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Abstract: This paper reports a new Legendre Gauss-Lobatto collocation (SL-GL-C) method to solve numerically two inverse problems
of parabolic partial differential types equations subjectto initial-boundary conditions. This problem is reformulated by eliminating the
unknown functions using some special assumptions based on Legendre Gauss-Lobatto quadrature rule. The SL-GL-C is utilized to
solve non-classical parabolic initial-boundary value problems. Accordingly, the inverse problem is reduced into a system of ordinary
differential equations (SODEs) and afterwards, such system can be solved numerically using implicit Runge-Kutta (IRK) method of
order four. For demonstrating the robust, effectiveness and stable approximations of the present method, several testexamples are
presented.
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1 Introduction

One of the best methods, in term of the accuracy, for
obtaining the numerical solution of various kinds of
differential equations is spectral method (see, [1]-[5]).
Because of all types of spectral methods are global, they
very convenient for approximating linear and nonlinear
partial differential equations. A significant advantage of
the spectral methods over the finite-difference and
finite-element methods is that the high accuracy of
spectral techniques. From the overview of approximation
to the underline problem, the spectral method has been
divided to three primary classifications namely Galerkin
[6,7], tau [8,9] and collocation [10,11] methods.

The collocation method has a wide range of
application, due to its ease of use and adaptable in various
problems, including linear and nonlinear differential
equations [12]–[16], integral equations [17,18],
integro-differential equations [19,20], fractional
differential equations [21,22] and variational problems
[1]. According to exponential rate of convergence
obtained by collocation method, it is very useful in

providing highly accurate solutions. On the other hand,
the collocation method has became increasingly popular
for solving partial differential equations during the last
decades [23,24].

Parabolic partial differential equations describe a
wide range of problems in various fields of science
including heat diffusion [25], ocean acoustic propagation
[26], population dynamics [27], dynamics of nuclear
reactors [28], adsorption of pollutants in soil and the
diffusion of neutrons. The parabolic partial differential
problem is concerned with calculation of unknown
solution while the initial and boundary conditions are
given. Otherwise in inverse parabolic partial differential
problem with over specified condition, the determination
of unknown solution and unknown source term are
required. The inverse problems have been widely used in
modelling of physical [29,30] and engineering [31,32,33,
34] problems. Most often, the analytical solution for
inverse problem is difficult to obtain. Several numerical
methods had been introduced to obtain the solutions of
inverse problems, see for example [35,36,37,38,39,40].
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Our main motivation in this paper is to develop a
spectral approximation of a class of inverse problems of
parabolic partial differential types equations, using shifted
Legendre collocation method in conjunction with
Legendre Gauss-Lobatto quadrature and the implicit
Runge Kutta method. We construct a spectral
approximation in spatial discretization to solve the inverse
problems of parabolic partial differential types equations.
This scheme has the advantage of reducing the inverse
problems of parabolic partial differential types equation
into SODEs, which greatly simplifying the problem. We
then use implicit Runge Kutta algorithm for solving this
SODEs. Finally, we implement the algorithm to solve
several reasonable examples in order to demonstrate the
method is accurate and efficient compared with
alternative methods.

The rest of this article is organized as follows. In the
next section, we present some preliminaries and
properties of Legendre polynomials. In Section 3, by
using spectral collocation method, we construct and
develop an algorithm for the solution of the inverse
problems of parabolic partial differential types equations
with Dirichlet conditions. In Section 4, some illustrative
numerical experiments are given and some comparisons
are made between our method and other methods. The
paper ends with some conclusions and observations in
Section 5.

2 Some properties of shifted Legendre
polynomials

The well-known Legendre polynomialsPi(x) are defined
on the interval(−1,1). Firstly, some properties about the
standard Legendre polynomials have been recalled in this
section. The Legendre polynomialsPk(x) (k = 0,1. . . ,)
satisfy the following Rodrigues formula

Pk(x) =
(−1)k

2kk!
Dk((1− x2)k), (2.1)

we recall also thatPk(x) is a polynomial of degree k and

thereforeP(q)
k (x) (the qth derivative ofPk(x)) will given by

P(q)
k (x) =

k−q

∑
i=0(k+i=even)

Cq(k, i)Pi(x), (2.2)

where

Cq(k, i) =
2q−1(2i +1)Γ (q+k−i

2 )Γ (q+k+i+1
2 )

Γ (q)Γ (2−q+k−i
2 )Γ (3−q+k+i

2 )
.

The Legendre polynomials satisfy the following relations
P0(x) = 1, P1(x) = x, Pk+2(x) =

2k+3
k+2 xPk+1(x)− k+1

k+2Pk(x),
and the orthogonality relation

(Pk(x),Pl (x))w =

1∫

−1

Pk(x)Pl (x)w(x) = hkδlk, (2.3)

wherew(x) = 1, hk =
2

2k+1. The Legendre-Gauss-Lobatto
quadrature has been used to evaluate the previous integrals
accurately. For anyφ ∈ S2N−1[−1,1], we have that

1∫

−1

φ(x)dx=
N

∑
j=0

ϖN, j φ(xN, j ). (2.4)

We introduce the following discrete inner product

(u,v)w =
N

∑
j=0

u(xN, j)v(xN, j )ϖN, j . (2.5)

For Legndre Gauss-Lobatto, we find that [1]

xN,0 =−1, xN,N = 1, xN, j ( j = 1, · · · ,N−1)

are the zeros of(PN(x))
′
,

ϖN, j =
2

N(N+1)(PN(xN, j ))2 ,

(2.6)

wherexN, j (0≤ j ≤ N) andϖN, j (0≤ j ≤ N) are used as
usual the nodes and the corresponding Christoffel
numbers in the interval[−1,1], respectively. In order to
use these polynomials on the intervalx ∈ (0,L1) we
defined the so-called shifted Legendre polynomials by

introducing the change of variablex =
2x
L1

− 1. Let the

shifted Legendre polynomialsPi(
2x
L1

−1) be denoted by

PL1,i(x). ThenPL1,i(x) can be obtained with the aid of the
following recurrence formula:

(i +1)PL1,i+1(x) = (2i +1)( 2x
L1
−1)PL1,i(x)− iPL1,i−1(x), i = 1,2, · · · .

(2.7)
The analytic form of the shifted Legendre polynomials
PL1,i(x) of degreei is given by

PL1,i(x) =
i

∑
k=0

(−1)i+k (i + k)!

(i − k)! (k!)2Lk
1

xk
, (2.8)

the orthogonality condition may be given by
∫ L1

0
PL1, j(x)PL1,k(x)wL1(x)dx= hk δ jk, (2.9)

wherewL1(x) = 1 andh̄k =
L1

2k+1
.

A function u(x), square integrable in(0,L1), may be
expressed in terms of shifted Legendre polynomials as

u(x) =
∞

∑
j=0

c jPL1, j(x),

where the coefficientsc j are given by

c j =
1
h̄j

∫ L1

0
u(x)PL1, j(x)wL1(x)dx, j = 0,1,2, · · · .

(2.10)
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In practice, only the first(N+ 1)-terms shifted Legendre
polynomials are considered. Henceu(x) can be expressed
in the form

uN(x)≃
N

∑
j=0

c jPL1, j(x). (2.11)

3 Shifted Legendre pseudo-spectral scheme

We propose a pseudo-spectral algorithm based on shifted
Legendre pseudo-spectral method in conjunction
Gauss-Lobatto quadrature rule to integrate the spatial
variable for the(1+ 1) inverse problems of parabolic
partial differential types equations. The problem is then
transformed into a SODEs in temporal discretization. The
IRK scheme is employed to integrate the resulting
SODEs.

3.1 Extra condition in an integral form

Consider the following(1 + 1) parabolic PDEs with
unknown source term of the form

∂z(x, t)
∂ t

=
∂ 2z(x, t)

∂x2 +λ (t)z(x, t)+ f (x, t), (x, t) ∈ I ×T,

(3.1)

with the boundary conditions

z(0, t) = c1(t), z(L1, t) = c2(t), t ∈ T, (3.2)

and the initial state

z(x,0) = c3(x), x∈ I, (3.3)

where I≡ [0,L1], T ≡ (0,L2], c1(t), c2(t), c3(x) and
f (x, t) are given functions, whilez(x, t) λ (t) are unknown
functions. To determine the unknown source term
functionλ (t), we introduce the extra condition

∫ η(t)

0
Θ(x)z(x, t)dx= c4(t), t ∈ T. (3.4)

Let us first use the following transformations

u(x, t) = χ(t)z(x, t), χ(t) = e−
∫ t
0 λ (t)dt

,
(3.5)

enable one to rewrite (3.1)-(3.4) in the form

∂u(x, t)
∂ t

=
∂ 2u(x, t)

∂x2 + χ(t) f (x, t), (x, t) ∈ I ×T,

(3.6)

with the boundary conditions

u(0, t) = c1(t)χ(t), u(L1, t) = c2(t)χ(t), t ∈ T,
(3.7)

the initial state

u(x,0) = c3(x), x∈ I, (3.8)

and the extra condition
∫ η(t)

0
Θ(x)u(x, t)dx= c4(t)χ(t), t ∈ T. (3.9)

The solution of partial differential equation may be
approximated by a finite expansion of orthogonal
polynomial for some collocation points for the space
variable. After computing partial derivatives, for the
space variable, at these collocation points, we set these
expansions in the differential equation to obtain SODEs
in time discretization. The interested reader can see also,
[41,42]. To this end, the polynomial approximation of
degreeN to u(x, t) may be expressed in terms of the
Legendre series{PL1,i(x)} in the form

u(x, t) =
N

∑
i=0

ai(t)PL1,i(x). (3.10)

It follows from the information included in the previous
section, that

ai(t) =
1
h̄i

N

∑
j=0

PL1,i(ζN, j )ϖL1
N, j u j(t), (3.11)

where

ζN, j =
L1(xN, j +1)

2
, ϖL1

N, j =
L1

2
ϖN, j , u j(t)= u(ζN, j , t).

We can further rewrite (3.10) as

u(x, t) =
N

∑
j=0

( N

∑
i=0

1
h̄i

PL1,i(ζN, j )PL1,i(x)ϖ
L1
N, j

)
u j(t). (3.12)

The first-order spatial partial derivative at a specific
collocation nodeζN,n can be obtained from (3.12) as

ux(ζN,n, t) =
N

∑
i=0

µn,iui(t), 0≤ n≤ N, (3.13)

where

µn,i =
N

∑
j=0

1
h̄j

PL1, j(ζN,i)∂x(PL1, j(ζN,n))ϖL1
N,i . (3.14)

This result can be extended to compute the second-order
spatial partial derivative at a specific collocation nodeζN,n
as

uxx(ζN,n, t) =
N

∑
i=0

γn,iui(, t), 0≤ n≤ N, (3.15)
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where

γn,i =
N

∑
j=0

1
h̄ j

PL1, j(ζN,i)∂xx(PL1, j(ζN,n))ϖL1
N,i . (3.16)

Moreover, the collocation treatment of the extra condition
(3.9) immediately, gives

∫ η(t)

0
Θ(x)

N

∑
j=0

( N

∑
i=0

1
h̄i

PL1,i(ζN, j )PL1,i(x)ϖ
L1
N, j

)
u j(t)dx= c4(t)χ(t), t ∈ I,

(3.17)
yields

χ(t) =

N
∑
j=0

I j(t)u j(t)

c4(t)
, I j(t) =

N

∑
i=0

(ϖL1
N, j

h̄i
PL1,i(ζN, j )

∫ η(t)

0
Θ(x)PL1,i(x)dx

)
.

(3.18)
Consequently, the boundary conditions (3.7) can be
reformulated as

u0(t) =
c1(t)
c4(t)

N

∑
j=0

I j(t)u j(t), uN(t) =
c2(t)
c4(t)

N

∑
j=0

I j(t)u j(t), t ∈ T,

(3.19)
and due to (3.19), we find

u0(t) =
(c4(t)− c2(t)IN(t))c1(t)

n−1
∑

r=1
Ir(t)ur(t)− c1(t)c2(t)IN(t)

n−1
∑

r=1
Ir(t)ur(t)

(c4(t)− c1(t)I0(t))(c4(t)− c2(t)IN(t))− c1(t)c2(t)I0(t)IN(t)
,

uN(t) =
c2(t)

(
(c4(t)− c2(t)IN(t))c1(t)

n−1
∑

r=1
Ir(t)ur(t)− c1(t)c2(t)IN(t)

n−1
∑

r=1
Ir(t)ur(t)

)

c1(t)
(
(c4(t)− c1(t)I0(t))(c4(t)− c2(t)IN(t))− c1(t)c2(t)I0(t)IN(t)

) .

(3.20)
In the context of Legendre pseudo-spectral approximation,
putting (3.13) and (3.15) in (3.6) gives

u̇n(t) =
N

∑
i=0

γn,iui(t)+ γn,0u0(t)+ γn,NuN(t)+
fn(t)
c4(t)

N

∑
j=0

I j(t)u j(t), 1≤ n≤ N−1,

(3.21)
where u0(t) and uN(t) may be given in (3.20).
Furthermore, the preceding equation provides a system of
(N−1) ODEs in time, namely

u̇n(t) =
N

∑
i=0

γn,iui(t)+ γn,0u0(t)+ γn,NuN(t)+
fn(t)
c4(t)

N

∑
j=0

I j(t)u j(t),

(3.22)
subject to

un(t) = c3(ζN,n), n= 1, · · · ,N−1, (3.23)

Or in matrix notation as:




u̇1(t)
u̇2(t)
· · ·
· · ·
· · ·

u̇N−2(t)
u̇N−1(t)




=




N
∑

i=0
γ1,iui(t)+ γ1,0u0(t)+ γ1,NuN(t)+

f1(t)
c4(t)

N
∑
j=0

I j(t)u j(t)

N
∑

i=0
γ2,iui(t)+ γ2,0u0(t)+ γ2,NuN(t)+

f2(t)
c4(t)

N
∑
j=0

I j(t)u j(t)

· · ·
· · ·
· · ·

N
∑

i=0
γN−2,iui(t)+ γN−2,0u0(t)+ γN−2,NuN(t)+

fN−2(t)
c4(t)

N
∑
j=0

I j(t)u j(t)

N
∑

i=0
γN−1,iui(t)+ γN−1,0u0(t)+ γN−1,NuN(t)+

fN−1(t)
c4(t)

N
∑
j=0

I j(t)u j(t)




,

(3.24)




u1(0)
u2(0)
· · ·
· · ·
· · ·

uN−2(0)
uN−1(0)




=




c3(ζN,1)
c3(ζN,2)

· · ·
· · ·
· · ·

c3(ζN,N−2)
c3(ζN,N−1)




. (3.25)

3.2 Extra condition at x∗

Consider the following(1 + 1) parabolic PDEs with
unknown source term of the form

∂z(x, t)
∂ t

=
∂ 2z(x, t)

∂x2 +λ (t)z(x, t)+ f (x, t), (x, t) ∈ I ×T,

(3.26)
with the boundary conditions

z(0, t) = c1(t), z(L1, t) = c2(t), t ∈ T, (3.27)

and the initial state

z(x,0) = c3(x), x∈ I, (3.28)

where I≡ [0,L1], T ≡ (0,L2], c1(t), c2(t), c3(y) and
f (x, t) are given functions, whilez(x, t) λ (t) are unknown
functions. To determine the unknown source term
functionλ (t), we introduce the extra condition

z(x∗, t) = c4(t), t ∈ T. (3.29)

Considering the following transformations

u(x, t) = χ(t)z(x, t), χ(t) = e−
∫ t
0 λ (t)dt

, (3.30)

thus (3.26)-(3.30) can be transformed into

∂u(x, t)
∂ t

=
∂ 2u(x, t)

∂x2 + χ(t) f (x, t), (x, t) ∈ I ×T,

(3.31)

with the boundary conditions

u(0, t) = c1(t)χ(t), u(L1, t) = c2(t)χ(t), t ∈ T,
(3.32)

and the initial state

u(x,0) = c3(x), x∈ I, (3.33)

the extra condition

u(x∗, t) = c4(t)χ(t), t ∈ T. (3.34)

Here, the collocation treatment of the extra condition
(3.34) immediately, gives

N

∑
j=0

( N

∑
i=0

1
h̄i

PL1,i(ζN, j)PL1,i(x
∗)ϖL1

N, j

)
u j(t) = c4(t)χ(t), t ∈ I,

(3.35)

c© 2015 NSP
Natural Sciences Publishing Cor.



Math. Sci. Lett.4, No. 1, 81-90 (2015) /www.naturalspublishing.com/Journals.asp 85

yields

χ(t) =

N
∑
j=0

κ ju j(t)

c4(t)
, κ j =

N

∑
i=0

(ϖL1
N, j

h̄i
PL1,i(ζN, j )PL1,i(x

∗)
)
,

(3.36)

consequently, the boundary conditions (3.32) can be
reformulated as

u0(t) =
c1(t)
c4(t)

N

∑
j=0

κ ju j(t), uN(t) =
c2(t)
c4(t)

N

∑
j=0

κ ju j(t), t ∈ T,

(3.37)
and due to (3.37), we find

u0(t) =
(c4(t)− c2(t)κN)c1(t)

n−1
∑

r=1
κrur(t)− c1(t)c2(t)κN

n−1
∑

r=1
κrur(t)

(c4(t)− c1(t)κ0)(c4(t)− c2(t)κN)− c1(t)c2(t)κ0κN
,

uN(t) =
c2(t)

(
(c4(t)− c2(t)κN)c1(t)

n−1
∑

r=1
κrur(t)− c1(t)c2(t)κN

n−1
∑

r=1
κrur(t)

)

c1(t)
(
(c4(t)− c1(t)κ0)(c4(t)− c2(t)κN)− c1(t)c2(t)κ0κN

) .

(3.38)
Based on the information included in this subsection and
the recent one, we obtain the following SODEs

u̇n(t) =
N

∑
i=0

γn,iui(t)+ γn,0u0(t)+ γn,NuN(t)+
fn(t)
c4(t)

N

∑
j=0

κ ju j(t), 1≤ n≤ N−1,

(3.39)
where u0(t) and uN(t) may be given in (3.38).
Furthermore, the preceding equation provides a system of
(N−1) ODEs in time, namely

u̇n(t) =
N

∑
i=0

γn,iui(t)+ γn,0u0(t)+ γn,NuN(t)+
fn(t)
c4(t)

N

∑
j=0

κ ju j(t),

(3.40)
subject to

un(t) = c3(ζN,n), n= 1, · · · ,N−1, (3.41)

Or in matrix notation as:




u̇1(t)
u̇2(t)
· · ·
· · ·
· · ·

u̇N−2(t)
u̇N−1(t)




=




N
∑

i=0
γ1,iui(t)+ γ1,0u0(t)+ γ1,NuN(t)+

f1(t)
c4(t)

N
∑
j=0

κ ju j(t)

N
∑

i=0
γ2,iui(t)+ γ2,0u0(t)+ γ2,NuN(t)+

f2(t)
c4(t)

N
∑
j=0

κ ju j(t)

· · ·
· · ·
· · ·

N
∑

i=0
γN−2,iui(t)+ γN−2,0u0(t)+ γN−2,NuN(t)+

fN−2(t)
c4(t)

N
∑
j=0

κ j(t)u j(t)

N
∑

i=0
γN−1,iui(t)+ γN−1,0u0(t)+ γN−1,NuN(t)+

fN−1(t)
c4(t)

N
∑
j=0

κ ju j(t)




,

(3.42)



u1(0)
u2(0)
· · ·
· · ·
· · ·

uN−2(0)
uN−1(0)




=




c3(ζN,1)
c3(ζN,2)

· · ·
· · ·
· · ·

c3(ζN,N−2)
c3(ζN,N−1)




. (3.43)

The SODEs (3.24) and (3.42) may be solved by IRK
Scheme. The Runge-Kutta method can be expressed as
one of powerful numerical integrations tools used for
initial value SODEs of first order [43,44,45]. The IRK
method represented a subclass of the well-known family
of Runge-Kutta methods (see, [46]), and has many
applications in the efficient numerical solution of system
of initial and boundary value ordinary differential
equations. These methods are suitable for stiff problems
(where the global accuracy of the numerical solutions is
determined by the stability rather than by the local error
and implicit methods are more appropriate for it. In fact,
we used the IRK to solve numerically the resulted
SODEs. The interested reader is referred to [43,44,45],
for more details about how to solve such systems and
some special cases of them.

4 Applications and numerical results

In this section, we give some numerical results obtained
by using the algorithms presented in the previous section.
Comparisons of our results with those obtained by other
methods reveal that our methods are very effective and
convenient.

The difference between the measured value of
approximate solution and its actual value (absolute error),
given by

E(x, t) = |u(x, t)−uN(x, t)|, (4.1)

wherex, t u(x, t) anduN(x, t) are the space variable, time,
exact and the numerical solution, respectively. Moreover,
the maximum absolute errors (MAEs) is given by

L∞ = Max{E(x, t) : over all domain}. (4.2)

Also, we can define the norm infinity as

Lλ
∞ = Max{|λ (t)−λN(t)| : over all time domain}. (4.3)

Example 1Our first example deals with the [47]

∂z(x,t)
∂ t = ∂ 2z(x,t)

∂x2 +λ (t)z(x, t)+et
(
−t2x+(π − t)(π + t)cos(πx)

)
, (x, t) ∈ [0,1]× [0,1],

(4.4)
subject to the initial condition

u(x,0) = x+ cos(πx), x∈ [0,1], (4.5)

the boundary conditions

u(0, t) = et
, u(1, t) = 0, t ∈ [0,1], (4.6)

and the extra condition
∫ 1

0
(1+ x2)u(x, t)dx= et

(
3
4
− 2

π2

)
, t ∈ [0,1], (4.7)
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Table 2: MAEs for problem (4.4).
N = 4 N = 8 N = 12 N = 20

L∞ 1.49493×10−2 2.12893×10−6 4.58358×10−11 3.9968×10−15

Lλ
∞ 8.81203×10−3 2.5027×10−7 5.88205×10−8 9.53015×10−13

Table 1: Comparison between the absolute errors ofu(x, t) for
problem (4.4).
x t [47] at N = 50 N = 12 N = 20

0.1 1 1.2889×10−7 3.46869×10−11 1.77636×10−15

0.2 2.6637×10−7 4.6593×10−11 3.10862×10−15

0.3 3.3278×10−7 4.63749×10−11 2.66454×10−15

0.4 3.6539×10−7 3.10243×10−11 1.11022×10−15

0.5 3.6196×10−7 6.66134×10−16 0
0.6 3.2816×10−7 3.10241×10−11 3.33067×10−16

0.7 2.6980×10−7 4.63748×10−11 1.22125×10−15

0.8 1.9168×10−7 4.65951×10−11 8.56953×10−16

0.9 9.6142×10−8 3.46844×10−11 3.05311×10−16

Table 3: Comparison between the absolute errors ofλ (t) for
problem (4.4).

t [47] at N = 50 N = 8 N = 20
0.1 2.8274×10−6 1.13693×10−10 3.17524×10−13

0.2 2.5925×10−6 6.73483×10−12 1.29452×10−13

0.3 2.5241×10−6 5.63261×10−12 3.17524×10−14

0.4 2.4637×10−6 5.81424×10−12 1.51656×10−13

0.5 2.5298×10−6 6.03961×10−12 9.53015×10−13

0.6 2.6315×10−6 6.39955×10−12 3.13083×10−14

0.7 2.8398×10−6 6.84208×10−12 3.37064×10−13

0.8 3.0592×10−6 7.40097×10−12 5.99965×10−13

0.9 3.3091×10−6 8.06932×10−12 3.89688×10−13

1.0 8.3675×10−6 8.87801×10−12 3.75255×10−13

the exact solution and unknown term may be given by

u(x, t) = et(cos(πx)+ x), λ (t) = 1+ t2
. (4.8)

The solution of this problem is obtained by applying
SL-GL-C method. In Table1, we compare our numerical
results obtained by the present method at two choice ofN
with those obtained by compact finite difference scheme
[47]. From Table1, we see that we can achieve a good
approximation with the exact solution by using shifted
Legendre polynomials and our method is more accurate
than compact finite difference scheme [47]. Moreover,
MAEs for four different choice ofN are shown in Table2.
Finally we compare in Table3, the absolute error of the
unknown source termλ (t) obtained by the present
method at two choice ofN with those obtained by
compact finite difference scheme [47].

Fig. 1 shows the Graph of numerical solutioñu(x, t)
obtained atN = 20. We draw the absolute error graph for
the unknown solutionu(x, t) at N = 20 for problem (4.4)

Fig. 1: Graph of numerical solutionuN for problem (4.4) at N =
20.

Fig. 2: Graph of absolute error functions atN = 20 for problem
(4.4).

in Fig. 2. Moreover, in Fig.3 we see the agreement of the
curves of numerical and exact value of unknown source
termλ (t) at N = 20 for the first example.

Example 2We next consider the following
initial-boundary value inverse problem [48]

∂z(x,t)
∂ t = ∂ 2z(x,t)

∂x2 +λ (t)z(x, t)+et
(
2tx+

(
π2+2t

)
cos(πx)

)
, (x, t) ∈ [0,1]× [0,T],

(4.9)
subject to the initial condition

u(x,0) = x+ cos(πx), x∈ [0,1], (4.10)

the boundary conditions

u(0, t) = et
, u(1, t) = 0, t ∈ [0,T], (4.11)
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Fig. 3: Cruves of numerical and exact value of unknown source
termλ (t) at N = 20 for problem (4.4).

and the extra condition

∫ 0.5(1+
√

t)

0
u(x, t)dx= et

(
(1+

√
t)2

8
+

sin(0.5π(1+
√

t))
π

)
, t ∈ [0,T],

(4.12)
the exact solution and unknown term may be given by

u(x, t) = et(cos(πx)+ x), λ (t) = 1−2t, (x, t) ∈ [0,1]× [0,T],
(4.13)

For several values ofx, we introduce in Table3 a
comparison between our method and finite difference
method [48]. Table 5 listed the MAE of numerical
solution using SL-GL-C method. While in Fig.4, the
curves of exact and numerical solution of problem (4.9) at
t = 0.1, 0.5 and 1.0 have been sketched. The t-direction
curve of absolute error of problem (4.9), at x = 0.5 and
N = 20 is plotted in Fig.5. Fig. 6 displayed the behavior
of the absolute errors curve inx-directions with specific
value oft.

Example 3In the last example, we consider the following
[47]

∂z(x,t)
∂ t = ∂ 2z(x,t)

∂x2 +λ (t)z(x, t)+e−t2
(
π2− (1+ t)2

)
(cos(πx)+ sin(πx)), (x, t) ∈ [0,1]× [0,1],

(4.14)
subject to the initial condition

u(x,0) = cos(πx)+ sin(πx), x∈ [0,1], (4.15)

the boundary conditions

u(0, t) = e−t2
, u(1, t) =−e−t2

, t ∈ [0,1], (4.16)

and the extra condition

u(0.25, t) =
√

2e−t2
, t ∈ [0,1], (4.17)
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Fig. 4: The curves of exact and numerical solutions for problem
(4.9) atN = 20.
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Fig. 5: t-direction absolute error curve atx= 0.5 andN = 20 for
problem (4.9).

the exact solution and unknown term may be given by

u(x, t) = e−t2(cos(πx)+ sin(πx)), λ (t) = 1+ t2
, (x, t) ∈ [0,1]× [0,1].

(4.18)
Table 6 demonstrate that the results of MAEs ofλ (t)
acquired by the proposed method are very accurate at
N = 8, 10, 12, and 20. While, a comparison is
listed in Table7 between the absolute error ofλ (t) for
problem (4.14) which obtained in [47] and the results
obtained in this paper.

We draw the numerical solution of problem (4.14),
where N = 20 in Fig. 7. While, the x and t-direction
curves of numericaluN(x, t) and exactu(x, t) solutions of
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Table 4: Comparison between the absolute errors ofu(x, t) for problem (4.9) at T = 0.5.
x [48] at N = 50 N = 10 N = 20 x [48] at N = 50 N = 10 N = 20

0.05 3.00×10−3 4.06×10−9 1.11×10−15 0.55 2.50×10−3 4.15×10−10 1.55×10−15

0.1 3.10×10−3 1.56×10−9 1.99×10−15 0.6 2.40×10−3 7.01×10−9 1.44×10−15

0.15 3.20×10−3 6.72×10−9 1.33×10−15 0.65 2.50×10−3 6.93×10−9 1.33×10−15

0.2 3.10×10−3 3.22×10−9 1.55×10−15 0.7 2.60×10−3 5.28×10−10 1.55×10−15

0.25 3.00×10−3 5.34×10−9 1.33×10−15 0.75 2.70×10−3 7.13×10−9 1.27×10−15

0.3 2.80×10−3 7.01×10−9 8.88×10−16 0.8 2.70×10−3 5.45×10−9 1.41×10−15

0.35 2.90×10−3 7.10×10−10 5.55×10−16 0.85 2.80×10−3 3.12×10−9 5.15×10−16

0.4 2.80×10−3 7.04×10−9 6.66×10−16 0.9 2.90×10−3 6.63×10−9 9.99×10−16

0.45 2.70×10−3 7.12×10−9 8.88×10−16 0.95 2.90×10−3 1.59×10−9 7.77×10−16

0.5 2.60×10−3 4.10×10−9 6.73×10−16

Table 5: MAEs for problem (4.9)at T = 0.5.
N = 4 N = 8 N = 10 N = 20

L∞ 9.99014×10−3 1.36809×10−6 7.13045×10−9 1.9984×10−15

Table 6: MAEs for problem (4.14).
N = 8 N = 10 N = 12 N = 20

Lλ
∞ 1.07116×10−4 4.28578×10−5 3.37391×10−7 1.1704×10−12

0.0 0.2 0.4 0.6 0.8 1.0
0

5.´10-16

1.´10-15

1.5´10-15

2.´10-15

2.5´10-15

3.´10-15

3.5´10-15

x

E
Hx

,0
.5
L

Fig. 6: x-direction absolute error curve att = 0.5 andN = 20 for
problem (4.9).

problem (4.14), whereN = 20 are sketched in Figs.8 and
9, respectively.

5 Conclusions

The shifted Legendre Gauss-Lobatto pseudo-spectral
method was investigated successfully in spatial
discretizations to get accurate approximate solutions of
inverse problems of parabolic types equations. All of
these problems were transformed to SODEs in time
which greatly simplifying the problems. The IRK scheme
is then applied to the resulting systems. From the
numerical experiments, the obtained results were
demonstrated the effectiveness and highly accuracy of

Table 7: Comparison between the absolute errors ofλ (t) for
problem (4.14).

t [47] at N = 40 N = 12 N = 20
0.1 4.1325×10−9 3.71773×10−9 9.28813×10−13

0.2 4.1342×10−9 3.82944×10−9 4.91163×10−13

0.3 4.1374×10−9 3.85055×10−9 5.11147×10−13

0.4 4.1247×10−9 3.8628×10−9 7.24532×10−13

0.5 4.1371×10−9 3.87524×10−9 5.4845×10−13

0.6 4.1256×10−9 3.88865×10−9 4.28102×10−13

0.7 4.1451×10−9 3.90345×10−9 1.07692×10−13

0.8 4.1089×10−9 3.91985×10−9 3.98792×10−13

0.9 4.1589×10−9 3.93766×10−9 1.17084×10−12

Fig. 7: Graph of numerical solutionuN for problem (4.14) atN =
20.
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Fig. 9: t-direction curves of exact and numerical solutions for
problem (4.9) atN = 20.

Legendre Gauss-Lobatto pseudo-spectral method for
solving the mentioned problems.

The technique can be extended to more sophisticated
problems. In principle, this method may be extended to
related problems in mathematical physics. It is possible to
use other orthogonal polynomials, say Chebyshev
polynomials, or Jacobi polynomials to solve the
mentioned problems in this article. Furthermore, the
proposed spectral method might be developed by
considering the Legendre pseudo-spectral approximation
in both temporal and spatial discretizations. We should
note that, as a numerical method, we are restricted to
solving problems over a finite domain. Also, the
pseudo-spectral approximation might be employed based
on generalized Laguerre or modified generalized
Laguerre polynomials to solve similar problems in a
semi-infinite spatial intervals.
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