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Abstract: In this study, the homotopy analysis method and the variational iteration method are used to find the approximate solutions

for systems of initial value problems for ordinary differential equations for both linear and non-linear problems, by using size of a

step with a sequence of subintervals. These methods are shown to work for a variety of systems with approximate-exact solutions.

The illustrated numerical results demonstrate that the convergence of the approximate solutions with the exact solutions. The results

achieved in the aforementioned systems demonstrate the method’s consistency and efficiency.
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1 Introduction

In his Ph.D. dissertation in 1992, Shijun Liao [1,2]
proposed a new and excellent method (so-called
Homotopy Analysis Method (HAM)) for solving linear
and non-linear (ordinary differential equations, partial
differential equations, integral equations, and so on).

In 1978, suggested a general Lagrange multiplier
method by Inokuti et. al. [3] to solve non-linear problems.
In 1999, Ji-Huan He [4,5,6] proposed a new and
excellent method (so-called Variational Iteration Method
(VIM)) for solving linear and non-linear (ordinary
differential, partial differential, integral, etc.) equations.

If an analytic solution exists, the HAM/VIM provides
rapidly converging consecutive approximations;
otherwise, a few approximations might be used for
numerical results. The HAM/VIM generates a series
solution that occasionally converges to the analytic
solution to linear and non-linear deterministic. The VIM’s
concept is to use a general Lagrange multiplier [3] to
create a correction functional, and the multiplier is set in
such a way that the correction solution is optimal in
relation to the initial approximation or experiment
function.

The HAM/VIM has been utilized by many authors
quite effectively for obtaining analytic and/or

approximate solutions for a wide variety of scientific and
engineering applications linear and non-linear,
homogeneous and inhomogeneous as well, particularly in
the field of ordinary differential, partial differential and
integral equations [7,8,9,10,11,12] and [13,14,15,16].
The authors [17] have been used the VIM with Sumudu
transform for solving Delay differential equations. Some
comparisons with the efficiency of other methods in
similar problems [18] have been performed, but a
comprehensive analysis is still lacking. HAM/VIM has
traditionally been used only at short intervals or with a
fixed stepsize.

In the literature, Wu and Xia have been used
numerical methods for stiff systems [19]. Mahmood et. al.
utilized the Adomian decomposition method (ADM) for
the same systems by using size of a step with a sequence
of subintervals [20].

The HAM/VIM have been utilized only on small
intervals or with a constant stepsize. This paper
investigates the performance of HAM/VIM in the cases of
linear/non-linear for stiff system IVPs of ODEs by using
size of a step with a sequence of subintervals.

Consider the system of ordinary differential equations

y′i = fi (y1,y2, . . . ,yn)+ gi (x) , i = 1, . . . ,n (1)
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where fi are linear/non-linear functions, x denotes the
independent variable, yi (x) are unknown functions, gi (x)
are known analytic functions, and we are searching the
solution yi (x) satisfying (1). We assume that for every
gi (x), the system (1) has one and only one solution. In
what follows, we give a summarized description of
HAM/VIM and we look at how the methods are used to
three different problems with varying levels of difficulty.

2 Basic concept of the HAM

To describe the basic ideas of the HAM, the system
(1) can be written as follows

Ni [yi (x)] = gi (x) , i = 1, . . . ,n (2)

where Ni are non-linear operators. We’ll ignore all
initial/boundary conditions for the simplicity, but they
may all be dealt in the same way. Shijun Liao [21] creates
the zero-order deformation equation by generalizing the
classical Homotopy method.

(1− p)L [φi (x; p)− yi,0 (x)] = phi [Ni [φi (x; p)]− gi (x)] ,
(3)

where p ∈ [0,1] is an embedding parameter, hi are nonzero
auxiliary functions, L is a linear auxiliary operator, yi,0 (x)
are initial estimates of yi (x) and the functions φi (x; p) are
unknown. It is critical to note that in HAM, one has a large
deal of flexibility in selecting auxiliary objects such as hi

and L. It is obvious that it holds true when p = 0 and p = 1

φi (x;0) = yi,0 (x) , and φi (x;1) = yi (x) , (4)

respectively. Thus, as p increases from 0 to 1, the
solutions φi (x; p) change from the initial estimates yi,0 (x)
to the solutions yi (x) . Expanding φi (x; p) in series of
Taylor with respect to p, we have

φi (x; p) = yi,0 (x)+
+∞

∑
m=1

yi,m (x) pm
, (5)

where

yi,m (x) =
1

m!

∂ mφi (x; p)

∂ pm

∣∣∣∣
p=0

. (6)

If the auxiliary linear operators, the initial guesses, the
auxiliary parameters hi, and the auxiliary functions are so
properly chosen, the above series (5) converges at p = 1,
then we have

φi (x;1) = yi,0 (x)+
+∞

∑
m=1

yi,m (x) , (7)

which must be one of the solutions of the original non-
linear equation, as proved by Shijun Liao [21]. If hi =−1,
Eq. (3) becomes

(1− p)L [φi (x; p)− yi,0 (x)]+ p [Ni [φi (x; p)]− gi (x)] = 0,
(8)

this is mostly employed in the Homotopy perturbation
method [22].

The governing equation can be obtained from the zero-
order deformation equation (3) using Eq. (6). We define
the vectors

−→y i,m (x) = {yi,0 (x) ,yi,1 (x) , . . . ,yi,m (x)} . (9)

Differentiating Eq. (3) m times with respect to the
embedding parameter p and then setting p = 0 and finally
dividing them by m!, we have the so-called mth-order
deformation equation

L [yi,m (x)− χmyi,m−1 (x)] = hiRi,m (−→y i,m−1) , (10)

where

Ri,m

(−→y i,m−1

)
=

1

(m−1)!

∂ m−1

∂ pm−1
{Ni [φi (x; p)]

−gi (x)}p=0 , (11)

and

χm =

{
0, m ≤ 1,

1, m > 1.
.

Substituting Eq. (5) into Eq. (11), we have

Ri,m

(−→y i,m−1

)
=

1

(m−1)!

∂ m−1

∂ pm−1

{
Ni

(
+∞

∑
m=0

yi,m (x) pm

)

−gi (x)}p=0 . (12)

It is important to note that yi,m (x) (m ≥ 1) is governed by
Eq. (10) with the initial/boundary conditions derived from
the original problem, which can be solved quickly using
symbolic computation software like Maple and
Mathematica.

3 Basic concept of the VIM

To illustrate the basic ideas of the VIM, the system
(1) may be written as follows

Lyi (x)+Nyi (x) = gi (x) , i = 1, . . . ,n (13)

where L is the linear operator and N is the non-linear
operator. The VIM was proposed by Ji-Huan He [4,5,6],
where a correction functional for Eq. (13) can be
rewritten as

yi,m+1 (x) = yi,m (x)+

∫ x

0
λi (t)

[
Lyi,m (t)

+Nỹi,m (t)−gi (t)
]

dt, (14)

where λi (t) are general Lagrange multipliers [3,4,5,6]
which can be identified optimally via variational theory,
yi,0 (x) are initial approximations, with possible
unknowns. The functions ỹi,m (x) are considered as a
restricted variation [23], which means δ ỹi,m (t) = 0.
Therefore, we first determine the Lagrange multipliers λi
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that will be identified optimally via integration by parts.
The consecutive approximations yi,m+1 (x), to the
solutions yi (x) will be readily obtained upon using the
Lagrange multipliers obtained and by using any selective
functions yi,0 (x), which can be easily solved by
mathematical symbolic programs like Maple and
Mathematica. Consequently, the approximate-analytic
solutions may be obtained by using
yi (x) = limm→∞ yi,m (x) .

4 Application of VIM

The following problems were chosen from the current
literature have been studied in [19,20]. The environment
has been used for symbolic computations is Maple 18.

Problem 1
Firstly, consider the non-linear stiff system of

ordinary differential equations [19,20]:

Y ′ (x) =−BY (x)+UW, Y (0) =



−1
−1
−1
−1


 (15)

where

Y ′ (x) =




y′1 (x)
y′2 (x)
y′3 (x)
y′4 (x)


 , U = 1

2




−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1


 ,

B =U




d1

d2

d3

d4


U, W =




z2
1

z2
2

z2
3

z2
4


 ,

Z =




z1

z2

z3

z4


=UY, D =




d1

d2

d3

d4


=




1000
800
−10
0.001


 .

The exact solution of the system (15) is

Y (x) =UZ, (16)

where

Y (x) =




y1E (x)
y2E (x)
y3E (x)
y4E (x)


 , Z =




z1 (x)
z2 (x)
z3 (x)
z4 (x)


 ,

zi (x) =
di

1− (1+ di)edix
, i = 1, . . . ,4.

Operating and applying the matrix operations of the
system (15), we get

y′1 (x) = −αy1 +βy2 + γy3 +µy4

+
1

4

(
y2

1 +y2
2 +y2

3 +y2
4

)

+
1

2
(y1y2 +y1y3 +y1y4)

−
1

2
(y2y3 +y2y4 +y3y4) ,

y′2 (x) = βy1 −αy2 −µy3 − γy4

+
1

4

(
y2

1 +y2
2 +y2

3 +y2
4

)

+
1

2
(y1y2 −y1y3 −y1y4)

+
1

2
(y2y3 +y2y4 −y3y4) ,

y′3 (x) = γy1 −µy2 −αy3 −βy4

+
1

4

(
y2

1 +y2
2 +y2

3 +y2
4

)

−
1

2
(y1y2 −y1y3 +y1y4)

+
1

2
(y2y3 −y2y4 +y3y4) ,

y′4 (x) = µy1 − γy2 −βy3 −αy4

+
1

4

(
y2

1 +y2
2 +y2

3 +y2
4

)

−
1

2
(y1y2 +y1y3 −y1y4)

−
1

2
(y2y3 −y2y4 −y3y4) , (17)

where

α = 447.50025, β = 452.49975,

γ = 47.49975, µ = 52.50025.

HAM: To solve the system (17) by means the
standard of the HAM, we choose the initial
approximations yi,0 (x) =−1, and the linear operators

L [φi (x; p)] =
∂φi (x; p)

∂x
,

with the property L [ci] = 0, where ci are constants of
integration. Furthermore, the system (17) suggest that a
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system of non-linear operators be defined as

N1 [φi (x; p)] =
∂φ1 (x; p)

∂x
+αφ1 (x; p)−βφ2 (x; p)− γφ3 (x; p)

−µφ4 (x; p)−
1

4

[
φ2

1 (x; p)+φ2
2 (x; p)

+φ2
3 (x; p)+φ2

4 (x; p)
]
−

1

2
[φ1 (x; p)φ2 (x; p)

+φ1 (x; p)φ3 (x; p)+φ1 (x; p)φ4 (x; p)]

+
1

2
[φ2 (x; p)φ3 (x; p)+φ2 (x; p)φ4 (x; p)

+φ3 (x; p)φ4 (x; p)] ,

N2 [φi (x; p)] =
∂φ2 (x; p)

∂x
−βφ1 (x; p)+αφ2 (x; p)+µφ3 (x; p)

+γφ4 (x; p)−
1

4

[
φ2

1 (x; p)+φ2
2 (x; p)

+φ2
3 (x; p)+φ2

4 (x; p)
]
−

1

2
[φ1 (x; p)φ2 (x; p)

−φ1 (x; p)φ3 (x; p)−φ1 (x; p)φ4 (x; p)]

−
1

2
[φ2 (x; p)φ3 (x; p)+φ2 (x; p)φ4 (x; p)

−φ3 (x; p)φ4 (x; p)] ,

N3 [φi (x; p)] =
∂φ3 (x; p)

∂x
− γφ1 (x; p)+µφ2 (x; p)+αφ3 (x; p)

+βφ4 (x; p)−
1

4

[
φ2

1 (x; p)+φ2
2 (x; p)

+φ2
3 (x; p)+φ2

4 (x; p)
]
+

1

2
[φ1 (x; p)φ2 (x; p)

−φ1 (x; p)φ3 (x; p)+φ1 (x; p)φ4 (x; p)]

+
1

2
[φ2 (x; p)φ3 (x; p)−φ2 (x; p)φ4 (x; p)

+φ3 (x; p)φ4 (x; p)] ,

N4 [φi (x; p)] =
∂φ4 (x; p)

∂x
−µφ1 (x; p)+ γφ2 (x; p)+βφ3 (x; p)

+αφ4 (x; p)−
1

4

[
φ2

1 (x; p)+φ2
2 (x; p)

+φ2
3 (x; p)+φ2

4 (x; p)
]
+

1

2
[φ1 (x; p)φ2 (x; p)

+φ1 (x; p)φ3 (x; p)−φ1 (x; p)φ4 (x; p)]

+
1

2
[φ2 (x; p)φ3 (x; p)−φ2 (x; p)φ4 (x; p)

−φ3 (x; p)φ4 (x; p)] . (18)

Applying the above definition, the zeroth-order
deformation equation is constructed as (3) and (4), and
the deformation equation of mth-order for m ≥ 1 is
constructed as

L [yi,m (x)− χmyi,m−1 (x)] = hiRi,m (−→y i,m−1) , (19)

with the initial conditions yi,m (0) = 0 where

R1,m (−→y i,m−1) = y′1,m−1 +αy1,m−1 −β y2,m−1 − γy3,m−1

−µy4,m−1 −
1

4
[A1,m−1 +A2,m−1

+A3,m−1 +A4,m−1]−
1

2
[A1,2,m−1

+A1,3,m−1 +A1,4,m−1]+
1

2
[A2,3,m−1

+A2,4,m−1 +A3,4,m−1] ,

R2,m (−→y i,m−1) = y′2,m−1 −β y1,m−1 +αy2,m−1 + µy3,m−1

+γy4,m−1 −
1

4
[A1,m−1 +A2,m−1

+A3,m−1 +A4,m−1]−
1

2
[A1,2,m−1

−A1,3,m−1 −A1,4,m−1]−
1

2
[A2,3,m−1

+A2,4,m−1 −A3,4,m−1] ,

R3,m (−→y i,m−1) = y′3,m−1 − γy1,m−1 + µy2,m−1 +αy3,m−1

+β y4,m−1 −
1

4
[A1,m−1 +A2,m−1

+A3,m−1 +A4,m−1]+
1

2
[A1,2,m−1

−A1,3,m−1 +A1,4,m−1]+
1

2
[A2,3,m−1

−A2,4,m−1 +A3,4,m−1] ,

R4,m (−→y i,m−1) = y′4,m−1 − µy1,m−1 + γy2,m−1 +β y3,m−1

+αy4,m−1 −
1

4
[A1,m−1 +A2,m−1

+A3,m−1 +A4,m−1]+
1

2
[A1,2,m−1

+A1,3,m−1 −A1,4,m−1]+
1

2
[A2,3,m−1

−A2,4,m−1 −A3,4,m−1] .
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For the non-linear term y2
i =

∞

∑
n=0

Ai,n (i = 1, . . . ,4).the

corresponding He’s polynomials [24] are:

Ai,n =
n

∑
m=0

yi,myi,n−m, n ≥ m, n = 0,1, . . . .

In the same way, for yiy j =
∞

∑
n=0

Ai, j,n (i 6= j, i, j = 1, . . . ,4)

the corresponding He’s polynomials [24] are:

Ai, j,n =
n

∑
m=0

yi,my j,n−m, n ≥ m, n = 0,1, . . . .

Now, for m ≥ 1 The solution of the mth-order deformation
Eq. (19) is

yi,m (x) = χmyi,m−1 (x)+hi

∫ x

0
Ri,m (−→y i,m−1)dτ+ci, (20)

where the constants of integration ci are determined by
the given initial conditions in the system (15). We now
successively obtain the iterations yi,m (x). Thus, the
approximate solutions in a series form given by HAM is

yi (x) = yi,0 (x)+
4

∑
m=1

yi,m (x) , (21)

therefore, the series solutions obtained when h =−1.
VIM: A correction functional of the system (17) is an

iteratively described VIM

y1,m+1 (x) = y1,m (x)+

∫ x

0
λ1 (t)

[
y′1,m +α ỹ1,m

−β ỹ2,m − γ ỹ3,m− µ ỹ4,m

−
1

4

(
ỹ2

1,m + ỹ2
2,m + ỹ2

3,m + ỹ2
4,m

)

−
1

2
(ỹ1,mỹ2,m + ỹ1,mỹ3,m + ỹ1,mỹ4,m)

+
1

2
(ỹ2,mỹ3,m + ỹ2,mỹ4,m + ỹ3,mỹ4,m)

]
dt,

y2,m+1 (x) = y2,m (x)+

∫ x

0
λ2 (t)

[
y′2,m −β ỹ1,m

+α ỹ2,m + µ ỹ3,m+ γ ỹ4,m

−
1

4

(
ỹ2

1,m + ỹ2
2,m + ỹ2

3,m + ỹ2
4,m

)

−
1

2
(ỹ1,mỹ2,m − ỹ1,mỹ3,m − ỹ1,mỹ4,m)

−
1

2
(ỹ2,mỹ3,m + ỹ2,mỹ4,m − ỹ3,mỹ4,m)

]
dt,

y3,m+1 (x) = y3,m (x)+

∫ x

0
λ3 (t)

[
y′3,m − γ ỹ1,m

+µ ỹ2,m +α ỹ3,m +β ỹ4,m

−
1

4

(
ỹ2

1,m + ỹ2
2,m + ỹ2

3,m + ỹ2
4,m

)

+
1

2
(ỹ1,mỹ2,m − ỹ1,mỹ3,m + ỹ1,mỹ4,m)

−
1

2
(ỹ2,mỹ3,m − ỹ2,mỹ4,m + ỹ3,mỹ4,m)

]
dt,

y4,m+1 (x) = y4,m (x)+
∫ x

0
λ4 (t)

[
y′4,m − µ ỹ1,m

+γ ỹ2,m +β ỹ3,m+α ỹ4,m

−
1

4

(
ỹ2

1,m + ỹ2
2,m + ỹ2

3,m + ỹ2
4,m

)

+
1

2
(ỹ1,mỹ2,m + ỹ1,mỹ3,m − ỹ1,mỹ4,m)

+
1

2
(ỹ2,mỹ3,m − ỹ2,mỹ4,m − ỹ3,mỹ4,m)

]
dt, (22)

where λi (t) (i = 1, . . . ,4) are general Lagrange multipliers
and ỹi,m (i = 1, . . . ,4) denote restricted variations. Then,
we have

δy1,m+1 (x) = δy1,m (x)+ δ

∫ x

0
λ1 (t)

[
y′1,m +α ỹ1,m

−β ỹ2,m − γ ỹ3,m− µ ỹ4,m −
1

4

(
ỹ2

1,m

+ỹ2
2,m + ỹ2

3,m+ ỹ2
4,m

)
−

1

2
(ỹ1,mỹ2,m

+ỹ1,mỹ3,m + ỹ1,mỹ4,m)+
1

2
(ỹ2,mỹ3,m

+ỹ2,mỹ4,m + ỹ3,mỹ4,m)]dt = 0,

δy2,m+1 (x) = δy2,m (x)+ δ

∫ x

0
λ2 (t)

[
y′2,m −β ỹ1,m

+α ỹ2,m + µ ỹ3,m + γ ỹ4,m−
1

4

(
ỹ2

1,m

+ỹ2
2,m + ỹ2

3,m+ ỹ2
4,m

)
−

1

2
(ỹ1,mỹ2,m

−ỹ1,mỹ3,m − ỹ1,mỹ4,m)−
1

2
(ỹ2,mỹ3,m

+ỹ2,mỹ4,m − ỹ3,mỹ4,m)]dt = 0,
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δy3,m+1 (x) = δy3,m (x)+ δ

∫ x

0
λ3 (t)

[
y′3,m − γ ỹ1,m

+µ ỹ2,m +α ỹ3,m +β ỹ4,m−
1

4

(
ỹ2

1,m

+ỹ2
2,m + ỹ2

3,m + ỹ2
4,m

)
+

1

2
(ỹ1,mỹ2,m

−ỹ1,mỹ3,m + ỹ1,mỹ4,m)−
1

2
(ỹ2,mỹ3,m

−ỹ2,mỹ4,m + ỹ3,mỹ4,m)]dt = 0,

δy4,m+1 (x) = δy4,m (x)+ δ

∫ x

0
λ4 (t)

[
y′4,m − µ ỹ1,m

+γ ỹ2,m +β ỹ3,m+α ỹ4,m −
1

4

(
ỹ2

1,m

+ỹ2
2,m + ỹ2

3,m + ỹ2
4,m

)
+

1

2
(ỹ1,mỹ2,m

+ỹ1,mỹ3,m − ỹ1,mỹ4,m)+
1

2
(ỹ2,mỹ3,m

−ỹ2,mỹ4,m − ỹ3,mỹ4,m)]dt = 0. (23)

Calculus of variations and integration by parts for the
system (23), and noting that δ ỹi,m (0) = 0 (i = 1, . . . ,4),
we get the following system

{
λ ′

i (t) = 0,

1+ λi (t)|t=x = 0.
(24)

Solving the systems (24) for λi (t) yields the Lagrange
multipliers λi (t) = −1, and the formula of variational
iteration can be obtained

y1,m+1 (x) = y1,m (x)−

∫ x

0

[
y′1,m +αy1,m−β y2,m − γy3,m

−µy4,m−
1

4

(
y2

1,m + y2
2,m + y2

3,m+ y2
4,m

)

−
1

2
(y1,my2,m + y1,my3,m + y1,my4,m)

+
1

2
(y2,my3,m + y2,my4,m + y3,my4,m)

]
dt,

y2,m+1 (x) = y2,m (x)−

∫ x

0

[
y′2,m −β y1,m+αy2,m + µy3,m

+γy4,m −
1

4

(
y2

1,m + y2
2,m + y2

3,m+ y2
4,m

)

−
1

2
(y1,my2,m − y1,my3,m − y1,my4,m)

−
1

2
(y2,my3,m + y2,my4,m − y3,my4,m)

]
dt,

y3,m+1 (x) = y3,m (x)−

∫ x

0

[
y′3,m − γy1,m + µy2,m +αy3,m

+β y4,m −
1

4

(
y2

1,m + y2
2,m+ y2

3,m + y2
4,m

)

+
1

2
(y1,my2,m − y1,my3,m + y1,my4,m)

−
1

2
(y2,my3,m − y2,my4,m + y3,my4,m)

]
dt,

y4,m+1 (x) = y4,m (x)−

∫ x

0

[
y′4,m − µy1,m + γy2,m +β y3,m

+αy4,m −
1

4

(
y2

1,m + y2
2,m + y2

3,m + y2
4,m

)

+
1

2
(y1,my2,m + y1,my3,m − y1,my4,m)

+
1

2
(y2,my3,m − y2,my4,m − y3,my4,m)

]
dt. (25)

We start with the initial approximatations yi,0 (x) = −1
(i = 1, . . . ,4) and using the formulas (25), the rest of the
iterations can be obtained.

According to our testing requirements, we utilized the
HAM and VIM in 0 ≤ x ≤ 50 using size of a step
h ∈ [h0,13h0] , where h0 = 0.0002 with the total number
of subintervals (nodes) used is N = 19292.

In Table 1 shows the errors of our approximations
HAM with the exact solutions (‖yiE (x)− yi (x)‖∞), the
errors of our approximations VIM with the exact
solutions

(
‖yiE (x)− yi,4 (x)‖∞

)
, the errors of the

approximations ADM with the exact solutions(∥∥yiE (x)−φi,5 (x)
∥∥

∞

)
in [20] and those of the numerical

solutions (‖yiE (x)−ψi (x)‖∞) with h = 0.002 and 25000
nodes mentioned in [19].

Problem 2
Consider the non-linear stiff system of ordinary

differential equations [19,20]:

y′1 (x) = −1002y1 (x)+ 1000y2
2 (x) , y1 (0) = 1,

y′2 (x) = y1 (x)− y2 (x)− y2
2 (x) , y2 (0) = 1. (26)

The exact solution of the system (26) is

y1E (x) = e−2x
,

y2E (x) = e−x
.

HAM: By means the standard of the HAM solving the
system (26), the initial approximations yi,0 (x) = 1 and the
linear operators are chosen

L [φi (x; p)] =
∂φi (x; p)

∂x
, i = 1,2
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Table 1: Errors for problem 1 in x = 50

i HAM (n = 5) VIM (n = 4) [20] [19]

1 2.1606E− 15 2.8736E− 16 2.1607E− 15 5.8853E− 07
2 2.1606E− 15 2.8736E− 16 2.1607E− 15 5.8880E− 07
3 2.1606E− 15 2.8736E− 16 2.1607E− 15 5.8880E− 07
4 2.1606E− 15 2.8736E− 16 2.1607E− 15 5.8853E− 07

with the property L [ci] = 0, where ci are constants of
integration. Furthermore, the system (26) suggest that a
system of non-linear operators be defined as

N1 [φi (x; p)] =
∂φ1 (x; p)

∂x
+ 1002φ1 (x; p)

−1002φ2
2 (x; p) ,

N2 [φi (x; p)] =
∂φ2 (x; p)

∂x
−φ1 (x; p)

+φ2 (x; p)+φ2
2 (x; p) . (27)

Applying the above definition, the zeroth-order
deformation equation is constructed as (3) and (4), and
the deformation equation of mth-order for m ≥ 1 is
constructed as

L [yi,m (x)− χmyi,m−1 (x)] = hiRi,m (−→y i,m−1) , (28)

with the initial conditions yi,m (0) = 0, where

R1,m (−→y i,m−1) = y′1,m−1 + 1002y1,m−1− 1002A2,m−1,

R2,m (−→y i,m−1) = y′2,m−1 − y1,m−1 + y2,m−1 +A2,m−1.

For the non-linear term y2
2 =

∞

∑
n=0

A2,n, the He’s polynomials

as given before.
Now, for m ≥ 1 The solution of the mth-order deformation
Eq. (28) is

yi,m (x) = χmyi,m−1 (x)+hi

∫ x

0
Ri,m (−→y i,m−1)dτ+ci, (29)

swhere the constants of integration ci are determined by
the given initial conditions in the system (26). We now
successively obtain the iterations yi,m (x). Thus, the
approximate solutions in a series form given by HAM is

yi (x) = yi,0 (x)+
3

∑
m=1

yi,m (x) , (30)

therefore, the series solutions obtained when h =−1.

VIM: A correction functional of the system (26) is an
iteratively described VIM

y1,m+1 (x) = y1,m (x)+

∫ x

0
λ1 (t)

(
y′1,m + 1002ỹ1,m

−1000ỹ2
2,m

)
dt,

y2,m+1 (x) = y2,m (x)+

∫ x

0
λ2 (t)

(
y′2,m − ỹ1,m

+ỹ2,m + ỹ2
2,m

)
dt, (31)

where λi (t) are general Lagrange multipliers and ỹi,m

denote restricted variations. Then, we have

δy1,m+1 (x) = δy1,m (x)+ δ
∫ x

0 λ1 (t)
(

y′1,m + 1002ỹ1,m

−1000ỹ2
2,m

)
dt = 0,

δy2,m+1 (x) = δy2,m (x)+ δ
∫ x

0 λ2 (t)
(

y′2,m − ỹ1,m

+ỹ2,m + ỹ2
2,m

)
dt = 0.

(32)
Calculus of variations and integration by parts for the
system (32), and noting that δ ỹi,m (0) = 0, we get the
following system

{
λ ′

i (t) = 0,

1+ λi (t)|t=x = 0.
(33)

Solving the systems (33) for λi (t) yields the Lagrange
multipliers λi (t) = −1, and the formula of variational
iteration can be obtained

y1,m+1 (x) = y1,m (x)−

∫ x

0

(
y′1,m + 1002y1,m

−1000y2
2,m

)
dt,

y2,m+1 (x) = y2,m (x)−

∫ x

0

(
y′2,m − y1,m

+y2,m + y2
2,m

)
dt. (34)

We start with the initial approximatations
y1,0 (x) = y2,0 (x) = 1 and using the formulas (34), we can
get the rest of components.

In Table 2 reproduces the errors of our
approximations HAM with the exact solutions
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(‖yiE (x)− yi (x)‖∞), the errors of our approximations

VIM with the exact solutions
(
‖yiE (x)− yi,4 (x)‖∞

)
, the

errors of the approximations ADM with the exact
solutions

(
‖yiE (x)−φi,4 (x)‖∞

)
in [20] and those of the

numerical solutions (‖yiE (x)−ψi (x)‖∞) in [19].

Problem 3
Finally, consider the linear stiff system of ordinary

differential equations [19,20]:

y′1 (x) = −20y1 (x)− 0.25y2 (x)− 19.75y3 (x) , y1 (0) = 1,

y′2 (x) = 20y1 (x)− 20.25y2 (x)+ 0.25y3 (x) , y2 (0) = 0,

y′3 (x) = 20y1 (x)− 19.75y2 (x)− 0.25y3 (x) , y3 (0) =−1.

(35)

The exact solution of the system (35) is

y1E (x) =
1

2

[
e−0.5x + e−20x{cos(20x)+ sin(20x)}

]
,

y2E (x) =
1

2

[
e−0.5x − e−20x{cos(20x)− sin(20x)}

]
,

y3E (x) = −
1

2

[
e−0.5x + e−20x{cos(20x)− sin(20x)}

]
.

HAM: By means the standard of the HAM solving the
system (35), we choose the initial approximations

y1,0 (x) = 1, y2,0 (x) = 0, y3,0 (x) =−1,

and the linear operators

L [φi (x; p)] =
∂φi (x; p)

∂x
, i = 1,2,3

with the property L [ci] = 0, where ci are constants of
integration. Furthermore, the system (35) suggest that a
system of non-linear operators be defined as

N1 [φi (x; p)] =
∂φ1 (x; p)

∂x
+ 20φ1 (x; p)+ 0.25φ2 (x; p)

+19.75φ3 (x; p) ,

N2 [φi (x; p)] =
∂φ2 (x; p)

∂x
− 20φ1 (x; p)+ 20.25φ2 (x; p)

−0.25φ3 (x; p) ,

N3 [φi (x; p)] =
∂φ3 (x; p)

∂x
− 20φ1 (x; p)+ 19.75φ2 (x; p)

+0.25φ3 (x; p) . (36)

Applying the above definition, the zeroth-order
deformation equation is constructed as (3) and (4), and

the deformation equation of mth-order for m ≥ 1 is
constructed as

L [yi,m (x)− χmyi,m−1 (x)] = hiRi,m (−→y i,m−1) , (37)

with the initial conditions yi,m (0) = 0, where

R1,m (−→y i,m−1) = y′1,m−1 + 20y1,m−1+ 0.25y2,m−1

+19.75y3,m−1,

R2,m (−→y i,m−1) = y′2,m−1 − 20y1,m−1+ 20.25y2,m−1

−0.25y3,m−1,

R3,m (−→y i,m−1) = y′3,m−1 − 20y1,m−1+ 19.75y2,m−1

+0.25y3,m−1.

Now, for m ≥ 1 The solution of the mth-order deformation
Eq. (37) is

yi,m (x) = χmyi,m−1 (x)+hi

∫ x

0
Ri,m (−→y i,m−1)dτ+ci, (38)

where the constants of integration ci are determined by
the given initial conditions in the system (38). We now
successively obtain the iterations yi,m (x). Thus, the
approximate solutions in a series form given by HAM is

yi (x) = yi,0 (x)+
3

∑
m=1

yi,m (x) , (39)

therefore, the series solutions obtained when h =−1.
VIM: A correction functional of the system (35) is an

iteratively described VIM

y1,m+1 (x) = y1,m (x)+

∫ x

0
λ1 (t)

(
y′1,m + 20ỹ1,m

+0.25ỹ2,m+ 19.75ỹ3,m)dt,

y2,m+1 (x) = y2,m (x)+

∫ x

0
λ2 (t)

(
y′2,m − 20ỹ1,m

+20.25ỹ2,m− 0.25ỹ3,m)dt,

y3,m+1 (x) = y3,m (x)+
∫ x

0
λ2 (t)

(
y′2,m − 20ỹ1,m

+19.75ỹ2,m+ 0.25ỹ3,m)dt, (40)

where λi (t) are general Lagrange multipliers and ỹi,m

denote restricted variations. Then, we have

δy1,m+1 (x) = δy1,m (x)+ δ
∫ x

0 λ1 (t)
(

y′1,m + 20ỹ1,m

+0.25ỹ2,m+ 19.75ỹ3,m)dt = 0,

δy2,m+1 (x) = δy2,m (x)+ δ
∫ x

0 λ2 (t)
(

y′2,m − 20ỹ1,m

+20.25ỹ2,m− 0.25ỹ3,m)dt = 0,

δy3,m+1 (x) = δy3,m (x)+ δ
∫ x

0 λ2 (t)
(

y′2,m − 20ỹ1,m

+19.75ỹ2,m+ 0.25ỹ3,m)dt = 0.
(41)
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Table 2: Errors for problem 2

x h N i HAM (n = 4) VIM (n = 4) [20] [19]

1 0.002 500 1 9.2110E− 11 1.1015E− 07 9.2111E− 11 2.5606E− 07
2 1.2389E− 10 1.0999E− 10 1.2390E− 10 8.0150E− 08

10 0.001 10000 1 1.7231E− 18 5.5468E− 17 1.7232E− 18 5.5468E− 16
2 1.8957E− 14 3.7332E− 18 1.8958E− 14 6.0936E− 12

Calculus of variations and integration by parts for the
system (41), and noting that δ ỹi,m (0) = 0, we get the
following systems

{
λ ′

i (t) = 0,

1+ λi (t)|t=x = 0.
(42)

Solving the systems (42) for λi (t) yields the Lagrange
multipliers λi (t) = −1, and the formula of variational
iteration can be obtained

y1,m+1 (x) = y1,m (x)−

∫ x

0

(
y′1,m + 20y1,m

+0.25y2,m+ 19.75y3,m)dt,

y2,m+1 (x) = y2,m (x)−
∫ x

0

(
y′2,m − 20y1,m

+20.25y2,m− 0.25y3,m)dt,

y3,m+1 (x) = y3,m (x)−
∫ x

0

(
y′2,m − 20y1,m

+19.75y2,m+ 0.25y3,m)dt. (43)

We start with the initial approximatations

y1,0 (x) = 1, y2,0 (x) = 0, y3,0 (x) =−1,

and using the formulas (43), we can obtain the rest of
components.

In Table 3 reproduces the errors of our
approximations HAM with the exact solutions
(‖yiE (x)− yi (x)‖∞), the errors of our approximations

VIM with the exact solutions
(
‖yiE (x)− yi,4 (x)‖∞

)
, the

errors of the approximations ADM with the exact
solutions

(
‖yiE (x)−φi,4 (x)‖∞

)
in [20] and those of the

numerical solutions (‖yiE (x)−ψi (x)‖∞) in [19].
In the following figures 1, 3, 5 for problem 3, we

show a very good agreement between the exact solutions
(yiE (x) , i = 1,2,3) and 3-terms of approximate solutions

HAM

(
yi (x) =

2

∑
m=0

yi,m (x) , i = 1,2,3

)
with errors

6.886× 10−7 at x = 1.2. In the following figures 2, 4, 6
for problem 3, we show a very good agreement between
the exact solutions (yiE (x) , i = 1,2,3) and 3-terms of
approximate solutions VIM (yi,3 (x) , i = 1,2,3) with

errors 8.61 × 10−11 at x = 1.2. We represent the
approximate solutions with a continuous lines and the
exact solutions with the symbol ◦.

Fig. 1: Exact: y1E (x) , HAM: y1 (x)

Fig. 2: Exact: y1E (x) , VIM: y1,3 (x)
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Table 3: Errors for problem 3

x h N i HAM (n = 4) VIM (n = 4) [20] [19]

1 0.004 250 1 4.8089E− 11 3.2913E− 14 4.8090E− 11 7.2921E− 05
2 4.9837E− 11 4.8413E− 14 4.9838E− 11 7.2921E− 05
3 5.1410E− 11 7.9101E− 15 5.1411E− 11 7.2921E− 05

1.2 0.01 120 1 8.6144E− 10 9.1606E− 13 8.6145E− 10 3.9360E− 04
2 8.6183E− 10 8.7639E− 13 8.6184E− 10 3.9360E− 04
3 8.6005E− 10 8.4580E− 13 8.6006E− 10 3.9360E− 04

Fig. 3: Exact: y2E (x) , HAM: y2 (x)

Fig. 4: Exact: y2E (x) , VIM: y2,3 (x)

Fig. 5: Exact: y3E (x) , HAM: y3 (x)

Fig. 6: Exact: y3E (x) , VIM: y3,3 (x)
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5 Conclusions

The homotopy analysis method and the variational
iteration method have been put to the test by using the
methods to obtain the approximate solution for three
problems of stiff systems initial value problem of
ordinary differential equations for both linear and
non-linear systems by using size of a step with a sequence
of subintervals and a suitable test of convergence. In all
cases, the results obtained demonstrate that these methods
are reliable and effective. It has been shown that the errors
are monotically reduced with the increment of the integer
n, where the errors by these methods are less than the
errors presented by the Adomian decomposition method
and the numerical methods.
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