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Abstract: This paper reports a new Legendre Gauss-Lobatto collatéfib-GL-C) method to solve numerically two inverse probéem
of parabolic partial differential types equations subjednitial-boundary conditions. This problem is reformteld by eliminating the
unknown functions using some special assumptions basecgendre Gauss-Lobatto quadrature rule. The SL-GL-C iredilto
solve non-classical parabolic initial-boundary valuefjpeons. Accordingly, the inverse problem is reduced intostiesy of ordinary
differential equations (SODESs) and afterwards, such systan be solved numerically using implicit Runge-Kutta ()RKethod of
order four. For demonstrating the robust, effectivenest sdable approximations of the present method, severakteshples are
presented.
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1 Introduction providing highly accurate solutions. On the other hand,
the collocation method has became increasingly popular
One of the best methods, in term of the accuracy, forfor solving partial differential equations during the last
obtaining the numerical solution of various kinds of decadesZ3,24].
differential equations is spectral method (se8;[p]).
Because of all types of spectral methods are global, they Parabolic partial differential equations describe a
very convenient for approximating linear and nonlinearwide range of problems in various fields of science
partial differential equations. A significant advantage of including heat diffusion25], ocean acoustic propagation
the spectral methods over the finite-difference and[26], population dynamics 47], dynamics of nuclear
finite-element methods is that the high accuracy ofreactors 28], adsorption of pollutants in soil and the
spectral techniques. From the overview of approximationdiffusion of neutrons. The parabolic partial differential
to the underline problem, the spectral method has beeproblem is concerned with calculation of unknown
divided to three primary classifications namely Galerkin solution while the initial and boundary conditions are
[6,7], tau [8,9] and collocation 10,11] methods. given. Otherwise in inverse parabolic partial differehtia
The collocation method has a wide range of problem with over specified condition, the determination
application, due to its ease of use and adaptable in variousf unknown solution and unknown source term are
problems, including linear and nonlinear differential required. The inverse problems have been widely used in
equations 12]-[16], integral equations 17,19, modelling of physical29,30] and engineeringd1,32,33,
integro-differential ~ equations 1P,20], fractional = 34] problems. Most often, the analytical solution for
differential equationsq1,22] and variational problems inverse problem is difficult to obtain. Several numerical
[1]. According to exponential rate of convergence methods had been introduced to obtain the solutions of
obtained by collocation method, it is very useful in inverse problems, see for examp8s]36,37,38,39,40].
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Our main motivation in this paper is to develop a wherew(x) =1, hy = Til The Legendre-Gauss-Lobatto

spectral approximation of a class of inverse problems ofquadrature has been used to evaluate the previous integrals
parabolic partial differential types equations, usindtsdi  accurately. For ang € Sn-1[—1,1], we have that

Legendre collocation method in conjunction with L

Legendre Gauss-Lobatto quadrature and the implicit N
Runge Kutta method. We construct a spectral /qo(x)dx: Z}m\l,j(P(XNJ)- (2.4)
approximation in spatial discretization to solve the irseer 1 1=

problems of parabolic partial differential types equasion . . . :
This scheme has the advantage of reducing the invers¥/e introduce the following discrete inner product

problems of parabolic partial differential types equation N
into SODEs, which greatly simplifying the problem. We (U,V)w = zou(XN’j)V(XN’j) W, - (2.5)
then use implicit Runge Kutta algorithm for solving this i=

SODEs. Finally, we implement the algorithm to solve
several reasonable examples in order to demonstrate tHe?
method is accurate and efficient compared with
alternative methods.

The rest of this article is organized as follows. In the are the zeros ofFy(x))

r Legndre Gauss-Lobatto, we find thal [
XN,0:_17 XN7N:17 XNJ(j :177N_1)

/
3

next section, we present some preliminaries and 2
properties of Legendre polynomials. In Section 3, by N,j = N(N+ 1) (Pu(xn.j))2
using spectral collocation method, we construct and ! (2.6)

develop an algorithm for the solution of the inverse

problems of parabolic partial differential types equasion wherexy j (0 < j < N) andmy,j (0 < j < N) are used as
with Dirichlet conditions. In Section 4, some illustrative ysual the nodes and the corresponding Christoffel
numerical experiments are given and some comparisongumbers in the interval-1, 1], respectively. In order to
are made between our method and other methods. Thgse these polynomials on the intervalc (0,L;) we

paper ends with some conclusions and observations igefined the so-called shifted Legendre polynomials by

ti . . . .
Section 5 introducing the change of variable= — — 1. Let the
1

. . 2x
2 Some properties of shifted Legendre shifted Legendre ponnomlal'e(L—l —1) be denoted by

polynomials R,.i(X). ThenP, () can be obtained with the aid of the
following recurrence formula:

The well-known Legendre polynomial(x) are defined

on the interval —1,1). Firstly, some properties about the (i+1)PLi+1(X) = (2 +1)(& ~ DRLi(x) —iPLi-1(x), i=12,.

standard Legendre polynomials have been recalled in this . _ 2.7)
section. The Legendre polynomiaf(x) (k= 0,1...,) The analytic form of. the shifted Legendre polynomials
satisfy the following Rodrigues formula R,.i(x) of degred is given by
(DK 2\k 21 P ik (i+K)! k
H((X) = 2kk| D ((1 X ) )7 ( . ) H_11|(X) = kgo(—l) W X, (28)

we recall also thaB(x) is a polynomial of degree k and

@ R e the orthogonality condition may be given by
thereforePkq (x) (the gth derivative oF(x)) will given by

L1
kg R, (R, k()W (X)dX=he Ok, (2.9)
R0 = Y  GkiRX.,  (2.2) °
i=0(k H—=ever) L1

wherew, (X) = 1 andhy = K

where _ _ A function u(x), square integrable if0,L1), may be
Calk) 20-1(2i + 1)/'(%"*')1'(%) expressed in terms of shifted Legendre polynomials as
)= . —.
I— (q),— ( 27q<2‘rkfl ),— ( 37q<2‘rk+l ) .

The Legendre polynomials satisfy the following relations
Po(¥) =1, Pi(X) =X R2(x) = F5FXRe1(x) — [G3RX),

u(x) = > iR j(x),
jZOJ i

and the orthogonality relation where the coefficients; are given by
; L dx  j=0,1,2
AR = [ROROW =hd @3 Oy R =012
g (2.10)
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In practice, only the firstN + 1)-terms shifted Legendre the initial state
polynomials are considered. Henax) can be expressed
in the form N u(x,0) =cz(x), xel, (3.8)

Un (X) =~ JZOCJ' Rl (X). (211)  and the extra condition

/ OMu(xt)dx=cat)x(t), teT.  (3.9)
3 Shifted L egendre pseudo-spectral scheme

The solution of partial differential equation may be
We propose a pseudo-spectral algorithm based on shiftegdpproximated by a finite expansion of orthogonal
Legendre pseudo-spectral method in conjunctionpolynomial for some collocation points for the space
Gauss-Lobatto quadrature rule to integrate the spatialariable. After computing partial derivatives, for the
variable for the(1+ 1) inverse problems of parabolic space variable, at these collocation points, we set these
partial differential types equations. The problem is thenexpansions in the differential equation to obtain SODEs
transformed into a SODEs in temporal discretization. Thejn time discretization. The interested reader can see also,
IRK scheme is employed to integrate the resulting[41,42]. To this end, the polynomial approximation of
SODEs. degreeN to u(x,t) may be expressed in terms of the
Legendre serie§R_, i(X)} in the form

3.1 Extra condition in an integral form N
J R LLNS (3.10)

Consider the following(1 + 1) parabolic PDEs with
unknown source term of the form It follows from the information included in the previous
section, that

dz(x,t)  9%z(x.t)

= +A(t)zZ(x,t) + F(xt) (xt)elxT 1N
ot ax2 ’ T ’ ’ = i(dnyg) uj(t), (3.11)
(3.1) R & I
with the boundary conditions where

_ _ Li(xn,j+1 Ly
Z(Ovt) Cl(t)a Z(let) CZ(t)a te Tv (32) ZN,j = 7( ZJ ) , L:}J = ?WN i Uj (t) = U(ZN,j ,t)

and the initial state We can further rewrite3.10 as

Z(X,O) :C3(X)a xel, (33) N

where I= [0,L1], T = (0,La], ci(t), ca(t), cs(x) and uxt) = Z)(Zﬁﬁphl NP (X )wNJ)u,( ). (3.12)

f(x,t) are given functions, while(x,t) A (t) are unknown
functions. To determine the unknown source termThe first-order spatial partial derivative at a specific
functionA (t), we introduce the extra condition collocation node/n » can be obtained fron8(12 as

/ O(X)z(x,t)dx=c4(t), teT. (3.4)

ZN n, %u[‘”l«h t OSHSN, (313)
Let us first use the following transformations
) where
u(x,t) = x()z(xt), x(t)=e AN (3.5)
1 L
enable one to rewrite3(1)-(3.4) in the form Hni = zoﬁijl,j(ZN,i)ax(PLl,j(ZN,n))wN,li- (3.14)
J:
2
uxy) _ 9 u();’t) +x)f(xt), (xt) el xT, This result can be extended to compute the second-order
ot ox (3.6) spatial partial derivative at a specific collocation ndge
' as
with the boundary conditions
N
u(0t) =ci(t)x(t), u(Ly,t)=ca(t)x(t), te T(’?, 2 Uex({nnot) = _Z)yn,iui(,t), 0<n<N, (3.15)
(@© 2015 NSP
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y7 NE ﬁ 7( 7) ( 7( 7))“\' ( " )
n,i : \,i XX N,n |

Moreover, the collocation treatment of the extra condition
(3.9 immediately, gives

/ ox

yields

goﬁal. &)L @Y )uj (Ddx= ca(X (). tel,
(3.17)

N L1 t
GRS J G Ry ACTL R

(3.18)
Consequently, the boundary condition3.7 can be
reformulated as

al) <

(O 7(“
C4(t) l;ll(t)uj(t)y N ( Zo 7

and due t03.19, we find

Up(t) = teT,

(3.19)

uy(0) c3({n,1)
uz(0) ca(dn.2)
- (3.25)
un—2(0) ({NN-2)
un-1(0) ({NN-1)

3.2 Extra condition at %

Consider the following(1 + 1) parabolic PDEs with
unknown source term of the form

dz(xt)  9%z(x.t)
at - ax +/\( ) (X7t)+f(x7t)7 (X,t)Gl XTv
(3.26)
with the boundary conditions
z(0,t) =cq(t), z(Li,t)=cp(t), teT, (3.27)
and the initial state
z(x,0) =c3(x), xe€l, (3.28)

(cat) — ca(t)In(t))ca(t) zl(t uw(t) cl(t)CZ(mN(t)El,(t)urm where |= [_0, Li], T = (O,Ly], ci(t), co(t), cs(y) and
Wlt) =GO —amiem) C4(t () MR OGING) f(x,t) are given funcnons while(x,t) A (t) are unknown
. t)(c(t e ) OGS O (t)) functions. To determine the unknown source term
(D) = 2O{(c Vi)t z OuO—aleli® 2,1 O%0) - functionA (t), we introduce the extra condition
c1<t>(<c4<t>—c1<t>lo )(€a(®) — c2In) —c1<t>cz<t>|o<t>m<t>) .
(3.20) Z(X',t) =ca(t), teT. (3.29)
In the context of Legendre pseudo-spectral approximation L . .
putting @.13 and @.15 in (3.6) gives Considering the following transformations
t
x,t) = x(t)z(x,t t) = e JoA(dt 3.30
un<t):ivn.iui(t>+yn.ouo< Eol Ju(t), L<n<N-1, uixt) =xMzxb), xt)=e (3:30)
. (3.21) thus @.26-(3.30 can be transformed into
where up(t) and un(t) may be given in 3.20. au(x,t)  A2u(xt)
Furthermore, the preceding equation provides a system of —>— = — 5 +x () f(x1), (x,t) €I xT,
(N—1) ODEs in time, namely (3.31)
N t . e
t)fgovmuu )+ yhoto(t) -+ ntn(t) o Z)I (O ) with the boundary conditions
(3 22) U(O,t) = Cl(t)X(t)a U(Llat) = CZ(t)X(t)a teT,
subject to (3.32)
and the initial state
Un(t) = CB(ZNJ'I)a n= 17 e 7N - 17 (323)
_ . _ u(x,0) =cs(x), xel, (3.33)
Or in matrix notation as:
N the extra condition
z Wit (1) + Vobo(t) + Vnt(t) + 235 3 OU()
. N u(xst) =ca(t)x(t), teT. 3.34
328 2 Yol () + yo0Uo(t) + yonun(t )+%Ig 1) (t) (X" 1) = ca(t) x (1) ( )
. Here, the collocation treatment of the extra condition
L (3.39 immediately, gives
Un—2(t) N _ fnot) N
U1 (t) IZOW—ZJUl(t)+VN—2.0U0(‘)+VN—2.NUN<I)+ ) Jzoh(t)ul(t) N N q .
N " - ) . (v 1 . _
a0+ sl )+ 8 ) j;(i;ﬁm,.<m,om,.(x o Jus(t) = calOX (), tel,
(3.24) (3.35)
(@© 2015 NSP
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yields

_Za( iR G P 9).
(3.36)

consequently, the boundary condition3.32 can be
reformulated as

cu(t) co(t)

N
= =25 kju un(t :— KiUj
t%JJ clt) 2 juj(t

teT,

(3.37)
and due t03.37), we find

n—-1 n—-1

(ca(t) — co(t)kn)ca(t) rgl KrUr (t) — Cy(t)Ca(t)Kn rgl Kr U (t)

(Ca(t) — ca(t)Ko)(calt) — Cz(t)KN) — Cy(t)cz(t) KoKk
n—1

ca(t)(ca) ~caltmen(V) 3 () — ex)ca (w3, Ktk (1)

1(t) ((calt) — ca(t)Ko) (Ca(t) — Calt)kn) — Calt)ea(t) Kokn)
(3.38)

Uo(t) =

UN(t) =

Based on the information included in this subsection anqn

the recent one, we obtain the following SODEs

z

N f

() = 3 th0)+ otoft)-+ ost(0) + 20

C4t)J

Kjuj(t), 1<n<N-1,
(3.39)

in 3.39.

where up(t) and un(t) may be given

Furthermore, the preceding equation provides a system of

(N—1) ODEs in time, namely

N N
fa(t)
t) = it t t i (t
) A;)Vnﬁlul( ) + YhoUo(t) + yaNun (L) + ca(t) j;)KJUJ( )
(3.40)
subject to
Un(t) = Ca(dnn), N=1,-- N—1, (3.41)
Or in matrix notation as:
3 A0+ )+ () + 58 5 k)
() 3 (0 +yoot) vt 0+ 58 3 )
i) || 8 st + it + 520 3 i
U1 (t) zom 2,iUi W-2,0Uo W—2NUN Z i i
igow\l—i.iu\ (t) + W-10U0(t) + W—1nUn () + %4(11(;) JgoKJUJ( )
(3.42)
uy(0) c3({n.1)
uz(0) c3(dn,2)
- . (3.43)
un-—2(0) C3(ZN,N—2)
un—1(0) c3({nN-1)

The SODEs 3.24 and @.42 may be solved by IRK
Scheme. The Runge-Kutta method can be expressed as
one of powerful numerical integrations tools used for
initial value SODEs of first orderd(3,44,45]. The IRK
method represented a subclass of the well-known family
of Runge-Kutta methods (seedf]), and has many
applications in the efficient numerical solution of system
of initial and boundary value ordinary differential
equations. These methods are suitable for stiff problems
(where the global accuracy of the numerical solutions is
determined by the stability rather than by the local error
and implicit methods are more appropriate for it. In fact,
we used the IRK to solve numerically the resulted
SODEs. The interested reader is referred48, 44,45,

for more details about how to solve such systems and
some special cases of them.

4 Applications and numerical results

In this section, we give some numerical results obtained
by using the algorithms presented in the previous section.
Comparisons of our results with those obtained by other
ethods reveal that our methods are very effective and
convenient.

The difference between the measured value of
approximate solution and its actual value (absolute error)
given by
E(th) = |U(X,t) - UN(th)|7 (41)
wherex, t u(x,t) andun(x,t) are the space variable, time,
exact and the numerical solution, respectively. Moreover,
the maximum absolute errors (MAES) is given by

Lo = Max{E(x,t) : over all domait}. (4.2)

Also, we can define the norm infinity as
L2 = Max{|A (t) — An(t)] : over all time domail. (4.3)
Example 10ur first example deals with thdT]

92xt) _ %X 4 (1) 2(x,t) + € (—t2x-+ (11— 1) (7T 1) cog ) , (1) € [0,1] x [0, 1],

i

(4.4)
subject to the initial condition
u(x,0) = x+cogmnx), xe 0,1, (4.5)
the boundary conditions
u0t)=¢€, u(Lt)=0, tc[0,1, (4.6)
and the extra condition
/1(1+x2)u(x Dax=é (-2, te01, @7)
0 ) - 4 7_[2 ) ) ) .
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Table 2: MAEs for problem 4.4).
N=4 N=38 N=12 N =20
Lo | 1.49493x 102 2.12893x10°°® 4.58358x 1011  3.9968x 10 1°
LA | 8.81203x 103 25027x 107  5.88205x 108  9.53015x 1013

Table 1: Comparison between the absolute errorsieft) for

problem @.4).
Xt | [47]atN=50 N=12 N =20
0.1 1] 1.2889x107 | 3.46869x 1011  1.77636x 10 1°
0.2 2.6637x 107 | 4.6593x 10711  3.10862x 10°1°
0.3 3.3278x 107 | 4.63749x 1011 2.66454x 1015 !
0.4 3.6539x 107 | 3.10243x 1011  1.11022x 10716 "W EH
0.5 3.6196x 107 | 6.66134x 10716 0
0.6 3.2816x 1077 | 3.10241x 10711  3.33067x 10716
0.7 2.6080x 107 | 4.63748x 1011 1.22125x 1015
0.8 1.9168x 107 | 4.65951x 10711  8.56953x 1016
0.9 9.6142x 1078 | 3.46844x 10711  3.05311x 10716

Table 3: Comparison between the absolute errorsA¢f) for

Fig. 1. Graph of numerical solutiony for problem @.4) atN =
20.

problem @.4).
t | [47]atN =50 N=8 N =20
0.1] 2.8274x10°°% | 1.13693x 1010  3.17524x 10713
0.2 | 25925x 1076 | 6.73483x 10712 1.29452x 10°13
0.3 | 25241x10°% | 5.63261x 10712 3.17524x 1014
0.4 | 2.4637x 1076 | 5.81424x 10712 1.51656x 1013
0.5 | 2.5298x 10°® | 6.03961x 10712 9.53015x 1013
0.6 | 2.6315x 1076 | 6.39955x 10712  3.13083x 1014 43R 1“'1;
0.7 | 28398x 106 | 6.84208< 10712 337064x 10718 S it 10
0.8 | 3.0592x 1076 | 7.40097x 1012 599965 1013 1w10-14
0.9 | 3.3091x 10°® | 8.06932x 10712  3.89688x 1013 o
1.0 | 8.3675x10°® | 8.87801x 10 12  3.75255x 1013 o0

the exact solution and unknown term may be given by

Fig. 2: Graph of absolute error functions ldt= 20 for problem

(4.9.

uxt) =€ (cogmx)+x), A(t)=1+t2 (4.8)

The solution of this problem is obtained by applying in Fig. 2. Moreover, in Fig3 we see the agreement of the

?elé-ﬁtt-gbg?rfggdb lThLab:gs:rlﬁ ;%T&ﬂif&;g&?gi; curves of numerical and exact value of unknown source
y e p termA (t) atN = 20 for the first example.

with those obtained by compact finite difference scheme

[47]. From Tablel, we see that we can achieve a good Example 2We next consider the
approximation with the exact solution by using shifted initial-boundary value inverse problerd§]
Legendre polynomials and our method is more accurate

than compact finite difference schem&7]. Moreover, 220 — 2260 | ) t)z(x,t) + ¢ (2tx-+ (72 + 2t) cos X)),

following

(xt) € [0,1] x [0,T],

MAEs for four different choice oN are shown in Tablg. (4.9
Finally we compare in Tabl8, the absolute error of the subject to the initial condition
unknown source termA(t) obtained by the present
method at two choice ofN with those obtained by u(x,0) = x+cogmx), xe[0,1], (4.10)
compact finite difference schemé1].
Fig. 1 shows the Graph of numerical solutidiix,t)  the boundary conditions
obtained atN = 20. We draw the absolute error graph for
the unknown solutiomi(x,t) at N = 20 for problem 4.4) u(0t)=¢€, u(Lt)=0, tel0,T], (4.11)

(@© 2015 NSP
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Fig. 3: Cruves of numerical and exact value of unknown source X
termA (t) atN = 20 for problem 4.4).

Fig. 4. The curves of exact and numerical solutions for problem

and the extra condition (4.9 atN =20.
0. 2 ;
/()OS(Hmu(x,t)dx:e‘((1+8\/t_) +sm(0.5n7(Tl+\/t'))>7 te 0T,
(4.12) Y
the exact solution and unknown term may be given by \
ux,t) = é(cogmx) +x), A(t)=1-2t, (xt)c[0,1]x[0,T], 15x 1074+ “ ‘ ‘ \
(4.13) AN
For several values ok, we introduce in Table3 a g Lx104} N y ‘ ‘ e
| [\

comparison between our method and finite difference

method H8]. Table 5 listed the MAE of numerical COR \
5.x10°% | | R R

solution using SL-GL-C method. While in Figl, the L N ol \ ‘J’ \“ \} I “
curves of exact and numerical solution of probleh®) at A\ \ / \ /‘ ‘\[‘“\ /] \‘ V \f |
t = 0.1, 0.5 and 1.0 have been sketched. The t-direction ols LM T \4 2B ‘\‘ ]
curve of absolute error of problerd.Q), atx = 0.5 and 0.0 01 0.2 03 04 05

N = 20 is plotted in Fig5. Fig. 6 displayed the behavior
of the absolute errors curve directions with specific

value oft. Fig. 5: t-direction absolute error curve at= 0.5 andN = 20 for
Example 3In the last example, we consider the following problem ¢.9).
[47]
20 _ P 1) (1) 2(x,t) + e (12— (1+1)?) (cos i) +sin()), (x,t) € [0,2] x [0, 1], . .
(4.14) the exact solution and unknown term may be given by
subject to the initial condition ,
u(xt) = e " (cogmx) +sin(mx)),  A(t) =1+t2 (xt) € [0,1] x [0,1].
u(x,0) = cogmx) +sin(mx), xe€ [0,1], (4.15) (4.18)
Table 6 demonstrate that the results of MAEs &ft)
- acquired by the proposed method are very accurate at
the boundary conditions N =8 10, 12, and 20. While, a comparison is
o e listed in Table7 between the absolute error aft) for
uo=e", ult=-e", te[0, (416) ;i hlem #.14 which obtained in 47 and the results
" obtained in this paper.
and the extra condition We draw the numerical solution of problem.14),
2 417 where N = 20 in Fig. 7. While, the x and t-direction
u(0.25t)=v2e™", te[o,1), (4-17) " curves of numericaliy(x,t) and exacti(x,t) solutions of

(@© 2015 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

88 NS > M. A. Abdelkawy et. al. : A method based on Legendre Pseudzetsal...
Table 4: Comparison between the absolute errora(eft) for problem @.9) atT = 0.5.
X | [48atN =50 N=10 N =20 X | [48atN =50 N=10 N =20
0.05| 3.00x10°3 406x10°% 111x10 T | 055| 250x10° | 415x1010 155x10°1T°
0.1 | 310x10°3 156x10°°% 1.99x10°15 | 0.6 | 240x10°3 7.01x10°°% 144x10°15
0.15| 3.20x10°3 6.72x10°° 1.33x10°15 | 0.65| 250x10°3 6.93x10°9 1.33x10°15
0.2 | 3.10x10°3 3.22x10°° 155x10°%% | 0.7 | 260x10°% | 528x10°10 155x10°15
0.25| 3.00x10°3 5.34x10°° 1.33x107% | 0.75| 2.70x10°3 7.13x10°9 127x10°15
0.3 | 280x10°3 7.01x10°° 888x10°16 | 0.8 | 270x10°3 545x 109 141x10°15
0.35| 290x10% | 7.10x10-10 555x10716 | 0.85| 2.80x10°3 312x10°9 5.15x10716
0.4 | 2.80x10°3 7.04x10°° 6.66x10716 | 0.9 | 290x10°3 6.63x 109 9.99x 10716
0.45| 270x10°3 7.12x10°% 888x101 | 0.95| 290x103% | 1.59x10° 7.77x1016
0.5 | 260x10°3 410x10° 6.73x10°16
Table 5: MAEs for problem 4.9atT = 0.5.
N=4 N=8 N =10 N =20
Lo | 9.99014x 103 1.36809x 10 ® 7.13045x 10 9 1.9984x 10 1
Table 6: MAEs for problem 4.14).
N=28 N=10 N=12 N =20
LA | 1.07116x 104 4.28578x10° 3.37391x 10/ 1.1704x 1012
Table 7: Comparison between the absolute errorsA¢f) for
35x 105 E problem @.14).
s t | [47]atN =40 N=12 N =20
3.x10~F 1
0.1 ] 4.1325x 109 | 3.71773x10 % 9.28813x 10 13
28x10%F J E 0.2 | 41342x10°° | 3.82944x10° 4.91163x 1013
2 axwo®r | 1 e 0.3 | 4.1374x10°° | 3.85055x 10 ° 5.11147x 10 3
& 1sx107s) ] [ I 'v‘u’f N\ an i e 0.4 | 41247x10°° | 3.8628x10°°  7.24532x 10 13
11015 ’W J I \“ ‘T 1 1 0.5| 41371x10°° | 3.87524x10°°  5.4845x 10 13
. ‘ “ P 0.6 | 41256x 109 | 3.88865x 10 %  4.28102x 10 13
5:x100 ‘ x V Jw 1 0.7 | 41451x 109 | 3.90345x 109 1.07692x 1013
op v w0 T 0.8 | 4.1089x 1079 | 3.91985x 109 3.98792x 10713
0.0 0.2 0.4 0.6 0.8 10 0.9 | 4.1589x 1079 | 3.93766x 109 1.17084x 1012

Fig. 6: x-direction absolute error curve o 0.5 andN = 20 for
problem &.9).

problem @.14), whereN = 20 are sketched in Fig8.and
9, respectively.

5 Conclusions

The shifted Legendre Gauss-Lobatto pseudo-spectre
method was investigated successfully in spatial
discretizations to get accurate approximate solutions o
inverse problems of parabolic types equations. All of
these problems were transformed to SODEs in time
which greatly simplifying the problems. The IRK scheme

is then applied to the resulting systems. From theFig. 7: Graph of numerical solutiony for problem @.14) atN =

numerical experiments, the obtained results were?0-
demonstrated the effectiveness and highly accuracy of
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