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Abstract: Forecasting the work-in-process (WIP) level is very important for thecontrol of factory. However, the uncertainty in the
WIP level is not easy to deal with. To solve this problem, a fuzzy collaborative forecasting approach is proposed. And also we show the
effectiveness of the proposed methodology with a case study.
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1. Introduction

Work in process (WIP) indicates the set of unfinished
products in the whole factory. Forecasting the WIP level
is very important for the control of factory because of
several reasons. For example, the accumulation of WIP
leads to factory inefficiency [9] In addition, the WIP level
is an important parameter that can be properly used to
trigger the decision of when to release specific jobs [5]. In
the literature, Gupta and Ho [2] proposed the workload
balancing algorithm, to minimize the total squared
workload deviation on parallel machines. The simulation
results showed that the proposed algorithm is a very
useful method to determine the standard WIP level
efficiently. Qi et al. [9] constructed a simulation model to
analyze the effects of arrival distribution, batch size,
downtime pattern, and lot release control on cycle time,
WIP level, and equipment utilization. In Iriuchijima et
al.’s viewpoint [3], appropriate WIP planning can
effectively balance production for fixed orders with that
for projected demand. Wang et al. [11] established a
real-time WIP status monitoring model. Lin and Lee [5]
proposed a queuing network-based algorithm to
determine the total standard WIP level.

Many factors, such as the release policy, priority
combination, the scheduling rule, and the due date
assignment policy, will affect the WIP level. As a result,
there is considerable uncertainty in the WIP level.
However, because of too much human intervention,
stochastic methods are not suitable to deal with this

uncertainty [4,10]. For this reason, Lin et al. [4] proposed
a fuzzy-neural approach, in which some fuzzy linear
regression (FLR) equations [7] based on different points
of view were used to predict the WIP level, and then a
back propagation network (BPN) was constructed to
integrate the forecasts to get a single value.

In order to effectively predict the future WIP level, a
fuzzy collaborative forecasting approach is proposed.
Fuzzy collaborative forecasting is a fairly new field in soft
computing, but has considerable potential. In the fuzzy
collaborative forecasting approach, a number of experts in
this field are invited. These domain experts provide their
points of view for the WIP level forecasting. These views
are incorporated into the corresponding fuzzy back
propagation network (FBPN) to predict the WIP level.
Forecasts based on different points of view will be
different in nature, so there is space for collaboration. In
addition, a representative value has to be concluded from
the forecasts. To achieve these goals, a radial basis
function (RBF) network is used. Finally, the effectiveness
of the fuzzy collaborative forecasting approach is shown
with a case study.

2. FBPN for the WIP Level Forecasting

Variables and parameters in the proposed methodology are
defined:

(1) at : the normalized value of the WIP level at periodt.
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(2) W̃t : the WIP level forecast at periodt.
(3) õ(t): the network output, which is the normalized value

of the WIP level forecast at periodt.
(4) h̃l(t): the output from nodel in the hidden layer,l =

1∼ L.
(5) w̃o

l (t): the weight of the connection between nodel in
the hidden layer and the output node.

(6) w̃h
kl(t): the weight of the connection between input

node k and nodel in the hidden layer,k = 1 ∼ K;
l = 1∼ L.

(7) θ̃ h
l (t): the threshold for blocking off weak signals on

nodel in the hidden layer.
(8) θ̃ o(t): the threshold for blocking off weak signals on

the output node.

All fuzzy parameters and variables are given in triangular
fuzzy numbers (TFNs), e.g.̃Wt = (Wt1,Wt2,Wt3).

In the fuzzy collaborative forecasting approach, there
areG experts, and these experts provide their views on the
following issues:

(1) The width of the fuzzy WIP level forecast should be
less thanΨ(g).

(2) The membership of the actual value in the fuzzy WIP
level forecast should be higher thansR(g) if the actual
value is on the right-hand side of the fuzzy forecast.

(3) The membership of the actual value in the fuzzy WIP
level forecast should be higher thansL(g) if the actual
value is on the left-hand side of the fuzzy forecast.

g = 1∼ G.
In the fuzzy collaborative forecasting approach, the

view of each expert is incorporated into the corresponding
FBPN that is used to predict the WIP level. The
configurations of the FBPNs used by the experts are the
same:

(1) Number of inputs:K, corresponding to the historical
data of the previousK periods after normalization.

(2) Single hidden layer.
(3) Number of nodes in the hidden layer: 2K.
(4) Network output: the normalized WIP level forecast.
(5) Transformation/Activation functions: For the hidden

layer, the hyperbolic tangent sigmoid function is used,
while for the others the linear activation function is
used.

FBPN training is divided into three steps. The first step is
to determine the center value of each parameter. To this
end, we consider FBPN as a non-fuzzy BPN, and apply
the Levenberg-Marquardt algorithm to solve.

Subsequently, to determine the upper bound of each
parameter, such aswh

kl3, θ h
l3, wo

l3, and θ o
3 , the following

goal programming (GP) problem can be solved [1]:

Min
∑
all t

πt

subject to

ln(
1

Wt3
−1) = θ o

3 −∑
all l

wo
l3hl3,

∑
all l

wo
l3hl3−θ o

3 =− ln(1/πt −1),

∑
all l

wo
l3hl3−θ o

3 ≤− ln(1/Ψ(g)−1),

∑
all l

wo
l3hl3 ≤ θ o

3 − ln(
1− sR(g)

at − sR(g)Wt2
−1),

∑
all l

wo
l3hl3 ≥ θ o

3 − ln(
1
at

−1),

∑
all k

wh
kl3xk −θ h

l3 ≥− ln(1/hl3−1),

∑
all k

wh
kl3xk −θ h

l3 ≤− ln(1/hl3−1),

k = 1∼ K; l = 1∼ L.

All actual values will be contained in the corresponding
fuzzy forecasts. The objective function is to minimize the
sum of the half-ranges (πt) of the fuzzy WIP level
forecasts, calculated according to the second constraint.
The third constraint forces the upper bound to meet the
expert’s requirementΨ(g). The other constraints limit the
changes that should be made to the network parameters
(wh

il3, θ h
l3, wo

l3, and θ o
3 ) for the same purpose.sR(g) is

referenced in the fourth constraint. IfsR(g) is high, then
hl3 will be large, leading to a largeπt . After enumerating
a number of possible values for them, the goal
programming problem is solved many times. In these
optimization results, the best one giving the minimum
upper bound is chosen.

In a similar way, to determine the lower bound of each
parameter (e.g.wh

kl1, θ h
l1, wo

l1, andθ o
1 ), the following GP

problem is solved:

Min ∑
all t

πt

subject to

ln(
1

Wt1
−1) = θ o

1 −∑
all l

wo
l1hl1,

∑
all l

wo
l1hl1−θ o

1 =− ln(1/πt −1),

∑
all l

wo
l1hl1−θ o

1 ≤− ln(1/Ψ(g)−1),

∑
all l

wo
l1hl1 ≤ θ o

1 − ln(
1− sL(g)

at − sL(g)Wt2
−1),

∑
all l

wo
l1hl1 ≤ θ o

1 − ln(
1
at

−1),

∑
all k

wh
kl1xk −θ h

l1 ≥− ln(1/hl1−1),

∑
all k

wh
kl1xk −θ h

l1 ≤− ln(1/hl1−1),

k = 1∼ K; l = 1∼ L.
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sL(g) is referenced in the fourth constraint. IfsL(g) is high,
thenhl1 will be small, leading to a largeπt .

The forecasting results by these experts can be
communicated to each other, so that they can modify their
views, and generate more accurate forecasts if all
viewpoints are taken into account. To this end, the GP
problems are modified to include a collaborative
mechanism in the next section.

3. Collaboration Mechanism and Protocol

The view of a domain expert, indicated with
VSg = {Ψ(g), sR(g),sL(g)}, is packaged into an
information granule encoded using extensible markup
language (XML). Subsequently, a software agent is used
to convey information granules among the domain experts
through a centralized P2P architecture. The
communication protocol is as follows:
Input Domain expertEg, 1 ≤ g ≤ G, provides input
dataW̃t for T periods, wheren ≤ t ≤ T + n− 1. In case
of computing the FBPN output, the setting vectorVSg is
public.
Output Domain expert Eg, 1 ≤ g ≤ G, learns
(D(W̃t)− at)/at without anything else, whereD(W̃t) is
computed using the center-of-gravity method:

d(W̃t) =
Wt1+Wt2+Wt3

3
.

After collaboration, domain expertg refits the
corresponding FBPN with two new GP models:

Min ∑
all t

πt

subject to

ln(
1

Wt3
−1) = θ o

3 −∑
all l

wo
l3hl3,

∑
all l

wo
l3hl3−θ o

3 =− ln(1/πt −1),

∑
all l

wo
l3hl3−θ o

3 ≤ min
qq∈tc(gg)

(− ln(1/Ψ(qq)−1)), (1)

∑
all l

wo
l3hl3−θ o

3 ≤ min
qq∈tc(gg)

(− ln(
1− sR(qq)

at − sR(qq)Wt2
−1)),

(2)

∑
all l

wo
l3hl3 ≥ θ o

3 − ln(
1
at

−1),

∑
all k

wh
kl3xk −θ h

l3 ≥− ln(1/hl3−1),

∑
all k

wh
kl3xk −θ h

l3 ≤− ln(1/hl3−1),

k = 1∼ K; l = 1∼ L.

and

Min ∑
all t

πt

subject to

ln(
1

Wt1
−1) = θ o

1 −∑
all l

wo
l1hl1,

∑
all l

wo
l1hl1−θ o

1 =− ln(1/πt −1),

∑
all l

wo
l1hl1−θ o

1 ≤ min
qq∈tc(gg)

(− ln(1/Ψ(qq)−1)), (3)

∑
all l

wo
l1h′l1−θ o

1 ≤ min
qq∈tc(gg)

(− ln(
1− sL(qq)

at − sL(qq)Wt2
−1), (4)

∑
all l

wo
l1hl1 ≤ θ o

1 − ln(
1
at

−1),

∑
all k

wh
kl1xk −θ h

l1 ≥− ln(1/hl1−1),

∑
all k

wh
kl1xk −θ h

l1 ≤− ln(1/hl1−1),

k = 1∼ K; l = 1∼ L.

where VSg = {Ψ(qq), sR(qq),sL(qq)} is the view of
domain expertq and so on, according to the nomenclature
by Pedrycz [6,8]; t(qq) includes the periods that are
satisfactorily forecasted by domain expertq. tc(qq) is the
complement oft(qq), i.e. tc(qq) = [1 T ]− t(qq); sL(qq)
andsR(qq) are the satisfaction levels requested by domain
expertq. Constraints (1) and (2) force the upper bound of
the fuzzy forecast to be less than those by others for a
period the domain expert is not satisfied with the forecast.
In contrast, in constraints (3) and (4), the lower bound
should be greater than those by others for the same
period.

4. Aggregation Mechanism

To aggregate the fuzzy WIP level forecasts fromG
domain experts, a RBF network is used. The RBF
network has three layers: input, hidden and output. Inputs
to the RBF are the three points of the TFN. For example,
if a fuzzy WIP level forecast is(a,b,c), then the
corresponding inputs to the RBF area, 0, b, 1, c, and 0.
As there areG FBPNs, the number of inputs to the RBF is
6G. The reason is straightforward – aggregation results in
a convex domain, and each point in it can be expressed
with the combination of the corners.

All inputs are normalized and passed directly to the
hidden layer without being weighted. The activation
function used by the hidden layer is Gaussian:

hi(Xt) = e
−

K

∑
k=1

(xtk − x̂tk)
2/σ2

i
,
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Figure 1: The collected WIP data.

Table 1: The views of the domain experts.
g Ψ(g) sR(g) sL(g)
1 3000 0.45 0.25
2 2900 0.45 0.15
3 2500 0.1 0.2

whereXt=[xt1, . . . ,xtK ] indicates the input vector;hi(Xt) is

the output from thei-th node in the hidden layer,i = 1 ˜ I;
x̂tk andσi are the center and width of thei-th RBF unit for
input variablek, respectively. The activation function used
by the output layer is linear:

o(Xt) =
I

∑
i=1

wihi(Xt)+w0.

For training the RBF, k-means (KM) is first applied to
find out the centers of the RBF units. Then the
nearest-neighbour method is used to derive their widths.
Finally, the connection weights can be determined by
linear regression.

5. A Case Study

The case of forecasting the WIP level in a wafer
fabrication factory is used to show the effectiveness of the
proposed methodology (see Figure1 ). Three domain
experts were invited to predict the WIP level in the wafer
fabrication factory. However, they had different views for
this problem, as shown in Table1.

For each domain expert, a corresponding FBPN was
configured and trained. Every expert used his/her own
FBPN to predict the WIP level. The forecasting
performances of the three experts before collaboration
were shown in Table2.

Subsequently, they exchanged the views and
forecasting results to each other through a centralized P2P
network. The central control unit of the centralized P2P
network aggregated the fuzzy forecasts using a RBF and
then assessed the overall performance (see Table3).

After receiving such information, the domain experts
changed their views and re-train the FBPNs (see Table4).

Table 2: The forecasting performances of the domain experts
before collaboration.

Expert # RMSE MAE MAPE Average range (Precision)
1 700 573 3.2% 2968
2 674 526 2.9% 2755
3 758 593 3.3% 2464

Table 3: The views of the experts after collaboration.
g Ψ(g) sR(g) sL(g)
1 1600 0.45 0.23
2 1800 0.45 0.25
3 1500 0.1 0.2

Table 4: The forecasting performances of the domain experts
after collaboration.

Expert # RMSE MAE MAPE Average range (Precision)
1 669 542 3.0% 2577
2 649 507 2.8% 2526
3 710 557 3.1% 2328

The forecasting performances of the domain experts after
collaboration were shown in Table5.

To compare with the existing approaches, moving
average (MA), exponential smoothing (ES), BPN,
auto-regressive integrated moving average (ARIMA), and
FLR-BPN were also applied to this case. In MA, the
number of moving periods was changed from 2 to 10 to
determine the best one. The number of inputs to BPN was
also set to this value for a fair comparison. A single
hidden layer with nodes twice as that of the inputs was
configured. In ES, eleven values from 0 to 1 were tried.
ARIMA consists of three stages: identification,
estimation, and checking. To identify the order in the
ARIMA process, the minimum information criterion
(MINIC) method was applied. The stationarity in the data
was examined by the augmented dickey fuller (ADF) unit
root test.

The performances of these approaches were compared
in Table 5. The accuracy of WIP level forecasting,
measured in terms of MAPE, by the experts, was
significantly better than most of the existing approaches
by achieving a 43% reduction in MAPE over the
comparison basis – MA, which revealed the effectiveness
of the FBPN approach. The average advantages over ES,
BPN, ARIMA, and FLR-BPN were 43%, 64%, 32%, and
28%, respectively. The accuracy of the WIP level
forecasting with respect to MAE or RMSE was also
significantly better. Clearly, the FBPN approach provided
a good fit for the data collected. In addition, the
performance of the WIP level forecasting was indeed
improved through expert collaboration.
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Table 5: The forecasting performances of the existing
approaches.

RMSE MAE MAPE Average range
MA 963 639 3.7% 5779
ES 934 638 3.7% 5603

BPN 1291 1055 5.9% 7746
ARIMA 853 542 3.1% 5116

FLR-BPN 736 495 2.9% 2714
The proposed
methodology

509 365 2.1% 2740

6. Conclusions

The WIP level has the greatest impact for the factory.
Data analysis and forecasting in this area is extremely
important. There is more and more evidence showing that
there is a widespread and long-term trend toward lean
production. The WIP level forecasting is considered to be
one of the most important tasks to this end. Many
evidences also revealed that collaborative intelligence
have potential applications in forecasting. In order to
effectively predict the WIP level, a fuzzy collaborative
forecasting approach is proposed in the present study. In
the fuzzy collaborative forecasting approach, a group of
experts in the field work collaboratively toward the
accurate and precise prediction of the WIP level. The
adopted FBPN approach provides the flexibility for these
experts to cooperate. Through proper integration, the
overall forecasting performance can be maximized. The
existing methods lack a formal coordination mechanism.
Experts can only modify their views freely, which does
not necessarily lead to better prediction performance.

After verifying the effectiveness of the fuzzy
collaborative forecasting approach with a case study, the
following results were obtained:

(1) The forecasting performances of individual experts
were not good enough. Through reference to the
forecasts of others, these experts did improve their
forecasting performances.

(2) After aggregation, the accuracy and precision of the
WIP level forecasting was further improved. It is
therefore possible to forecast the WIP level very
precisely and accurately using a group of domain
experts governed by a centralized P2P network.

More sophisticated learning or collaboration mechanisms
can be developed in similar ways in future studies.
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