be analyzed
and the related attributes that need to be discretized.
Step 2: Determine a set of sampling point of the
attributesX = {x1,X2,...,X} and j-th k-dimensional
vector of each attribute sampling point.

Step 3: After discretization of the configuration
attributes, allocate the values@fg ande.

Step 4:Initialize the membership function matrbﬁ,
which represents the distance of each configuration
attribute point to the initial cluster center.

Step 5: Use uioj andv; to upgrade the center of each

configuration property cluster.
Step 6: Calculate ul ™", which represents the
relationship of each configuration attribute point to its
center.

Step 7: If max[||ui<jL>—ui(jL+l>} < ¢, then stop

iteration, otherwise return to step 5.

2.4 T-S modeling

Let the inputsx = [X1,Xp,..., %] . X is the set of fuzzy
linguistic variables, set as (x) = {ALAZ...,A"},

i =12...,n. WhereA’ (s = 1,2,...,m) is the s-th
linguistic variable values of, which is a fuzzy set
defined on the universe of discourse, the corresponding
membership is Usm.  Let the output vector,
Y= [y1,Y¥2,...,¥n]"; then the Takagi-Sugeno mod&?]

is:

R :if (xl is Ai“) and (x2 is Azzj) and...

and (xn is Ana”)

y1j = P+ PhXa+ ...+ phXa
then / | ! 11
{yka Pjo+ PjiXa+ .+ PjnXn (11)
m m m _
Yo=Y ajYki/ Y aj = ajyj (12)
=1 =1 =1
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Fig. 2: The structure of FNN

where Rj is the j-th fuzzy rules;
aj = uf\ll‘ (1) A u,ii‘ (X)) Ao A u,i“n’ (Xn), A is fuzzy
computing which requires a small operation:
n

3 = a/yLa, | = 12..m m< 5m,
=
k=12,...r.

2.5 Construction of the FNN

According to the Takagi—Sugeno model, the network
structure can be designed as shown in Bigrhe network
has five layers.

Layer 1: Each nodd in this layer is adaptive with a
note function, which is the membership functipﬁ,
through which input components belong to each
linguistic variable value fuzzy set. Membership
functions can be any type of appropriate

parameterized membership function, such as when to

1 [ Xi—Cis;
2

the Gaussian function, the output of this layer, is
2
Ok =ui(x)=e ( s )
where x; input variables;
ss=212,....m,i=212...,n m is fuzzy partition
number ofx;; {Cis, i, } is a parameter set. When the

(13)

n
j=12,...,mm= [Tm.

i=1
Layer 3: Thej-th node of this layer calculates ratios of
incentive intensity of thg-th rule divided by the whole
incentive intensity of all the rules, which is the output
of this layer, also known as the normalized incentive
intensity.

m
0}=0%/y %j=12..m (15
=1

Layer 4: Each node in this layer is an adaptive node
that has node function. The outputis:

m
Of = 3 WiOf k=12....r (16)
=1

The parametef p‘j(i} in yy; is a parameter set of this
node. Parameters in the layer are conclusion
parameters.

Layer 5: This layer calculates the sum of all the signals
as the total output.

i
o?:zo4,k:1,2,...,r (17)
k=1

2.6 Learning algorithm of the neural network

values of these parameters change, the Gaussian

function will change; this shows the different forms of

In this paper, the learning algorithm of neural networks

membership functions of fuzzy sets. The parameter inis the gradient descent of the BP algorith8g][ Let the

this layer is the premise parameter.

Layer 2: Each node output of this layer represents the
incentive intensity of the rule, the rule node will
perform a fuzzyAND operation, the output is:

}

1
N&j

T Snij
=min{u;’ iy, i}

2 ; 1 1
Oj = m|n{olslj 70232j g 7O

(14)

residual of cost function be:

E—lRY 2 18
—ir;( -y) (18)

where,R is the number of learning samples,is system
expected output value, aryds the actual output value of
the network.
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Train the connection pow#Y;,, between the forthand Some believe that placing existing sensors on an
the fifth layer through the BP algorithm, and the centerimproved platform (greater speed, range, and RCS than
Ci; of the membership function and the W|d11ﬁ and the  existing platforms) will close the capability gap. Others

specific learning algorithm is: believe that placing improved sensors on an existing
platform will be more effective. There is not available

0_E_0_Eﬂ__(Y_ )l (19) funding to do both and the risk associated with

oWim 0y OWim Y)Qm developing a new platform and new sensors has been

deemed unacqeptable. A depision will have to be made as
6&4) _ R JE df 0gm E e (20) to which technical approach is best.
401 agd ot A

3.2 Data preparation

5 - i OE ofly dgk

— 3 In this typical disaster-monitoring scenario, after

£y 01 59|(< ot comprehensively considering the technical charactesisti
2 of the UAV monitoring system, some interesting
—5@ z i/ < z G|m> (21)  attributes are identified:
m=1 m=1

—Number of UAVs Num-U)
—Sensor Angle$en-Any
2 _ _ 2 —Sensor RangeSen-Rah
° zﬁ ag'? 9 22) —Sensor width $en-Wid
J —Radar PowerRad-Povy

JE  _(22(X —Gij) 23 —Radar cross sectioRCS
oo I T a2 (23)  _speed$pg
—Max enduranceNl-Endy
JE 2 2(% — cij)? —Maximum rangeax fly range FR
T TR R (24) ~Maximum altitude i/-Fi-Hei)
. ] ~Weight Weigh)

The new learning algorithm with the adjusted —Probability of reliability Pro-re)

parameteris: Note that these simplified variables of UAVs and their

F) ranges were developed to create a representative example,
W (k) (25)  and were not fully developed, as they would be for an
m actual program.

Wim(k+1) = Wim(k) —

JE
G (k1) = ¢ (k) ~ B +aaGik)  (26)
Gij . .
Table 1: Variables of UAVs and their ranges
Variable Min Max Variable Min Max
0ij(k+1) = gjj (k) - Ba— +adok(k)  (27) NumU 1 12 Spe  15Gkm/h  55&m/h
0ij Sen-Ang  90° 360° M-Endu 35min 60min
. .. Sen-Ran 25km  90km | M-Fl-Ran 200km 75km
In the above formulg3 represents the learning efficiency, Senwid 40° 120 | M-Fl-Hei 500m 2000
anda represents momentum coefficient. Rad-Pow 3 8 Weight 80Kg 200kg
RCS 1 7 Pro-re 0.8 1
3 Case study We used a multi-agent simulation tool and ensured
o that the model was working correctly; it was then time to
3.1 Problem description run the experiment. In the case of this paper, we examined

65 different combinations by implementing the NOLH

In order to illustrate this method, a representative nation design B4, using the ranges of factor levels specified in
example was created and used to execute dable 1. The scatterplot matrix of Fig3 shows the
proof-of-concept on the proposed process. The scenario isrthogonality and space-filling properties of the NOLH
summarized as follows. design used for the 12 variables. Although some factors

The state has identified a capability gap in detectingtook on a limited number of discrete levels, which tends
and monitoring widely distributed ground disasters. Anto degrade the orthogonality, the maximum pair wise
initial analysis of alternatives shows that UAVs are a correlation between any two columns was less than 0.1.
potential solution for closing this gap. However, there is Based on the multi-agent modeling and simulation,
some debate over which attributes the UAV must possessie developed software that supported the agent-based
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Fig. 3: The Scatterplot Matrix of the NOLH DoE result

Fig. 4: Screen Shot of the Scenario in the MAS Tool

simulation. These 65 combinations were then entered intalistricts that the UAVs have monitored and detected.
the multi-agent simulation tool to get the responseFig.4is a screen shot of the scenario in the MAS tool.
effectiveness, measured by the number of disaster

(@© 2015 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

1462 NS 2 Z. Liet. al.: Study on the Evaluation of UAV Disaster Monitty...

Table 2: Data samples
Num- Sen- Sen- Sen- Rad- RCS Spe M- M-FI-  M-FI- Weight Pro- Num-Det-

U Ang Ran Wid Pow Endu Ran Hel re Disa
1 9 103 48 66 4 6 469 47 733 1578 146 99 1
2 11 284 32 74 5 3 369 54 595 1883 172 90 4
3 11 187 87 58 4 6 213 46 423 1367 176 98 7
4 8 330 72 76 3 4 256 42 269 1977 189 93 8
5 11 217 37 41 3 2 250 50 535 1227 88 97 4
61 2 132 49 54 3 5 500 44 346 1461 155 80 2
62 2 280 82 71 5 6 388 58 630 711 95 89 1
63 4 107 68 61 4 1 413 47 716 828 127 87 8
64 5 326 44 75 3 5 244 41 243 547 103 89 8
65 2 183 29 51 4 3 188 43 389 1086 101 85 1

Table 3: Information about the decision table after FCM
Num- Sen- Sen- Sen- Rad- RCS Spe M- M-FI-  M-FI- Weight Pro- Num-Det-

U Ang Ran Wid Pow Endu Ran Hel re Disa

1 4 1 2 2 2 5 4 3 4 3 5 1

2 5 4 1 3 3 2 3 4 4 5 4 3 3

3 5 2 5 2 2 5 1 3 3 3 5 5 5

4 4 5 4 3 1 3 2 2 1 5 5 4 5

5 5 3 1 1 1 1 2 4 4 3 1 5 3

61 1 1 2 1 1 4 5 2 2 4 4 1 1
62 1 4 5 2 3 5 3 5 4 1 1 3 1
63 2 1 4 2 2 1 4 3 5 2 2 2 5
64 2 5 2 3 1 4 2 2 1 1 1 3 5
65 1 2 1 1 2 2 1 2 2 2 1 2 1

Table 4: Information about the decision table after reduction
Num- Sen- Sen- Sen- Rad- RCS Spe M- M-FI-  M-FI- Weight Pro- Num-Det-

U Ang Ran Wid Pow Endu Ran Hel re Disa
1 1 2 * 2 5 4 ¥ 5 4 * 5 1 1
2 * 5 2 2 * 1 3 3 3 5 * 5 3
3 3 * 1 1 1 2 * 4 3 * 5 3 5
4 5 2 * 2 4 1 * 5 * 3 5 2 5
5 * 3 1 2 * 5 3 * 3 2 5 4 3
46 1 5 2 * 3 1 4 1 2 4 4 3 5
47 % 1 2 1 1 4 * 2 2 4 4 * 1
48 1 4 * 2 3 5 3 5 4 1 1 3 1
49 2 5 2 3 1 4 2 2 * 1 1 3 5
50 1 * 1 1 2 2 * 2 2 2 * 2 1

3.3 Data processing 3.4 Attribute and value reduction

After the simulation ran of a total of 150 cases (30
repetitions for each case), the initial decision table wasThe degree of attribute dependability betwdermndB C
configured and is shown in Tab®(only a portion of all U is defined as follows:
of the data are shown, owing to limits of paper length).
Before attribute reduction, the continuous attribute ra(A) = card(POss(A)) (28)

data had to be discretized. Using the method in section 2, card(U)

the data samples were discretized into 5 clusters. The

information about the decision table after discretizatson

shown in Tables. PO%(A) = UXEU/lND(A)E(X) (29)
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Table 5: Comparison of the Out Value and Out Error between differendefs
RSBFNN BPNN FCEM SRM
Actual Value  Out Out Out Out Out Out Out Out
Value Error Value Error Value Error Value Error

1 4 4300 0.075 4500 0.125 4.450 0.113 5.050 0.263
2 6 5,700 0.050 5.860 0.023 6.320 0.053 6.330 0.055
3 2 2500 0.250 2.630 0.315 2.800 0.400 2.940 0.470
4 8 7.500 0.063 7.520 0.060 7.750 0.031 8.710 0.089
5 4 4.400 0.100 5.010 0.253 5.500 0.375 4.650 0.163
6 8 8.400 0.050 8.620 0.077 8.540 0.067 8.780 0.097
7 4 3.700 0.075 3.950 0.013 4.400 0.100 4.050 0.013
8 2 2400 0.200 3.220 0.610 2500 0.250 2.650 0.325
9 6 5800 0.033 6.220 0.037 6.300 0.050 5.830 0.028
10 8 7.900 0.013 8.240 0.030 8.410 0.051 8.340 0.043
11 2 2600 0.300 2510 0.255 2200 0.100 2.650 0.325
12 1 1.200 0.200 1.120 0.120 1.050 0.050 1.120 0.120
13 8 7.500 0.063 7.530 0.059 8.320 0.040 8.370 0.046
14 8 8.200 0.025 8.670 0.084 8.230 0.029 8.540 0.067
15 1 1.300 0.300 1.550 0.550 1.450 0.450 1.330 0.330

Different attributes play different roles in the
interdependencies between condition and decision 8
attributes. 7

When a is added intoB, the attribute importance of
classificatiorl /IND(A) is defined as:

SGH@a,B,A) = ¥8(A) — Vg (a} (A) (30)

Based on attribute and value reductions, the new
decision data are created after reduction, which is 1 z 3 ¢ 5 &5 7 5
according to the Best Probability Rule, as in TaBldhe Actual response
information about the decision table after reduction is
shown in Table4, which has 50 rules.

(e e s o)

RSBFNN output
o

o
]
|
]
|
I
|
|
|
I
|
ohm
FPTPE S QERAE 1y TR e, o e

Fig. 5: Scatter diagrams showing actual and predicted responses

3.5 Experimental results and discussion

The data from the 50 group after reduction are divided into
two parts, one for network training (35 groups) and one
used to test the performance of the network (the last 15
groups).

Figs. 5 and 6 show the predicted outputs of the
RSBFNN models against their corresponding actual
responses. It was found that best fit lines (red lines) were R S e
situated close to unit lines. High correlations between
actual and predicted values were observed for the modelsig. 6: Predictions of the 15 samples from the RSBFNN model
for the number of disaster districts that the UAVs incomparison to actual responses
detected. This shows that predicted responses of the
RSBFNN models have a good match with actual
responses.

We used different methods to analyze the same Once the RSBFNN was verified to the greatest degree
simulation out data, resulting in the conclusion that thepossible, the inputs to the neural network could be varied
RSBFNN algorithmic method yielded better performanceand the resulting outputs could be instantly obtained. This
than the Stepwise Regression Model (SRM), Backallowed the attributes of disaster monitoring UAVs to be
Propagation Neural Network (BPNN), and the Fuzzy varied to any value within the design space covered by the
Comprehensive Evaluation Model (FCEM). The contrastRSBFNN; the results that would typically be predicted by
results are listed in Tabke the agent-based model could be obtained without having to

RSBEFNN outputvs actual response

O Rk N WA U N XL
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actually perform the time-consuming model execution, ag2] Li, J.F., Xing, L.N., Integrative Forest Fire Monitogn

shown in Fig.7. Thus, the UAV's developers and designers ~ System Framework, Disaster Advances, 5(4), 726-729.
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