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Abstract: Variance components and functions thereof are important in many fields such as industry, agriculture, quantitative genetics

and animal breeding. This paper contributes to evaluating the variance components estimation approaches and assessing their robustness

to outliers. Using an intensive simulation study and under different settings, it was found that researchers can decide which method of

estimation is appropriate to their study to estimate the variance components based on the source of outliers (error term, εi j or random

effects, αi), the variance components ratio, and the sample size.
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1 Introduction

Variance components and functions thereof are important in many fields such as industry, quantitative genetics,
agriculture and animal breeding. There are two main alternative approaches for estimating variance components:
frequentist and Bayesian-based approaches. Frequentist approaches include such as analysis of variance [1], maximum
likelihood estimate [2], expectation maximization algorithm [3], restricted maximum likelihood estimate [4] and
minimum variance quadratic unbiased estimator [5–7]. These frequentist approaches (ANOVA, MLE, EM, RMLE and
MVQUE) consider variance components as fixed but with unknown real values or vectors. On the other hand, Bayesian
approach estimators, such as Gibbs sampler [8], consider that variance components are random variables with some prior
knowledge of their distributions. This prior knowledge is given by a prior distribution or by data from a previous
experiment. The prior distribution and the likelihood function of the sample are combined resulting in a posterior
distribution. To the best of my knowledge, there are no known criteria for a researcher to choose a variance components
estimation approach from these alternatives.

Many articles have studied the frequentist methods: [9] studied the properties of ANOVA, MLE, RMLE and
MINQUE, such as unbiasedness property, [10] studied EM algorithm for estimating the generalized linear mixed model
by relaxing the normality assumption of random effects, and [11] applied ANOVA, MINQUE, MLE and Gibbs sampling
on a numerical example in animal breeding. Other articles studied the performance of prior distributions within Gibbs
sampler: [12] studied sampling-based approaches such as Gibbs sampling with an inverted gamma prior for estimating
the variance components in terms of how much the method is straightforward and easy to be implemented, [13] studied
the noninformative prior properties for variance components, [14] studied the effect of using a flat prior on the posterior
distribution, [15] created a flexible software for Bayesian inference, [16] and [17] introduced a half-t family prior and
compared it to a noninformative and inverted gamma prior in hierarchical models, [18] argued that the half-Cauchy prior
should be replaced with an inverse Gamma prior in Bayesian hierarchical models, [19] studied Cauchy prior in logistic
regression, and [20] studied Bayesian estimation and likelihood-based estimators (MLE, RMLE, marginal and penalized
quasi-likelihood) in terms of bias and convergence. Despite the extensive literature available, there are still some gaps,
particularly, on these points: (1) There are no metrics for evaluating the performance of the two approaches in estimating
variance components when outliers are present; (2) comparisons of the frequentist approach and Bayesian approach are

∗ Corresponding author e-mail: ehamdy@vt.edu

c© 2020 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/jsap/090301


436 H.F. F. Mahmoud: Bayesian and frequentist approaches robustness in...

very limited; and (3) in these papers, a case study is considered to compare the methods within each approach and no
intensive simulation study has been considered under different scenarios of settings, so intensive simulation studies
under different scenarios are needed. In this paper, the two main approaches are evaluated and compared using an
intensive simulation study under different settings in two cases: when data have outliers and when there are no outliers.
The mean square error (MSE), absolute bias and other statistical measures will be used to evaluate the different methods
of estimating variance components. In addition, this paper studies the sensitivity of these approaches for outliers. This
paper contributes to evaluating the variance components estimation approaches and assessing their robustness for
outliers. The motivation behind this study is to: (1) compare the Bayesian and frequentist approaches using an intensive
simulation study at different scenarios, and metrics are presented which can be used to decide when to use these
approaches, in a wide range of the variance components ratio ( σα

σε
); (2) evaluate the two approaches in terms of

robustness to outliers as well as when there are no outliers; and (3) finding a criteria based on which a researcher can
choose which method should be used. To compare between the frequentist approach and the Bayesian approach in
robustness, the one-way balanced random effect model is used.

1.1 The One-Way Statistical Model

In the one-way random effect model with balanced data, there are groups or levels with n observations, yi j within each
level. This model takes the following form:

yi j = µ +αi + εi j, i = 1,2, . . . ,a, j = 1,2, . . . ,n, (1)

where µ is the overall mean, αi and εi j are unobservable independent random variables with distributions N(0,σ2
α) and

N(0,σ2
ε ), respectively. It follows that yi j’s have a joint normal distribution with mean µ and covariance matrix given, by

Cov(yi j,ykl) =











σ2
α +σ2

ε , i = k, j = l

σ2
α , i = k, j 6= l

0, i 6= k.

The parameters of this model are µ , σ2
α and σ2

ε , the last two are called variance components.
This model is extensively analyzed in Chapter 3 of [9]. In this paper, it is used to compare between THE frequentist

and Bayesian approaches in terms of robustness for outliers. The rest of the paper is outlined as follows. In Section 2, the
variance components estimation approached are presented. In Section 3, a Monte Carlo study under different settings is
conducted to evaluate the performance of the estimators. Real data application is studied in Section 4. Section 5 contains
conclusion and recommendations.

2 Variance Components Estimation Approaches

The Bayesian approach is subjective and uses prior beliefs to define a prior probability distribution on possible values of
the population parameters. The frequentist approach uses the likelihood function to do a parametric inference.

2.1 Bayesian Approach

Gibbs sampling or Gibbs sampler estimator is one of the most common estimation approaches in the Bayesian literature.
It is a Markov Chain Monte Carlo (MCMC) algorithm for obtaining a sequence of observations which are approximated
from a specified probability distribution, when direct sampling is difficult. For model (1.1),

y|µ ,α1,α2, . . . ,αa,σ
2
ε ∼ N(µ +αi,σ

2
ε ) and (2)

αi|σ
2
α ∼ N(0,σ2

α). (3)

The joint posterior distribution of all parameters in the model, given the data, can be expressed by Bayes theorem as
follows:

f (µ ,ααα ,σ2
α ,σ

2
ε |y) ∝ f (y|µ ,ααα,σ2

α ,σ
2
ε ) f (ααα |σ2

α) f (µ) f (σ2
α ) f (σ2

ε ), (4)
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Table 1: Common priors for the model parameters

Paramter Prior

µ N(0,c)
µ ∝ 1

σ2 σ ∝ 1

Jeffery’s prior

inverse-gamma(δ ,δ )
Unif(0, c)

Half-Cauchy

c is a suitable big value, and δ is a small value.

where f (µ), f (σ2
α ) and f (σ2

ε ) are the prior distributions for µ , σ2
α and σ2

ε , respectively. There are many recommended
priors for these model parameters. Table 1 shows the common priors for these parameters. [21] introduced data-level
variance prior distributions for the variance components. [17] suggested a uniform prior for σα , U(0, c), where c→∞, [15]
suggested an inverse-gamma(δ ,δ ) prior distribution with δ=0.001, and [16] recommended using Cauchy prior distribution
as a default weakly informative choice for the variance components. [18] and [19] studied Cauchy prior distribution in
more details. In this paper, the last three priors are considered. Given the posterior distribution function (2.3), one can
obtain the conditional distributions of the parameters as follows:

f (σ2
α |µ ,αi,σ

2
ε ,y), (5)

f (σ2
ε |µ ,αi,σ

2
α ,y), (6)

f (αi|µ ,σ
2
ε ,σ

2
α ,y), i = 1,2, . . . ,a (7)

and
f (µ |αi,σ

2
α ,σ

2
ε ,y). (8)

Although we are interested in σ2
ε and σ2

α , all the full conditional distributions are needed to run the Gibbs sampler. The
steps are as follows:

1. Set arbitrary initial values for µ , ααα = (α1, . . . ,α
T
a ), σ2

ε and σ2
α ;

2. sample σ2
α from (2.4) and update σ2

α ;
3. sample σ2

ε from (2.5) and update σ2
ε ;

4. sample αi from (2.6) and update αi;
5. sample µ from (2.7) and update µ ;
6. repeat [2]-[5] big number of times, N, till convergence is achieved.

When convergence is achieved, the points from Nth iteration are sample points from the appropriate marginal distributions.
Because our interest is in making inferences about σ2

ε and σ2
α , no attention will be paid hereafter to αi and µ .

2.2 Frequentist Approach

There are many methods under frequent approach, in this paper three estimators are considered and compared to the
Bayesian approach using Gibbs sampler under various prior distributions. The three methods are: analysis of variance
(ANOVA), maximum likelihood estimator (MLE), and expectation maximization algorithm (EM).

2.2.1 Analysis of Variance (ANOVA)

ANOVA method is based on the law of total variance, where the total variability in a response variable is partitioned
into components attributable to different sources of variation. The method of moments is used to estimate the variance
components by setting the mean square values to the expected mean square. These estimators are unbiased estimators for
the variance components. Consider the sums of squares of the ANOVA in Table 2 for model (1.1):
SSA = n∑a

i=1(ȳi.− ȳ..)
2, SSE = ∑a

i=1 ∑n
j=1(ȳi j − ȳi.)

2 and SST = ∑a
i=1 ∑n

j=1(ȳi j − ȳ..)
2,

where ȳi. is the mean of the observations in group i, and ȳ.. is the overall sample mean. The expectation of the first two
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Table 2: ANOVA table for the one-way random model

Source df Sum of squares (SS) Mean sum of squares (MSS)

Model a−1 SSA MSA=SSA/(a−1)
Error a(n−1) SSE MSE=SSE/a(n−1)
Total an−1 SST

sums of squares are: E(SSA) = n(a− 1)σ2
α +(a− 1)σ2

ε , and E(SSE) = a(n− 1)σ2
ε . So ANOVA estimates of σ2

α and σ2
ε

are obtained by matching the sums of the squares to their expectations.

σ̂2
ε =

SSE

a(n− 1)
and σ̂2

α =
1

n
[

SSA

a− 1
− σ̂2

ε ]. (9)

2.2.2 Maximum Likelihood Estimate (MLE)

The maximum likelihood method of estimation was developed by [1], and first time applied to variance components
estimation was by [22] and [23]. Under normality assumption of the error and random effects terms, the variance
components can be obtained by maximizing twice the negative log-likelihood function. In terms of ANOVA table sum of
squares, the MLEs for this model are simply the solutions of the maximum likelihood estimating equations as follows:

σ̂2
ε =

SSE

a(n− 1)
and σ̂2

α =
1

n
[(1−

1

a
)

SSA

a− 1
− σ̂2

ε ]. (10)

From the formulas of estimating the variance components using ANOVA and MLE, one can see that they are equal when
the number of random effect levels a → ∞, otherwise, the MLE estimate of the variance component of random effect, σ2

α ,
is smaller than ANOVA estimate for the variance of the random effects.

2.2.3 Expectation Maximization (EM)

In the EM algorithm, αi (i = 1,2, . . . ,a) are treated as missing (or latent) data and y is treated as observed (or incomplete)
data. Hence, we can have “complete” data, which is {y,ααα}. EM algorithm has steps: expectation and maximization. Let
τ = σ2

α/σ2
ε , EM algorithm steps for estimating the variance components for the model (1.1) are as follows:

0-Step: Obtain starting values σ
2(0)
α , σ

2(0)
ε and µ (0),

E-Step: Calculate

E(α
′

i αi|y) = τ2 ∑a
i=1

(ȳi.−µ)2

(τ+1/n)2 + aσ2
α −σ2

ατ ∑a
i=1

1

(τ+ 1
n )

and

E(ε
′

i εi|y) = ∑a
i=1 ∑n

j=1(yi j − µ)2 − τ ∑a
i=1

(ȳi.−µ)2

(τ+ 1
n )

2
(2+ nτ)+σ2

ε ∑a
i=1

τ
(τ+ 1

n )
.

M-Step: Calculate

t1 = aσ
2(m+1)
α = τ2(m) ∑a

i=1
(ȳi.−µ(m))2

(τ(m)+1/n)2
+ aσ

2(m)
α − aσ

2(m)
α τ(m)

(τ(m)+ 1
n )

,

t0 = anσ
2(m+1)
ε = ∑a

i=1 ∑n
j=1(yi j − µ (m))2 + aτ(m)σ

2(m)
ε

(τ(m)+ 1
n )

−
τ(m)(2+nτ(m))

(τ(m)+ 1
n )

2 ∑a
i=1(ȳi.− µ (m))2

and µm+1 = ȳ..

nτ(m)+1
+(1− 1

nτ(m)+1
)µ (m).

I-Step: Iterate between E-Step and M-Step till convergence happens, and when convergence is achieved, declare

σ̂
2(m+t)
α and σ̂

2(m+t)
ε as EM algorithm estimates.

3 Monte Carlo Study

In order to study the performance of the estimates of frequentist approach estimators and Gibbs sampler under different
prior distributions, an intensive simulation study is performed. The data have been generated from the model (1.1) under
different number of levels of a and n (a= 20, and n = 10, a = 10 and n = 20 and a= 10 and n = 4), and different values of
σα within interval (0.1, 10) with a grid search of 0.2 and different values of σα within interval (10, 0.1) with a grid search
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Fig. 1: Boxplots of two random data sets: one has 5% outliers in αi (left) and one has 5% outliers in εi j (right) at σα = 1,
σε = 1, µ = 3, n = 20 and a = 10

of 0.2. So, the ratio ( σα
σε

) will be between 0.01 and 100. The grand mean µ is set to be 3. In uniform prior distribution,

the range is set to be (0, 100), inverse-gamma (δ ,δ ) prior distribution is set with δ = 0.001 as recommended in [15],
and for half-Cauchy prior, the scale is set to be 25, a weakly informative prior distribution as recommended in [16]. Each
setting is replicated 1000 times at each value of the ratio σα

σε
and the variance components are estimated. In Gibbs sampler,

number of iterations is set to be 30000, and burn in is 1000. Two types of outlier contamination were considered: factor
contamination and error contamination. In the first case, 5 % of the random effects αi (i = 1,2, . . . .,a) were replaced by a
constant outlier and in the second case, 5 % of the error term εi j (corresponding to different groups) were replaced by a
constant outlier. Therefore, we analyzed three different situations:

Case 1: uncontaminated data; no outliers in the simulated data
Case 2: there are 5 % outliers in αi (α1 is replaced by 4)
Case 3: there are 5 % outliers in εi j (εi1 is replaced by 4)

Figure 1 (left) shows a simulated data having 5 % outliers in αi, and Figure 1 (right) shows a simulated data having 5 %
outliers in εi j .

3.1 Case 1: No Outliers

Figure 2 (a, b), shows that the absolute bias has the same form of MSE that is a function of the ratio of ( σα
σε

) as well as a

function of the sample size. A close look at the form when the ratio is between 0 and 4, Figure 2 (c) shows that when the
ratio is small, ANOVA estimates are better than MLE and EM estimates in terms of bias for σα . Also, it shows that the
difference between the estimates gets smaller when the ratio gets bigger, and the relationship depends on the sample size.
The ratio at which, the three methods have the same performance depends on the sample size, the smaller the sample size,
the larger the ratio; when n = 20 and a = 10, the ratio is about 0.5, and when n = 4 and a = 10, the ratio is about 1. Figure
2 (d) reveals that the absolute bias for σε monotone decreases when the ratio increases.

For the three frequentist estimators, Figure 3 (left) shows that MSE of σα is a dependent on the ratio of ( σα
σε

) as well

as a function of the sample size. When the ratio is small, MSE is small, and when the ratio gets higher, MSE gets higher
till the ratio value reaches a high value, approximately 20, it gets stable. The same pattern can be seen for different sample
sizes, but the higher sample size, the smaller the MSE. Figure 3 (right) shows that MSE of σε is a monotone decreasing
by the ratio, and it reaches around zero value when the ratio reaches 10.

For Gibbs sampler under different prior distributions, at n = 20 and a = 10, Figure 4 (left) shows MSE of σα as a
function of the ratio. One can see that when the ratio is small, using inverse gamma prior is not a good choice compared
to uniform and half-Cauchy priors, but when the ratio is big, inverse gamma is a good choice compared to the other two
prior distributions. The change point is around ratio of 1. Figure 4 (right) of σε shows that inverse-gamma prior is better
in case of a smaller ratio, but when the ratio reaches about 1, the performance of all priors is comparable.

Figure 5 (left) and 5 (right) show results of the absolute bias of σα and σε as a function of the ratio, respectively. They
reveal the same form of relationships, inverse gamma as a prior is not a good choice compared to uniform and half-Cauchy
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(a) (b)

(c) (d)

Fig. 2: Absolute bias for σα (left panel) and σε (right panel) at different ratios of variance components ( σα
σε

): black is for

n = 20 and a = 10, blue is for n = 10 and a = 20, and red is for n = 10 and a = 4

Fig. 3: Mean square error (MSE) for σα (left) and σε (right) at different ratios of variance components ( σα
σε

): black is for

n = 20 and a = 10, blue is for n = 10 and a = 20, and red is for n = 10 and a = 4
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Fig. 4: Mean square error (MSE) for σα (left) and σε (right) at different ratios of variance components ( σα
σε

), for Gibbs

sampler using different priors at n = 20 and a = 10

Fig. 5: Absolute bias for σα (left) and σε (right) at different ratios of variance components ( σα
σε

), for Gibbs sampler using

different priors at n = 20 and a = 10

priors when the ratio is small, but when the ratio is big, inverse gamma is a good choice compared to the other two prior
distributions.

For a smaller sample size, n = 10 and a = 4, Figure 6 (left) and 7 (left) show the form of MSE and absolute bias of
σα with the ratio ( σα

σε
). They show the same forms in Figure 4 (left) and 5 (left), except that the gap between estimates is

higher when the ratio is smaller than 2 ( σα
σε

≈ 2) because the total sample size is smaller (n = 10 and a = 4) compared to n

= 20 and a = 10. In addition, MSE and absolute bias of σε also have the same forms in Figure 4 (right) and 5 (right), they
reach the same performance when the ratio reaches 2.

Table 3 displays summary results of a selected setting, when the ratio is equal to 1 ( σα=1
σε=1

= 1), n=10 and a=20. The

results confirm the previous findings where ANOVA is better among frequentist approaches and inverse gamma is a good

prior choice that is based on MSE and bias criteria. Table 4 shows the results at a smaller ratio ( σα=0.5
σε=1

= 0.5) and the

same sample size. It reveals the same findings with a bigger gap between the estimates. In sum, when there are no outliers
in a real data set, and the ratio of the variance components is small, researchers should use inverse gamma prior in Gibbs
sampler or ANOVA, and if the ratio is big, they should use half-Cauchy within Gibbs sampler.
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Fig. 6: Mean square error (MSE) for σα (left) and σε (right) at different ratios of variance components ( σα
σε

), for Gibbs

sampler using different priors at n = 10 and a = 4

Fig. 7: Absolute bias for σα (left) and σε (right) at different ratios of variance components ( σα
σε

), for Gibbs sampler using

different priors at n = 10 and a = 4

Table 3: Summary results of 1000 simulated data sets without outliers for the frequentist approaches and Gibbs sampler
with different prior distributions. σα = 1, σε = 1, so the ratio =1 at n = 20 and a = 10.

Approach Mean ± SE Median 75 percentile Bias MSE

ANOVA σε 0.999± 0.001 0.997 1.036 0.0003 0.003

σα 0.983 ± 0.006 0.976 1.103 -0.0165 0.032

Friquentist EM σε 0.999± 0.001 0.997 1.036 -0.0003 0.003

σα 0.955± 0.006 0.949 1.073 -0.0441 0.032

MLE σε 0.999± 0.001 0.997 1.036 -0.0003 0.003

σα 0.955± 0.006 0.949 1.073 -0.0441 0.032

Uniform σε 0.998±0.002 0.997 1.032 -0.0016 0.003

σα 0.949±0.008 0.961 1.062 -0.0501 0.034

Bayesian IGamma σε 1.003± 0.002 1.002 1.036 0.0030 0.003

σα 1.015± 0.008 1.025 1.131 0.0156 0.034

H-Cauchy σε 0.998± 0.002 0.997 1.031 -0.0015 0.003

σα 0.950±0.002 0.960 1.060 -0.0496 0.034
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Fig. 8: Boxplot of 1000 estimates of σα and σε at both values equal to 1 ( σα=1
σε=1

= 1) for frequentist approaches (left) and

Gibbs sampler (right) at n = 20 and a = 10

Table 4: Summary results of 1000 simulated data sets without outliers for the friquentist approaches and Gibbs sampler
with different prior distributions with the setting of σα = 0.5 and σε = 1, so the ratio = 0.5 at n = 20 and a = 10

Approach Mean ± SE Median 75 percentile Bias MSE

ANOVA σε 0.997±0.002 0.997 1.032 -0.002 0.003

σα 0.488± 0.004 0.487 0.563 -0.011 0.013

Friquentist EM σε 0.997± 0.002 0.997 1.032 -0.002 0.003

σα 0.470± 0.004 0.469 0.545 -0.029 0.013

MLE σε 0.997± 0.002 0.997 1.032 -0.002 0.003

σα 0.470± 0.004 0.469 0.545 -0.029 0.013

Uniform σε 1.007±0.002 1.003 1.039 0.007 0.002

σα 0.426±0.006 0.434 0.526 -0.073 0.006

Bayesian IGamma σε 1.007±0.002 1.004 1.039 0.007 0.003

σα 0.487±0.006 0.495 0.578 0.008 0.003

H-Cauchy σε 1.004± 0.002 1.001 1.037 0.004 0.003

σα 0.444±0.005 0.445 0.528 -0.055 0.018

Fig. 9: Boxplot of 1000 estimates of σα and σε , at both values equal to 0.5 ( σα=0.5
σε=1

= 0.5), for frequentist approaches

(left) and Gibbs sampler (right) at n = 20 and a = 10
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Table 5: Summary results of 1000 simulated data sets with 5% outliers for αi for the frequestist approaches and Gibbs
sampler with different prior distributions. σα = 1, σε = 1, so the ratio is equal to 1 at n = 20 and a = 10.

Approach Mean ± SE Median 75 percentile Bias MSE

ANOVA σε 0.997± 0.002 0.997 1.034 -0.003 0.003

σα 1.315± 0.005 1.313 1.405 0.315 0.118

Friquentist EM σε 0.997± 0.002 0.997 1.034 -0.003 0.003

σα 1.280± 0.005 1.278 1.367 0.280 0.096

MLE σε 0.997± 0.002 0.997 1.034 -0.003 0.003

σα 1.280± 0.005 1.278 1.367 0.280 0.096

Uniform σε 0.996± 0.006 0.998 1.033 -0.003 0.003

σα 1.280±0.006 1.272 1.372 0.280 0.099

Bayesian IGamma σε 1.001± 0.006 1.003 1.039 0.002 0.003

σα 1.360± 0.002 1.351 1.455 0.360 0.152

H-Cauchy σε 0.996± 0.006 0.998 1.033 -0.003 0.003

σα 1.280± 0.006 1.274 1.369 0.280 0.099

Fig. 10: Boxplot of 1000 estimates of σα and σε , at both values equal to 1 ( σα=1
σε=1

= 1), for frequentist approaches (left)

and Gibbs sampler (right) at n = 20 and a = 10. There are 1000 replicates with 5 % outliers in αi

3.2 Case 2: Factor Contamination

Tables 5-6, and Figure 6-7 show the results for factor contamination. In case there are outliers in αi at n = 20 and a = 10,
Table 5 shows that among frequentist approaches, EM and MLE estimates are better than ANOVA estimates of variance
components. Among Gibbs sampling priors, half-Cauchy and uniform priors are good compared to inverse gamma prior.
The same finding one can see from Table 6 with bigger difference between estimates because of smaller sample size. As a
result, ANOVA and Gibbs with inverse gamma prior are more sensitive to outliers compared to the other estimators when
there are outliers in αi.

3.3 Case 3: Error Contamination

Tables 7-8 and Figure 8-9 show the results for error contamination. In case there are outliers in εi j, among frequentist
approaches, ANOVA estimate is better than MLE and EM estimate of variance components. Among Gibbs sampling
priors, inverse gamma prior is better than half-Cauchy and uniform priors. The same results one can see from Table 8
(compared to Table 7), but there is a big gap between the estimates because of smaller sample size. In sum, when there
are outliers in σε , ANOVA and inverse gamma are less sensitive to outliers compared to the other estimates.

From these findings, researchers should not use ANOVA or inverse gamma if there are outliers in αi, and they should
use them when there are outliers in εi j.
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Table 6: Summary results of 1000 simulated data sets with 5% outliers in αi for the frequestist approaches and Gibbs
sampler with different prior distributions with setting of σα = 1, σε = 1, so the ratio is equal to 1 at n = 4 and a = 10

Approach Mean ± SE Median 75 percentile Bias MSE

ANOVA σε 0.984± 0.004 0.984 1.069 -0.0153 0.015

σα 1.556± 0.008 1.545 1.713 0.5559 0.362

Friquentist EM σε 0.984±0.004 0.984 1.069 -0.0153 0.015

σα 1.467±0.007 1.458 1.618 0.4670 0.267

MLE σε 0.984±0.004 0.984 1.069 -0.0153 0.015

σα 1.467±0.007 1.458 1.618 0.4675 0.267

Uniform σε 0.994±0.0064 0.993 1.0768 -0.0057 0.020

σα 1.433±0.0121 1.458 1.617 0.4325 0.261

Bayesian IGamma σε 1.0155±0.006 1.0159 1.0994 0.0155 0.018

σα 1.667±0.0119 1.6772 1.8459 0.6668 0.516

H-Cauchy σε 0.9909±0.006 0.9903 1.0746 -0.0090 0.019

σα 1.4395±0.0115 1.4582 1.6143 0.4394 0.259

Fig. 11: Boxplot of 1000 estimates of σα and σε at both values equal to 1 ( σα=1
σε=1

= 1) for frequentist approaches (left) and

Gibbs sampler (right) at n = 4 and a = 10. 1000 replicates with 5% outliers in αi

Table 7: Summary results of 1000 simulated data sets with 5% outliers for εi j for the frequentist approaches and Gibbs
sampler with different prior distributions. σα = 1, σε = 1, so the ratio =1, n = 20 and a = 10.

Approach Mean ± SE Median 75 percentile Bias MSE

ANOVA σε 1.322±0.001 1.321 1.035 0.321 0.105

σα 0.959± 0.007 0.947 1.078 -0.041 0.036

Friquentist EM σε 1.322±0.001 1.321 1.035 0.321 0.105

σα 0.930± 0.007 0.919 1.047 -0.069 0.038

MLE σε 1.322± 0.001 1.321 1.349 0.321 0.105

σα 0.930±0.007 0.919 1.047 -0.069 0.038

Uniform σε 1.325±0.001 1.324 1.353 0.324 0.107

σα 0.922±0.007 0.931 1.062 -0.077 0.047

Bayesian IGamma σε 1.330± 0.001 1.329 1.359 0.329 0.110

σα 1.000± 0.007 1.006 1.140 0.001 0.041

H-Cauchy σε 1.325± 0.001 1.324 1.353 0.324 0.107

σα 0.925± 0.007 0.931 1.062 -0.074 0.045
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Fig. 12: Boxplot of 1000 estimates of σα and σε , at both values equal to 1 ( σα=1
σε=1

= 1), for frequentist approaches (left)

and Gibbs sampler (right) at n = 20 and a = 10. There are 1000 replicates with 5 % outliers in εi j

Table 8: Summary results of 1000 simulated data sets with 5 % outliers for εi j for the frequentist approaches and Gibbs
sampler with different prior distributions. σα = 1 and σε = 1, so the ratio =1, n = 4 and a = 10.

Approach Mean ± SE Median 75 percentile Bias MSE

ANOVA σε 1.316±0.003 1.314 1.386 0.3167 0.111

σα 0.954±0.011 0.943 1.183 -0.0450 0.116

Friquentist EM σε 1.315±0.003 1.313 1.385 0.3154 0.110

σα 0.854±0.012 0.861 1.097 -0.1457 0.150

MLE σε 1.315±0.003 1.313 1.385 0.3154 0.110

σα 0.853±0.012 0.861 1.097 -0.1465 0.151

Uniform σε 1.420±0.006 1.423 1.515 0.4203 0.197

σα 0.514±0.016 0.352 0.710 -0.4856 0.378

Bayesian IGamma σε 1.385±0.005 1.388 1.469 0.3846 0.163

σα 0.846±0.019 0.804 1.173 -0.1531 0.205

H-Cauchy σε 1.389±0.005 1.388 1.480 0.3885 0.168

σα 0.609±0.015 0.501 0.820 -0.3909 0.278

Fig. 13: Boxplot of 1000 estimates of σα and σε , at both values equal to 1 ( σα=1
σε=1

= 1), for frequentist approaches (left)

and Gibbs sampler (right) at n = 4 and a = 10. There are 1000 replicates with 5% outliers in εi j
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4 Real Data Application

The real data that is described in [24] is used to demonstrate our approach. The data is collected to study the association
between exposure to radon and its progeny, and lung cancer. Five detectors are used from each of the six laboratories.
Each detector gives one measurement of α-energy that is emitted from radioactive radon gas in a house. In total, the
data contains 25 measurements. Data is displayed in Fig. 14. On average, laboratories should give close measurements of
α-energy because they are applied to the same houses. Figure 14 shows that the laboratory number three gives a different
mean compared to the other five laboratories.

The laboratories represents the random effect, so the one-way random effect model can be used to describe the data.
[25] shows that laboratory number three is an outlier compared to the other five laboratories, so the data has factor
contamination.

The methods of estimating variance components described in this article are applied to the data, and the results are
displayed in Table 9 assuming there is factor contamination. It shows that ANOVA and Gibbs sampler with inverted-
gamma prior estimates of the variance of random effects, σ2

α , are higher than the other methods estimates. This means
that these methods are sensitive to outliers in random effects. The sample size of this data is small with a = 5 and n = 5,
and the ratio σα

σε
= 1.2. As this study is recommended under this setting, MLE, EM algorithm, Gibbs sample with Uniform

or Half-Cauchy give better estimate than other methods.

Fig. 14: Scatter plot of laboratories and their detector measurements

Table 9: Variance components estimates (σ2
α , σ2

ε ) using frequentist approaches and Gibbs sampler with different priors

σ2
α σ2

ε

Frequentest ANOVA 986.4 689.6

MLE 761.5 689.6

EM 761.4 689.6

Gibbs Uniform 758.8 689.3

Half-Cauchy 759.7 690.4

IGamma 970.6 691.2

5 Conclusion and Recommendation

The performance of the frequentist approaches and Gibbs sampler under different prior distributions for variance
components are studied using an intensive simulation study at different situations (no outliers exist, factor contamination,
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Table 10: Summary results of 1000 simulated data sets with 5 % outliers for εi j for the frequentist approaches and Gibbs
sampler with different prior distributions, σα = 1, σε = 1, so the ratio =1, n = 4 and a = 10.

No outliers Outliers in αi Outliers in εi j

Small sample ANOVA or Gibbs MLE, EM, or Gibbs with ANOVA or Gibbs

(n = 4 and a = 10) with inverse gamma uniform or Cauchy prior with inverse gamma

Small sample ANOVA or Gibbs MLE, EM, or Gibbs with ANOVA or Gibbs

(n = 20 and a = 10) with inverse gamma uniform or Cauchy prior with inverse gamma

and error contamination). The evaluation is based on MSE and absolute bias criteria. The findings advise researchers to
select a method of variance components estimation based on sample variances along with the study goal. They need to
calculate the sample variance components and the variance components ratios, and based on the ratio, they can select a
method of estimation. When there are no outliers in a real data set, and the ratio of the variance components is small,
researchers should use inverse gamma prior within Gibbs sampler or ANOVA. However, if the ratio is big, they should
use Half-Cauchy within Gibbs sampler or any frequentist approch, they have the same performance. How much the ratio,
σα
σε

, is it small or big? it depends on the sample size. Based on these results, when the sample size is about 40, the change

point ratio is about 2, and when the sample is about 200, the change point ratio is about 1. Table 9 displays the summary
of our findings for small ratio, σα

σε
, at the three cases: no outliers, factor contamination, and error contamination.

As a result, Gibbs sampler with uniform or Cauchy prior, MLE and EM are less sensitive if we have outliers in αi,
and ANOVA and Gibbs sampler with inverse gamma prior are less sensitive when outliers exist in εi j. However, in this
study, the sensitivity of variance components for the one-way random effects model is studied, but it can be easily
generalized to more complicated models.
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