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Abstract: In this article, the mathematical modelling on magnetohydrodynamic peridtaltiof Jeffrey fluid in the gap between two
eccentric tubes has been discussed in the presence of applied magiteti@dometrically, we considered two eccentric tubes in which
the inner tube is rigid while the tube at the outer side has a sinusoidal wapagating along the wall. The governing equations for
Jeffrey fluid in a cylindrical coordinates for three dimensional flowgiven. The approximations of low Reynolds number and long
wavelength have been employed to reduce the highly nonlinear partiatatiffal equations. The problem has been solved with the
help of homotopy perturbation method alongwith eigen function expanséthad. The graphs of pressure rise, pressure gradient and
velocity (for two and three dimensional flow) have been drawn. Thastiiees have also been presented to discuss the trapping bolus
discipline.

Keywords: Peristaltic flow, Eccentric cylinders, Jeffrey fluid, Magnetohydrodyita(MHD),Nonlinear partial differential equations,
Analytical solutions, HPM.

1 Introduction Jeffrey fluid under the effect of magnetic field in
asymmetric channel under the assumptions of long
Peristaltic pumping is a phenomenon in which fluid Wavelength and low Reynolds number. A number of
transport happens when a gradually wave of aregnalytical and numerical studie8,$,5,6] of peristaltic
contraction or expansion propagates along the length oflows of different fluids have been reported. Mekheimer
distensible duct. It is an instinctive property of many [7]1 measured the effect of magnetic field on peristaltic
biological disciplines possessing smooth muscle tubedransport of blood in a non-uniform two dimensional
which helps in flowing biofluids by its propulsive channel, when blood is characterized by a couple stress

movements and is found in the transport of urine fromfluid. In recent years, peristaltic transport through a
kidney to the bladder, the movement of chyme in theconcentric annulus has obtained much concentration. A

gastro-intestinal  tract, intra-uterine fluid motion, lot of investigations are available in the literature todstu
vasomotion of the small blood vessels and in many othefhe effect of an endoscope on peristaltic motion of
glandular ducts. The mechanism of peristaltic transportNéwtonian and non-Newtonian fluid8,p,10,11,12] The

has been exploited for industrial applications like sagita €ccentric annulus is normally not easy to discuss even
fluid transport, blood pumps in heart lung machine andwnhOL_Jt peristalsis. There are only a few .studles take into
transport of corrosive fluids where the contact of the fluid attention the effect of the eccentricity attribuie[14].

with the machinery parts is prohibited. Peristaltic To be more specific, only one study is available which
transport of a Newtonian fluid in a vertical asymmetric discusses the peristaltic flow of a viscous fluid through
channel with heat transfer and porous medium have beeaccentric cylinders 151 To the best of author’s
analyzed by Srinivas and Gayathti [ Kothandapani and knowledge, the peristaltic flow of non-Newtonian fluid
Srinivas P] have examined the peristaltic transport of a through the eccentric cylinders has not been explored so
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for. Therefore, the main purpose of the present paper is t( r
discuss the effect of peristaltic transport on the Jeffrey

fluid flow in the gap between two eccentric tubes, the

outer tube gets the sinusoidal wave propagating down thi

wall and the inner tube is rigid. A motivation of the

present work is the anticipation that such a problem will

be beneficial in many clinical applications. This analysis

gives a better judgement for the speed of injection and the

fluid flow characteristics within the syringe. Also, the
injection can be carried out more proficiently and pain of FLUID (r) !
the patient can be extenuated. = —
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2 Mathematical formulation of the problem

The surface of inner cylinder

The MHD flow of an incompressible non-Newtonian

Jeffrey fluid is considered here. The flow geometry is

described as the inner tube is rigid and sinusoidal wave i

travelling at the outer tube down its wall. The radius of The centre line of outer cylinder

the inner tube 9 but we require to consider the fluid

motion to the centre of the outer tube. The centre of the

inner tube is now at the positian= ¢, z= 0, wherer and Fig. 1: The simplified model of geometry of the problem.

zare coordinates in the cross-section of the pipe as shown

in the Fig. 1. The radially varying magnetic field is

applied normally to the direction of the flow. Then the

boundary of the inner tube is described to ordeby

ri = & + £cosl, wheree¢ is the parameter that controls

the eccentricity of the inner tube position. The geometry o[ +ug+va+ ¥ g5 — | = 21 12 (r5.)+ 15 (Se) + & (S2) - 22,

of the walls is visualized in Figl. (4)
The equations for the radii are

The centre line of inner cylinder

r1=0+€ecosb, (5 rudt v vly | = 2B+ 25 17S0) + 15 (So0)+ (o),
21T (5)

rp=a+ bcos{)\(z— ct)} ,
whered anda are the radii of the inner and outer tubbs, » [%w% +v%+%’g—g} =-22+ 12 (rS,)+ 14 (So) + & (Se) — oBE(n)u,
is amplitude of the wave) is the wavelengthg is the (6)
propagation velocity and is the time. the problem has wherev, w andu are the velocity components m 6

been considered in the system of cylindrical coordinatesandz—directions, respectively is the viscosityS:, S,
(r,6,z) as radial, azimuthal and axial coordinates, S, Sgg, Sy, andS, are stresses for Jeffrey fluid which can

respectively. be computed with the help of following streddl]
The continuity and momentum equations for an
incompressible Jeffrey fluid are described as follow S= ﬁ (y+,\ 2V) .
+A1
divV =0, Q)

According to the flow geometry, the boundary conditions
are defined as

p%:ﬂpmwsuxs, 2) u=0, atr=ry, (1)

where p is the density,d/dt is the material time
derivative,V is the velocity field,p is the pressureS is u=V, atr=ry, (®)

the stress tensor for Jeffrey fluid,is the electric current  whereV is the velocity of the inner tube. The velocity
density,B is the total magnetic field; is the body force. component in the azimuthal direction is assumed to be
Note that considering the cylindrical coordinates systemunaffected, so the velocity field is taken @s0,u). The

for the velocity fieldV = (v,w,u) and in the absence of governing equations are made dimensionless by using the
body force, equation$l) and (2) correspondingly take following non-dimensional parameters

the following form

ou 9 10 R X R N N LRI RS EE
u vV Vv w , 2152

—_— t — 4+ -4+ — = _r __ pca 372,.\ _ OBj(na ' oy
ztartrrae =% @) ;=7 Re=£E M(="20%,6 =6,V =1,
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whereg is the amplitude ratioM is the MHD parameter, 3 Solution of the problem

Re is the Reynold’s numbedy is the dimensionless wave

number, € is the eccentricity parameter. After using the Solution of the above boundary value problem is
above dimensionless parameters, the governing equatiorevaluated by using homotopy perturbation method
(after dropping dashes) are reduced to the following form [16— 17]. The homotopy equation for the given problem

ov Vv du is defined as
ST T Y 9 N
or 'r ' 0z ) H(ua) = (1-a) (£ [0~ 2 [Go)) +a (L [0+ 3 28— (1+A1) %) =0,
(19)
3 [ov v p 50 54 20 s
Redg [ 3/ +ugt +v8r] = 92128 (1S) + 2 &5 (Se)+ 624, (o) 5(1,0,) Where,,% the linear operator is assumed to.Ho— (;erz )
;1% — N2 \We define the following initial guess

_ _19p, 59 (2 50 29
O0=—730Tzar (r’Se) + 7 4 (See)+5 (Se(zl)l) o — V sinh(N (log f] —log[F2])) cschN (Iog]r1] — log[ra]).

(20)
Redo (92 +u22] = 98+ 19 (1S + 1 45 (Sor) + 0% (Sp) -~ M. |NOW We describe
(12) u(r,0,2t,q) = 21
The components of non-dimensional stresses for Jeffrey u(r.8,2t,q) = to+qur + .. (21)
fluid are evaluated as Using the above equation into Ed.9) and then taking the
25 Aocd [0 0 0 ov terms of first two orders, we get the following problems
Sr = T+ A ( a (dt TV, Tu dz)) ar’ alongwith corresponding boundary conditions
Zeroth order system
So— o 1 Aocd [0 v 7} 7} 1ov B
=1 Ut e \at TVar tYaz) ) rae % [uo] ~ £ [do] =0, (22)
So= i (1+222 (G +vg+ud)) (%% + %),
1+)\1 ot or 0z z ' or U=0, atr=ry, (23)
20 Aocd [0 0 7} %
See = <1+ ( +v+u)),
1+A a \Jdt or 0z))r U=V, atr=ry. (24)
1 A 1 .
Sy, = 3 <1+205 (g +v;+u:>) f%, The solution of the above zeroth order system can be
1+A a t r z)) T obtained by using Eq20) and is directly written as
20 Aoco 7} 7} du
Sz = 1+, + a E"‘Va"‘ 02 E up(r,8,zt,q) = Up = Vsinh(N (log[r] —log[r2])) csch(N (log[r1] —log[rz])) .
(13) (25)

Using the long wavelength approximatiodo(— 0) and First order system

takingM(r) = ¥, the governing equationslO— 12) are

2
simplified to the following form Zu] +Z U] + —% (1+A1) Zp 0 (26)
r2
op
E—O, (14) or
02u; 10u; N2 dp 1 9%y
Kl g zo — -7
0—2:0, (15) or2 Jrr or 2= (1+21)5; dz r2 992’ 27)
dp d%u 1du 1 d4 M2
it e - u =0, atr=ry, 28
(I+A1) 5 =32 T 1 ar Trzgge ~ (LHAD 12U 1 2 (28)
or
up =0, atr=rj. (29)

dp 0%u  1du  19%u N2
9z o trar trzae2 2% (18 The solution of the above linear ordinary differential
equation is found as

(14+A1) 5=
whereN = My/1+A4. Egs. (14) and (15) show thatp

is not a function of and®. The corresponding boundary U= wqnes) (escn(Niog[]) ((~angerg+f (N2~ 4)log]! ZD
conditions in non-dimensional form are sinh(Niog ] ) ~ 1 (N? - 4) g £ sinn(NIog 23] ) + an 2 (rZsinn(Nog [ £]) -

u=0, atr=ry=1+¢@cos2n(z-t)], (17) r smh(NIog[’l])) NS ( smh(NIog ) —rfsinh(NlogE> +

u=V, atr=ry =5+ £cosh. (18) rzsinh<NIogr;>>Al>>, (30)
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where profile u(r,0,zt) with the variation of all emerging
dimensionless parameters like tinte flow rate Q,
amplitude ratiog, the velocity of the inner tub¥, the

d + ecosb . eccentricity parametes, Jeffrey fluid parameteA; and
Ne <1+2CSCH (N (Iog { ro D)) sm29)> * the MHD parameteM has been analyzed. In the end, the

Now f 1 h the final solution. So f stream lines observing the peristaltic flow are drawn for
Eowzir q- ,twe approach the ninal solution. SO from -y, parameter$!, Q, A1 and @ while other parameters
g.(21), we ge remain fixed.
(r,0,2,t) = Uo + Uy, (31) Table.1is shown to see the matching of results for the
current case and the previously discussed case.

f= m (NVecsch(Nlog [%D ((e+6cose)coth(N (Iog [%D) +

whereup andu; are defined in Eqs(25) and (30). The
instantaneous volume flow ra¥zt) is given by

o Table 1: Variation of velocity distribution for.

— Mekheimer et al. 15] Present work

Q(Z’t) 27-[/r rUdr’ (32) r u(r,0,z1t) u(r,0,zt)forM=0,A1 =0 | u(r,0,zt)forM =0.5A; = 1.0
Vi 0.20 | 0.1000 0.1000 0.1000
0.25 | 0.1093 0.1081 0.0969
0.30 | 0.1119 0.1116 0.0944
Q/an= Nz 7 2 (N?+4) (2034 N9 (rf 1) ) + 8N (N2~ 4) 3V — 27 (N + 4) r2x 0.35| 0.1119 0.1120 0.0918
0.40 | 0.1096 0.1099 0.0887
r r dp, 2 2 2 2 0.45| 0.1054 0.1057 0.0848
COSh(Nlog BD+2NC5‘° (Nlog[ l} (2Nr2 (2 @it (N -4V )4(’\' —4)rix 0.50 | 0.0995 0.0997 0.0801
0.55 | 0.0919 0.0920 0.0743
log [%D *ZNCO”‘(N 'Og{r D (d*g 1+r8) + (N2—a)rf )* f(N?—4) g 0.60 | 0.0829 0.0829 0.0674
0.65 | 0.0724 0.0723 0.0593
log [%})JrSfNr{sinh(Nlog '1) Ndi’( (N2+4) (rf—r§) —aN (r1+r2)coth(Nlog’1) 0.70 | 0.0606 0.0604 0.0501
0.75 | 0.0474 0.0472 0.0395
0.80 | 0.0329 0.0327 0.0277
8erl’2 csch( N Iog = )A1]. (33) 0.85| 0.0171 0.0170 0.0145
ro 0.90 | 0.0000 0.0000 0.0000

The mean volume flow rat® over one period is given as
Mekheimer et. al.15] The comparison graph for the values obtained in
present work with the results of Mekheimer et. 45][is
Q(zt) = 9——+2q0cos[2n(z t)] + @? cog[2m(z—1)], displayed in Fig.2. The graphs for the pressure rise
(34) Ap(t) versus flow rateQ under the effects of given
whereQ is the time average of the flow over one period of parameters are drawn in Figs7. These graphs show the
the wave. Now we can evaluate pressure gradignidz pumping regions, that is, the peristaltic pumping
by solving Eqs(33) and(34) and is obtained as (Q>0,Ap>0), the augmented pumping
(Q>0,Ap<0) and the retrograde pumping
(Q<0, Ap>0). The pressure gradiertp/dz against
(4cog27(z—t)] +@coslan(z—t)])+ f (N2+4) mfcosh(Nlog{%D-&- the the coordinatez with the variation of pertinent
parameters are shown in Fig8.12. The velocity field
u(r,0,zt) versus the radial coordinate is plotted in
(sz4)|og%)+(sz4)cosh<,\,|og[%]> (ZN@VH@OQ{%D)))/ Figs. 13-17 for both two and three dimensions. The

stream line graphs are shown in Fi§§:21.
(N7 ((N?+4) (rf — 1) — 4N (14 +14) coth(Nlog [ 2] ) +

% = (2(-4rm3+N (2(N2 - 4)°Q+ (TN - 4 (N2 4)r3V) ) +N (N2~ 4) rpx

Nrresch(Nlogft ) (2fr?2 —2N (N2 —4)r3V + fr? (2cosh(2Nlogf2 ) +
[ 1 2 1 ry

r
8Nrr3csc h<Nlog le (1+)\1)> . (35)

2 012, . . .
The pressure riseAp(t) in non-dimensional form is N :M=0:5:A:i1:a
defined as | 002,00

1op
/ dZ (36) = 0.08 \\\
0.04 |Perturbati juti ‘

4 ReﬂJltS and dlSCU$|0nS 02 03 04 Mr 06 07 08 09

The analytical and numerical results obtained above forgjq 2: variation of velocity distribution with for fixed & = 0.1,

the given analysis are discussed graphically in thisg— 001 ¢=0.1,z=0,t=05,V =0.1,6=0.1, Q=0.6.
section. The comparison table and graph of the results

found in the present case with that of the previous one are

presented. The graphical treatment for the data of It is observed from Fig2 that the results obtained in
pressure riséAp, pressure gradierdp/dz and velocity the present case are in good agreement with that of
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previous calculations in most part of the geometry. It is
also observed that the presence of magnetic field for
Jeffrey fluid causes to slow down the flow.

Fig. 5: Variation of pressure risé p with Q for fixed d = 0.1,
M=05t=01,68=50V =05 A; =15

of pressure risélp for V is similar to that ofM (See Fig.
Fig. 3: Variation of pressure risd p with Q for fixed d = 0.1, 6).
9=02t=01,M=05V =05 A, =15.

Fig. 3 is plotted to see the variation of pressure rise
for different values of the eccentricity parameteand the
angle 68 while all other parameters are kept fixed. It is
observed that peristaltic pumping region is in between
Q € [0,0.9], augmented pumping is i@ € [0.9,2] and
retrograde pumping part @ € [-1,0]. It is also observed
from this graph that the pressure rise increases with the
variation of ¢ but decreases with the angfein between
the regionQ € [—1,0.9] and opposite behavior is seen in
the remaining part. The graph of pressure rise for the

parameteM and$d is plotted in Fig 4. Fig. 6: Variation of pressure risé p with Q for fixed € = 0.01,
M=051t=01608=50F, ¢=02 A, =15

Fig. 4: Variation of pressure risd p with Q for fixed € = 0.01,
©=02t=01,6=50V =05 A, =15

Fig. 7: Variation of pressure risd p with Q for fixed € = 0.01,
The peristaltic pumping occurs in the region M=05t=01,6=50, ¢=02V =05 A1 =15.
Q € [0,0.6], augmented pumping is i@ € [0.6,2] and
retrograde pumping part @ € [—1,0]. Itis clear that the
similar behavior is seen in this case for the parambter Fig. 7 indicates the effect of the parametdrsandd
but the opposite attitude is observed with the variation ofupon pressure riseThis plot reveals that the peristaltic
0 as compared to that afand®. It tells that the flow rate  pumping area lies in betweed € [0,0.6], the retrograde
decreases witt while increases withd, so this shows pumping appears in the pa® € [-1,0] and the
that the back flow increases and decreases Mitind d, augmented pumping region @ < [0.6,2]. The pressure
respectively. gradientdp/dz for the parameter and d is drawn in
Fig. 5 shows that the peristaltic pumping partQse Fig. 8.
[0,0.3], while augmented and retrograde pumping regions It is measured from this figure that pressure gradient
areQe€[0.3,2] andQ € [—1,0], respectively. The variation is in linear relation with both of the parameters in
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dp/dz

N &b & A L H Ao s n o w
dp/dz

L S O T

Fig. 8: Variation of pressure gradiedip,/dz with zfor fixed € = Fig. 11: Variation of pressure gradiemtp/dz with z for fixed
0.0LV=031t=030=50F, ¢=01,Q=05A; =15 £=001,Q=051t=03,6=50,M=05 ¢=01,A;=05.

It can be observed from Figd0 and 11 that the
narrowest parts of the cylinders but inverse relation ispressure gradient increases with the parame@easdV,
seen in the wider parts. The variation of pressure gradienivhile whend is increased the pressure gradient decreases
with the parameterg ande is very much similar to that  on the left and right sides but increases at the centre of the
of the parameters! andd and is shown in Figo. cylinders. It is also seen that the variation of pressure
gradient remains same in the two sides of the channel and
become different at the central part with changihdput
this variation remains same throughout for the parameter
Q. The pressure gradient graph for the parametgrand
d is drawn in the Figl12.

dp/dz

b A b N A o AN w

Fig. 9: Variation of pressure gradiedip/dz with zfor fixed 6 =
0.1,V=03,t=03,60=50P,M=050Q=1,A; =15.

The only difference is that the pressure gradient is
minimum on the left and right sides of the cylinder while Fig. 12: Variation of pressure gradieintp/dz with z for fixed
appears maximum at the centre. It means that flow car =0.01, Q=05,t =0.3,6 =50°, M =0.5, ¢=0.1,V = 0.3.
easily pass without imposition of large pressure gradient
in the two sides of the channel while much pressure
gradient is required to maintain the flux in the central part |t is seen here that the pressure gradient increases with
nearz= 0.8. This is in good agreement with the physical § at the middle but decreases at the two sides of the
condition. cylinders. However, the effect of the parameter is

totally opposite with that 0.

Fig. 10: Variation of pressure gradiemtp/dz with z for fixed Fig. 13: Variation of velocity profileu with r for fixed € = 0.1,
£€=00LV=03t=03,0=5FM=05 ¢=01,11;=05. Q=051t=052z=0,V=016=50,¢=01 A1 =15
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The Fig. 13 shows that the velocity field is an s Taes
increasing function of the paramet&rwhile decreasing R\
with the parameteM. The velocity field is in inverse A oo o
relation withQ but have a direct variation with (See Fig. o8 .
14).

01 02 03 04 05 06 07 08 09
r

(a) (b)

Fig. 17: Variation of velocity profileu with r for fixed Q = 0.5,
M=05t=05¢=012=0,0=5F, ¢=0.1,V=0.1.

1 02 03 04 05 06 07 o8
r

(a) (b)

Fig. 14: Variation of velocity profileu with r for fixed d = 0.1,
M=05,t=05z=0V=0160=50P ¢g=0.1,1; =15.

1 / - ]
! o T .
i eo‘@“« /] Fig. 18: Stream lines for different values M. (a) for M = 0.3,
0.6 rd KRNI _ o _

S wgﬁf:{g%%&%&;“ (b) for M = 0.4, (c) for M = 0.5, (d) for M = 0.6. The other
o4 1 52 f:t:;‘g:‘gt;‘sg,g;e parameters are = 0.4, V = 0.3, t = 0.2, 8 = 50°, ¢ = 0.05,
0.3] o X SR -
ot ’ R Q=06,5=005A; =1
01 ---$=0.10,1=0.55 { "_"‘5 .25

#=0.12,t=0.50 2
0z 04 [ 08
r

(a) (b)

Fig. 18 is drawn to see the stream lines for the
parameteM. It is measured from this figure that numbers
of bolus are not changing but size is increasing with the
increasing effects oM in the bottom of the cylinder,
Itis observed from Figl5that the velocity distribution ~ while bolus are lessened in number when seen in the

is increasing withd and ¢ while reducing fott. upper part. The boluses are reduced both in size and
number when seen for the parame@in both parts of

the geometry (see Fid9).

Fig. 15: Variation of velocity profileu with r for fixed Q = 0.1,
M=05=0012z=0V=016=5F, A =15.

®)

X z@
°-Sgg

=

o.af
o.2|

Fig. 16: Variation of velocity profileu with r for fixed Q = 0.1,
M=051t=05¢=012=05=0260=50 11 =15

u

“0.2 0 0.2 0.4 0.6

(@)

Fig. 16 shows that the velocity profile is linearly
changing withg andV. Fig. 19: Stream lines for different values 6. (a) for Q = 0.6,
From Fig.17, it is measured that velocity is lessened (b) for Q = 0.7, (c) for Q = 0.8, (d) for Q = 0.9. The other
with the increasing effect of the paramefer. It is also  parameters are = 0.4,V = 0.3, t = 0.2, 6 = 50°, ¢ = 0.05,
observed that velocity is decreasing functiondoin the M =1,6=005A;=1
regionr € [0.2,0.4], while increasing on the rest of the
domain.
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