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Abstract: The leverage effect is widely considered to be the major contributor to volatility skew in the stock option market. This study
concentrates on explicit modeling of corporate leverage. The asset-equity relation is modeled by a perpetual Americanoption, and the
asymmetry of the asset return distribution is addressed by introducing a Constant Elasticity of Variance (CEV) asset dynamic. The
model retains closed-form representation of firm equity with respect to asset and liability. This provides a convenientsimplification to
equity option pricing, so that the model can be calibrated tostock prices and the entire volatility structure. This model demonstrates how
the volatility smile, as well as skew, can be accommodated bythe structural model, and also successfully explains why low-leverage
stocks could still have a non-trivial volatility structure. A cross-sectional study shows that the calibrated parameters effectively outline
the financial characteristics of the leveraged firms. The credit quality measure generated from this model is also more informative in
terms of explaining Credit Default Swap (CDS) spread movements.
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1 Introduction

Since the introduction of the Black-Scholes option pricing
model, the volatility smile and skew have quickly become
a common pattern in the stock option market. One
pervasive explanation to this phenomenon is the leverage
effect, which concludes that a falling equity value is
accompanied by an increasing equity volatility due to
increased leverage. For this reason, the return distribution
of equity exhibits asymmetry and fat-tail properties.

Various extensions to the Black-Scholes’ Geometric
Brownian Motion (GBM) equity dynamic have been
proposed to match the volatility skew and smile. Some of
these models are the Constant Elasticity of Variance
(CEV) model (e.g. [1]), the Local Volatility model (e.g.
[5]), the Stochastic Volatility model (e.g. [7]), the Jump
Diffusion model (e.g. [14]) and Pure Jump Levy Process
models (e.g. CGMY model in [3]). While many of these
models are empirically successful, they mostly
concentrate on building a delicate stochastic process for
the equity value so that the volatility structure can be
replicated and calibrated with a few parameters. The

connection between the volatility structure and corporate
leverage remains an area relatively less explored.

Since it is widely agreed that leverage information is
coded into the implied volatility structure, an alternative
model explicitly incorporating leverage has the potential
to extract leverage information from the equity volatility
structure, therefore further assisting fundamental analysis.

The quantitative modeling of corporate leverage is not
an unexplored area at all. As early as 1974, Merton [13]
modeled the corporate equity as a vanilla call option of
the asset, with the strike equal to firm liability, assuming
the liability is as simple as a single zero-coupon bond.
Though the liability assumption and default dynamic are
not perfectly realistic, Merton’s revolutionary work
reminds the world of an oft-ignored fact: the equity of a
leveraged firm, which has long been considered a
primitive security, is instead a derivative. Its value is
driven by the asset dynamic and the leverage of the
issuing corporation, and stock options are, as a result,
compound options.
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There are various extensions to Merton’s 1974 model.
Leland’s 1994 work [12], for example, models the firm’s
equity in a perpetual time frame, under the assumption of
a constant and coupon-only liability structure. However,
few of these models provided a practical strategy for
obtaining crucial parameters to achieve agreement with
market prices.

In the rest of this paper, the three most relevant studies
linking a contingent claim leverage model to equity
volatility skew are briefly reviewed. After that, a new
CEV-based model allowing for an asymmetric asset
dynamic is proposed. The model retains an analytically
tractable format between the asset and equity relation, so
that calibrating the leverage model to the market becomes
practical. Empirical study shows the model’s capability to
produce not only the volatility skew but also the smile,
and at the same time explains why the volatility structure
could still be non-flat even in the absence of significant
leverage. The calibrated parameters characterize crucial
financial properties of the leveraged firms, and the credit
quality measure shows better consistency to Credit
Default Swap (CDS) spread movements.

2 Volatility Skew, Smile and Leverage

Equity holders leverage their business by borrowing and
therefore putting themselves under liabilities. However,
the limited liability nature of modern firms gives equity
holders the right to declare default at any time, insulating
them from any further claims but also taking away any
existing value.

Equity holders tend to make optimal default
decisions, and thus embed “optionality” into equity
values. Equity value depends nonlinearly on the asset and
the liability of the issuing firm. Stock options are
therefore compound options, whose original source of
randomness is the asset dynamic and the leverage.

Even if the asset return distribution is usually assumed
to be symmetric as an expedience, the embedded
optionality of equity introduces nonlinearity between
asset return and equity return, which breaks the symmetry
of the equity return distribution. This asymmetry property
is the key to reproducing the implied volatility skew/smile
observed in the stock option market.

Before formulating the previous logic into rigorous
mathematics, three existing studies closely related to this
work are reviewed.

The earliest study linking the contingent claim
leverage model to volatility skew is by Toft and Prucyk in
1997 [15]. Based on the Leland 1994 model, Toft and
Prucyk theoretically demonstrated that “the volatility
skew is negatively related to leverage”, and verified the

conclusion by statistical test on empirical data. The
symmetric asset return assumption remained throughout
their study.

Similar to Toft and Prucy, Hull et al. [9] made use of
Merton’s 1974 model, and theoretically derived the
impact of leverage on volatility skew. From there they
proposed a strategy of using two different implied
volatilities to infer leverage and asset volatility. Instead of
calibrating to the entire volatility skew, Hull et al. used a
linear approximation to the skew based on the selection of
a pair of strikes. The GBM asset dynamic assumption and
Merton’s single zero-coupon bond assumption remained
in this research. The liability structure is mapped onto a
single zero-coupon bond with a certain maturity, but how
to reasonably specify this maturity remains an open
question.

Chen and Kou [4] took the first step away from the
GBM asset return assumption in the structural modeling
of volatility skew. Chen and Kou extended Leland’s
model by introducing two-sided jumps into the GBM
asset dynamic. By tuning parameters, Chen and Kou were
able to produce various shapes of volatility skews. Similar
to Toft and Prucyk, no strategy for selecting the model
parameters to calibrate volatility skew as observed in the
market is outlined.

In this research, the asset dynamic is modeled by a
CEV process, which is asymmetric and at the same time
retains a closed-form solution between the equity and
asset dynamics. The entire volatility structure, together
with current equity value, is used to imply the firm asset
dynamic as well as the leverage. That is to say, the model,
with proper parameters chosen, should reproduce the
current market price of equity as well as volatility skew or
smile. Liability is modeled as a perpetual constant, which
is more realistic in that no maturity of liability needs to be
specified.

This model takes into account the entire volatility
structure, so that no manual selection of the strikes is
necessary. The calibrated parameters, related to asset
volatility, leverage and return asymmetry, reveal critical
properties of the firm’s fundamentals. The model also
resolves a paradox many structural models are suffering
from. When the leverage is insignificant, any GBM-based
leverage model will produce a very flat volatility
structure, which is inconsistent with the market. The
CEV-based structural model could still produce volatility
skews even in the absence of leverage simply because of
the asymmetric asset return.

Another major contribution of this model is that it can
accommodate not only the volatility skew but also the
volatility smile. Volatility smile is observed in the stock
option market with non-trivial probability. If the asset
dynamic is modeled as a GBM, the leveraged equity
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model either produces a flat volatility structure when
there is no substantial leverage, or a volatility skew when
the leverage is significant. Introducing a non-Ito asset
dynamic will help to produce volatility smiles but make it
extremely challenging to calibrate to the market. The
CEV asset dynamic provides a balance between the
diversity of volatility structure it could accommodate and
mathematical tractability, which is highly desirable when
calibrating to the market.

3 The CEV Leverage Model

The asset of a limited liability company (LLC) is the
value of the tangible and intangible resources that could
generate positive cash flows. The asset value under
consideration here is the market value instead of the book
value. The market value is modeled as a CEV process,
which under equivalent martingale measure (Q-measure)
follows the SDE:

dV = rVdt+φVαdW̃ (1)

whereV is the asset,r is the risk-free return assumed to
be constant,φ is the CEV diffusion factor (not equivalent
to GBM volatility), α is the elasticity andW̃ is the
Brownian motion underQ-measure.

Theoretically,α can take any positive value. When
α = 1, the CEV model degenerates to GBM, so the CEV
model is a more generalized version of GBM. It is worth
noting that the return distribution skews to the left when
0< α < 1 and to the right whenα > 1. For more details
about CEV model see [8].

The reason to choose the CEV model instead of GBM
as asset dynamic is to introduce asymmetric asset return
distribution. One major limitation of GBM asset dynamic
in leverage firm modeling is that when leverage is low, the
model naturally leads to a flat volatility structure. This is
not desirable when considering stocks like Apple Inc.
These firms have no essential borrowings compared to
their cash holdings, but the stock option market may still
display a volatility skew. An example of calibrating to
Apple Inc.’s volatility skew under both GBM and CEV
asset dynamic is given in the empirical study to justify the
benefit of the CEV asset dynamic.

The other major drawback of GBM asset dynamic is
that it cannot produce volatility smile. Even though the
implied volatility skew dominates the stock option
market, implied volatility smile can be observed with a
non-trivial probability. An illustration of calibrating to
volatility smile is provided in the empirical study, where
one could see the calibration and implication of a smile
and thus the value of having the flexibility to
accommodate both the skew and smile within one single
model.

Compared to stochastic volatility and jump diffusion
models, the CEV model does not introduce an additional
source of uncertainty and therefore keeps the market
completeness. Compared to the pure jump Levy
processes, the CEV model maintains a mathematically
tractable form and connects smoothly to prevailing GBM
models. This balance is the key to simplify the pricing of
vanilla options so that they can be treated as simpler
barrier options, rather than a compound option. The
compound option is especially difficult to manage
because the base layer, i.e. the equity-asset relation, is a
perpetual option which cannot be easily approximated by
numerical algorithms. To avoid constructing lattice on
perpetual time horizon, a close-form solution of
equity-asset relation is highly valuable.

The liability modeling is the most important and
challenging part in structural modeling. Liability is the
major factor to trigger default, thus it plays a key role in
the equity valuation. Liability in practice could be very
complicated, and therefore any mathematically tractable
representation could not accurately replicate the real
liability. Complicated modeling of liability pushes the
model closer to reality but leaves a handful of parameters
that cannot be determined with confidence.

Hull et al. 2004 work [9] provides a brand new
perspective to liability modeling. The idea can be
summarized as such: modeling the liability by a simple
structure, and mapping the market assessment into this
simple structure. More precisely, the equity and stock
option traders compile detailed information of the
liability and cast their opinions into the volatility
structure. Hull et al. approximated the volatility skew
linearly, and mapped the linearized volatility skew into a
zero coupon bond maturing at some given date. This is
accomplished by matching the equity dynamic to the
linearized volatility skew.

Unlike Hull et al., a constant perpetual liability
structure is adopted in this work. The major reason is to
avoid the specification of maturity, which is not a natural
input when evaluating corporate capital structure. The
liability value (D) is considered to be constant in this
model because it is a relatively stable component
compared to asset and equity. Similar to constant interest
rate assumption, this is not to exclude the possibility of
changing liabilities, which can be accommodated by
updating model parameter. The liability is implied from
market data so that the structural model agrees with the
stock price and equity volatility.

As mentioned in previous sections, the equity value of
a LLC is not simply the net worth of asset value over the
liability (V − D) but a more complicated derivative
depending on asset and liability. This relation must be
mathematically derived. Denote the equity value asE
which is a function of asset valueE(V) . To avoid
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unnecessary constraint imposed to the structure ofE(V),
the equity value is first decomposed into:

E(V) = B(V)+K (2)

a componentB(V) relevant to asset value, and a
componentK independent of asset value.

By the the no-arbitrage argument, the componentB(V)
has to satisfy the following differential equation:

rV
∂B
∂V

+
1
2

φ2V2α ∂ 2B
∂V2 = rB (3)

which specifies the martingale property ofB. Note that by
the constant liability assumption,B is stationary, i.e.
∂B/∂ t = 0.

To solve the above differential equation, proper
boundary and limit conditions are required. The limit
condition with ultimately large asset value is derived from
the fact that the leveraged firm’s equity value converges to
net worth when leverages becomes less and less
significant. This is represented by:

lim
V→+∞

(E(V)− (V−D)) = 0 (4)

The default boundary, denoted byL , is a crucial
component in this model. Different modeling of this
boundary leads to significantly different solutions. In this
study, we adopt the endogenous default assumption,
which means the default boundary is assumed to be
selected by the equity holders to maximize their own
benefits.

Under endogenous default assumption, the exact
location of default boundary is not known in advance but
could be located by additional conditions that must be
satisfied at that boundary. It is easy to see that at the level
of default, the equity holder will have nothing according
to law, so

E(L) = 0 (5)

Given thatE(V) could be dynamically replicated by
holding ∂E

∂V (i.e. Delta) shares ofV, E′(L) must also fall to
zero at the default boundary because otherwise a further
drop of asset value must lead to negative equity, which
contradicts reality.

E′(L+) = E′(L−) = 0 (6)

The logic above can be summarized into a free
boundary problem:























E(V) = B(V)+K

rV ∂B
∂V + 1

2φ2V2α ∂ 2B
∂V2 = rB

limV→+∞(E(V)− (V −D)) = 0
E(L) = 0
E′(L+) = E′(L−) = 0

(7)

Note that all specific solutions to equation (3) are
combinations of two basic solutions denoted byB1(V)
andB2(V). By nature of financial instruments,B1(V) =V
must be one of the two solutions, which follows naturally
after noticing that the simplest derivative is the underlying
asset itself. Knowing one of the basic solutions, the
second basic solution can be obtained by construction of
B2(V) =V �g(V), which reduces (3) to

1
2

φ2V1+2αg′′+(rV 2+φ2V2α)g′ = 0

and leads to

B2(V) =V
∫ ∞

V

1
u2e

− r
φ2(1−α)

(u2−2α+C)
du

The solution to the problem (7) is K =−D and:

E(V) =V −D+DV
∫ ∞

V

1
u2e

− r
φ2(1−α)

(u2−2α−L2−2α )
du (8)

whereL can be solved by root searching:

x−D+Dx
∫ ∞

x

1
u2e

− r
φ2(1−α)

(u2−2α−x2−2α )
du= 0 (9)

According to Ekström [6], the last term of equation
(8) is the value of a perpetual American put option written
on the assetV and with strike equal to liabilityD. This
makes sense to theE(V) equation, in that the equity
holder is holding not only the net worthV −D but also an
additional protection security which allows them to
exchange the assetV for an amount equal to liabilityD,
and therefore cancels out the net worth position. This
exchange makes sense only when the asset value is deeply
below the liability, and the optimal exercise of such a
perpetual American put option is exactly the endogenous
default.

Ekström [6] showed that

lim
α→1

L =
2r

2r +φ2 D

and

lim
α→1

DV
∫ ∞

V

1
u2 e

− r
φ2(1−α)

(u2−2α−L2−2α )
du

= (D−L)(
V
L
)−2r/φ2

which are the exercise barrier and price of a perpetual
American put option under GBM asset dynamic. This is a
highly desirable property because it ensures theE(V)
degenerates properly asα → 1. The details of the proof
are not reproduced in this paper.

Given that the equity dynamic has been modeled by
a stopped process with a closed-form solution, the vanilla
option written on the equity can be treated as a down-and-
out option (only with a more complicated pay-off), rather
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than being treated as a compound option. This simplifies
the call option price to:

CK = Ẽ[D(T)(E(V)−K)+|Ft ]

= Ẽ[Iτ>TD(T)(V − (D+K)+

DV
∫ ∞

V

1
u2 e

− r
φ2(1−α)

(u2−2α−L2−2α )
du)+|Ft ]

(10)

where τ is the first hitting time ofV through default
barrierL. Unfortunately a closed form solution to (10) has
not been found. However, thanks to the close-form
solution ofE(V), (10) can still be solved by Monte-Carlo
or by finite difference lattice so that calibration to the
market becomes practical.

Given a set of strikesK and a corresponding implied
volatility σK , the parameter set{V,φ ,D,α} can be
calibrated so thatCK agrees toσK andE(V) agrees to the
stock price. Note that not all four parameters are
independent, in that onceφ , D andα are given, the choice
of V is unique to ensure the stock price agreement.
Therefore the implied volatility structure is calibrated by
three parameters instead of four.

4 Empirical Study

In this section, the CEV-based structural model is first
tuned to produce different shapes of volatility
skews/smiles and then calibrated to a volatility smile
observed on the market. Volatility skew calibration to a
low leveraged firm (AAPL) is also demonstrated to
illustrate the value of the CEV model’s flexibility. A
cross-sectional study is presented later to compare the
fundamental characteristics of S&P-100 and
NASDAQ-100 component companies. Finally, a
rank-correlation study is provided to demonstrate the
advantage of CEV-based model in terms of explaining the
CDS movements.

Note that the CEV volatilityφ is not comparable
across candidates whenV0 or α are different. The
adjusted volatility,φVα−1

0 , is studied instead. Also,α is
not comparable under different values ofV0. To overcome
this difficulty, the cross-sectional test is based on a
standardized asset value equal to $ 1 million and adjusted
call strikes proportional to the standardized stock price
corresponding to the standardized asset value. Interest
rate is assumed to be constant and flat at 2% for all the
tests. All volatility smiles/skews are sampled at 1.5-year
maturity for a balance between time horizon and liquidity.
The vanilla call prices are simulated by 1,000-path and
1,000-step Monte Carlo. Paths are generated as a 10
dimension Sobol sequence Brownian-bridged to 1,000
steps. The fitting criteria is the sum of squared relative
error of call prices. All of the data (equity, volatility cube,
CDS curve and financial statements) is collected from
Bloomberg.

4.1 Reproducing and calibrating to volatility
smile

One appealing feature of the CEV-based structural model
is its capability of producing different shapes of volatility
skew or smiles. It is a valuable feature considering that
volatility smile is not compatible to models whose
underlying asset dynamic is log-normal.
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Fig. 1: Volatility skews and smiles under different elasticity when
adjusted volatility is 0.3 and leverage is 0.2

Figure (1) illustrates the volatility skews/smiles under
different elasticities (0.9, 1.1, and 1.3), whereas the
adjusted volatility (0.3) and leverage (0.2) are held
constant. When the elasticity is small, e.g. 0.9, the
implied volatilities form a skew, which is commonly
observed in the market. As the elasticity increases, the
high-strike end of the implied volatility structure tilts up
gradually. When elasticity reaches 1.3, the implied
volatilities produce an obvious smile, where the implied
volatilities are higher for both low and high strikes.

Another noticeable feature is that as the elasticity
increases, its impact to the low-strike end of the implied
volatility curve is very limited. This makes intuitive
sense, since the low strike options cover scenarios in
which the liability and default are the major concern.
High strike options, on the other hand, reflects the growth
perspective of the firm, which is mostly driven by the firm
asset dynamic. It could be loosely interpreted as that the
leverage governs the left end of volatility skew/smile,
whereas the elasticity governs the right end. This also
further validates why both leverage and asymmetry can
be extracted from the implied volatilities at the same time.

Since the 1987 financial crisis, volatility skew has
dominated the option market. However volatility smile
can be observed with a non-trivial probability. Yahoo
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Fig. 2: Calibration to YAHOO Inc. volatility smile observed on
Jan.17, 2014

Inc.’s implied volatility on Jan.17, 2014 is a typical
volatility smile example. Figure (2) demonstrates how the
CEV-based structural model could reproduce this
volatility smile with high accuracy. The calibrated model
comes with an adjusted volatility 31.36%, implied
leverage 16.36% and elasticity 1.3044.

4.2 Volatility skew of low leverage firms

250 300 350 400 450 500 550 600 650 700
0.275

0.28

0.285

0.29

0.295

0.3

0.305

0.31

0.315

0.32

0.325

Strike ($)

Im
pl

ie
d 

V
ol

at
ili

ty

 

 
Market Observations
CEV Model Prediction
GBM Model Prediction

Fig. 3: AAPL volatility skew calibrated under both CEV and
GBM asset dynamic

The benefit of picking CEV process as the asset
dynamic is outstanding when modeling low leverage
firms. Under GBM asset dynamic, lower leverage
naturally means less volatility skew, which is
incompatible with reality in some circumstances. Apple
Inc. (NASDAQ: AAPL) for example, is known by its

deep cash position, and therefore its effective leverage is
very limited. However, a volatility skew is still observed
from the option market. The skew is mostly due to the
asymmetry of its asset return, rather than to the firm’s
leverage. If the skew is calibrated to a GBM asset
dynamic, the implied leverage must be higher than reality
to explain the skew. AAPL skew calibrated under the
GBM and the CEV leverage model implies 6.4897% and
1.1166% respectively. From Figure (3), it can be easily
observed that GBM produces an implied volatility much
higher than the market quote on the low strike end. Both
the implied leverage and the goodness of fit indicate that
the GBM model is overstating the leverage, and the CEV
model provides more flexibility to achieve better
agreements to the market.

4.3 Parameter distribution analysis

The ideal test of effectiveness of implied parameters (i.e.
V0, D, φ and α) is comparing the parameters to
fundamental research conclusions. However this analysis
is difficult to approach because the information and
workload required for fundamental research is far beyond
the author’s resources and specialties. On the other hand,
the conclusions of fundamental research are difficult to
quantify as well.

To overcome this difficulty, a cross-sectional approach
is taken as an alternative. 99 components of S&P-100
index and 81 components of NASDAQ- 100 index (with
17 overlaps excluded) are selected as test candidates to
ensure strong capitalization, market liquidity and data
accuracy. From the fundamental point of view,
components of two indices should be notably different
because S&P-100 components are mostly mature and
stable companies whereas the NASDAQ-100 components
have a much higher emphasis on high risk and high
growth potential stocks. These two types of companies
should differ in terms of business uncertainty, effective
leverage and asset return asymmetry.

To benchmark the effectiveness of the CEV-based
structural model, the original Merton’s model is
implemented under suggestions of Jones et al. in 1984
[11] (Merton-JMR), where the asset value (V0), asset
volatility (σV) are obtained from equity (E0), equity
volatility (σE) and liability (D) input by jointly solving
E0 = C(V0,D,σV) and E0σE = ∂E

∂VV0σV , where function
C() is the Black-Schole’s vanilla call valuation. HereσE
is approximated by the 30-day realized volatility of the
stock return andD is approximated by KMV’s suggestion
of short-term liability plus one half of long-term liability
[2].

The distribution comparison is based on Kernel
smoothing function estimation. The difference between
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distributions is measured by the Hellinger distance to
overcome possible outlier problems commonly seen in
financial data. The Hellinger distance between density
function f (x) andg(x) is defined as:

H < f ,g>= 1−
∫

√

f (x)g(x)dx
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Fig. 4: Kernel smoothing function estimation of firm volatility
under CEV implementation
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Fig. 5: Kernel smoothing function estimation of firm volatility
under JMR implementation

Unlike in GBM, the CEV volatility factorφ is not
directly comparable between candidates because of
different α andV0. The adjusted volatilityσ = φVα−1

0 ,
which is the instantaneous volatility of asset return, is
compared instead. Figure (4) and (5) shows the Kernel
smoothing function estimations of asset volatility under
both CEV and JMR implementations. It is remarkable
that the adjusted asset volatility of S&P-100 companies
clusters around 10% whereas for NASDAQ-100
companies it is more dispersed to the higher volatility
zone and with a fat tail on the right. This is consistent

with the fact that stable businesses usually have lower and
similar uncertainty whereas the growing businesses tend
to have higher and more diversified volatility due to the
business model diversity. The Merton-JMR
implementation captures a similar pattern, but with much
lower confidence. The Hellinger distribution distance
between S&P-100 and NASDAQ-100 for the CEV
implementation is 0.2899 compared to 0.2022 in the JMR
implementation. Therefore, both implementations
correctly capture the differences in business uncertainty,
while CEV implementation demonstrates an advantage in
producing more differentiated volatility distributions.
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Fig. 6: Kernel smoothing function estimation of implied firm
leverage under CEV implementation
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Fig. 7: Kernel smoothing function estimation of implied firm
leverage under JMR implementation

One major difference between CEV and Merton-JMR
implementation is the treatment of liabilities. Liabilities
are readable from financial reports. However these values
are highly unreliable in many respects. For example,
stable companies tend to make long-term rolling
borrowings, which pump up their liability book values
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without putting them under significant financial stress.
These liabilities are usually adjusted down in fundamental
analysis. Growing companies, on the other hand, tend to
make short-term borrowings, and their capability to roll
over these debts depends highly on their short-term
performance. These liabilities are usually the default
triggers for growing companies and should not be
adjusted down. Off-balance-sheet items further
complicate the liability analysis by its hidden and
diversified nature.

CEV implementation is devoted to imply liability
from market data, and therefore taking into account the
professional adjustments made by fundamental traders.
JMR implementation can only make very crude
adjustments. Figure (6) and (7) shows the Kernel
smoothing function estimation comparison of implied
leverage under CEV and JMR implementation
respectively. Once again, CEV implementation suggests
concentrated leverage distribution for S&P-100
companies and more dispersed distribution for
NASDAQ-100 companies. Additionally, NASDAQ-100
companies show slightly lower leverage, which is also
consistent with reality. The JMR implementation
produces misleading results in terms of leverage. A
significant number of S&P-100 companies have leverage
close to one, and NASDAQ-100 companies show high
concentration at very low leverage. This might be true
when reading the financial statements, but the implication
is less meaningful or even misleading when trying to
understand the firm’s fundamentals. Even though JMR
implementation shows a higher Hellinger distribution
distance than CEV (0.1904 vs 0.1193), it should not be
considered as an advantage due to its misleading
implication.

The distribution of elasticity factorα is also
illustrative in revealing the firm characteristic. Figure (8)
shows the Kernel smoothing function estimation under
CEV implementation (note that this measure is
unavailable under JMR implementation). For
NASDAQ-100 stocks, a strong clustering aroundα = 0.7
and a weaker clustering aroundα = 1.2 are very
noticeable. The strong clustering to lower elasticity
illustrates that a fat left tail in asset return distribution is
expected by the market for most of the growth company,
whose valuation is rich and downside is large; whereas
the weaker clustering to higher elasticity corresponds to
the fewer companies with moderate current valuation but
with strong growth potential that has not yet been priced
in. The distribution of S&P-100 asset return elasticity is
more dispersed, which is consistent to the fact that these
stocks are mostly fairly valued, and the elasticity purely
reflects the nature of the business’ profitability. The
Hellinger distance between elasticities is 0.1407.
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Fig. 8: Kernel smoothing function estimation of asset return
elasticity (α) for CEV implementation

4.4 Rank consistency analysis between expected
default loss and CDS spread

Given the calibrated parameters, the probability of default
(PD) under CEV implementation can be calculated as the
first hitting probability by solving the Kolmogorov
backward equation:















∂P
∂ t + rV ∂P

∂V + 1
2φ2V2α ∂ 2P

∂V2 = 0
P(V = L, t) = 1
P(V = ∞, t) = 0
P(V, t = T) = I{V=L}

(11)

The expected default loss (EDL) is then the product
between loss given default 1− L and the probability of
default.

It is very challenging to match the implied EDL to
CDS spread for several reasons. For one reason, the
pricing measure used to generate EDL is calibrated only
to vanilla options, and there could be a significant
misalignment between the option market and CDS
market. A careful joint calibration is required to bridge
this gap. Other reasons are also reported e.g. in [10] and
[9]. Therefore an alternative approach of day-by-day
analysis is taken instead. A good credit risk measure
should be able to produce ranking consistency to CDS
spreads, and the movements of CDS spread should also
be captured by the credit risk measure. Due to the limited
availability of CDS and volatility skew data, it is
extremely tedious to apply this test on a large sample.
Only two individual stocks with observable CDS
movements in the study period are reported here.

The market data of American International Group Inc.
(NYSE:AIG) and Simon Property Group Inc.
(NYSE:SPG) between Jan.17, 2014 and Feb.28, 2014 are
analyzed. Figure (9) and (11) shows the scatter plot of
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Fig. 9: Relationship between CEV EDL and CDS, NYSE:AIG
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Fig. 10: Relationship between JMR PD and CDS, NYSE:AIG

5-year EDL v.s. 5-year CDS spread under CEV
implementation for AIG and SPG respectively, whereas
Figure (10) and (12) shows the scatter plot of 5-year
probability of default v.s. 5-year CDS spread under
Merton’s JMR implementation for AIG and SPG
respectively. It is quite noticeable that under CEV
implementation, the EDL shows a much stronger ranking
consistency with CDS, compared to the PD under JMR
implementation. The Kendall rank correlation measure
also confirms this observation: CEV implementation
leads with 0.5327 Kendallτ v.s. JMR’s -0.2284 in the
SPG case, and 0.5045 v.s. -0.0290 in the AIG case. This
suggests that for a particular firm, the EDL produced by
CEV implementation works more desirably in capturing
the daily movements of the CDS spreads.

5 Conclusions

In this paper, an alternative structural model is proposed
with asymmetric asset return distribution. The model
retains closed-form representation of equity value with

respect to asset and liability. The model can accommodate
more diversified volatility structures including skews as
well as smiles. The closed form solution enables the
calibration of the model to the entire implied volatility
structure. The calibrated parameters, including implied
leverage, business uncertainties and asset return
asymmetry, provide an effective outline of companies’
fundamental characteristics. Cross-sectional study shows
that S&P-100 companies tend to have similar implied
leverages, lower business uncertainties and more
diversified asset return asymmetry, whereas the
NASDAQ-100 companies tend to have lower but more
dispersed distribution of implied leverages, higher
business uncertainties and strong clustering to left skewed
asset return asymmetry. The expected default loss, as a
credit quality measure, provides much stronger ranking
consistency to CDS spread compared to Merton’s
probability of default.

50 55 60 65 70
0

0.5

1

1.5

2

2.5

x 10
−6

CDS (in bps)

E
D

L 
(C

E
V

)

Fig. 11: Relationship between CEV EDL and CDS, NYSE:SPG
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