Appl. Math. Inf. Sci.10, No. 1, 333-341 (2016) F . SD\ 333

http://dx.doi.org/10.18576/amis/100135

On Parabolic Analytic Functions with Respect to
Symmetrical Points

Khalida Inayat Noof, Humayoun Shahid and Muhammad Aslam Noor
Department of Mathematics, COMSATS Institute of Inforroatifechnology, Park Road, Islamabad, Pakistan.

Received: 4 Jul. 2015, Revised: 3 Sep. 2015, Accepted: 4284p.
Published online: 1 Jan. 2016

Abstract: Let A be the class of function$, f(z) = z+ § anz™, analytic in the open unit disE. Let S(h) consist of functions
m=2

f € Asuch that%/f((zlz) < h(z), where< denotes subordination ardz) is analytic inE with h(0) = 1. Forn=0,1,2,3,..., a
certain integral operatdp : A— A is defined adnf = f; 1« f such that( f; 1 fy)(2) = 5%, wherefy(2) = (17—5)“1 andx denotes

convolution. By takind(z) = [1+ ﬁzg (log ﬁ\‘/fé)z] % 0< a < 1, and using the operatty, we define some new clasdg§T(n, a) and

UKs(n,a), and study some interesting properties of these classesd€hs and techniques of this paper may motivate furthearel
in this field.
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1 Introduction () S'(hear) =UST={f e A: O(2) > [FZ -1]},
where
i 2 1+./z
Let A be the class of function(z) of the form hear(z) = 1+ (log f)z‘ @)
© T 1-z
f(2) =z+ zzaj zi, (1) UST = S'(hpar) is called the class of the parabolic
= starlike functions introduced by Ronnint4].

which are analytic in the open unit difc.— {z: [z < 1}. (i) 5(8) = 5°((:2)P) = {f e A: |argm| <Em.
Let S* andC be the subclasses @f which, respectively, : 1=z fg |~ 21"
consist of starlike, convex univalent functions. iéﬁ ZBISOCi”Ed <t2e class of strongly starlike function of

An analytic functionf is subordinate to an analytic
function g, written f(z) < g(2), if there is an analytic
functon w : E — E with w(0) = 0 satisfying
f(2) = g(w(2)). Various subclasses & andC can be S,={fcA: DZf’(Z) >y

(iii) The classesy;, Cy of starlike and convex functions of
ordery, respectively, are defined as:

unified by requiring that either of the quanti /((5) or f(2)
{1+ fo,"((z?} is subordinate to a functiom(z) with a C,={feA: D(zfl’(z))’ Y
positive real part irg, h(0) = 1, W' (0) > 0. These unified f'(2)
classes are denoted &'(h) and C(h). For recent The corresponding class€hpar) and C(3) of convex
developments, sed 1,12] and the references therein. functions are defined accordingly.
We note some of the subclasses as in the following
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Let the parabolic domaif. be defined as follows.
(u—1)2+v2}. (3)

That is, Q, is bounded by parabole = 2u— 1. The
functionhpar(2), given by (2), is known to be univalent in
E and map<£ conformally ontaQ,.

Q. ={u+iviu>

Let P be the class of Caratheodory functiopswith
p(0) =1anddp(z) >0,z E.
ThenPpar C P is the class of functiong(z) which are
subordinate tohpar(z) in E. Also, we define the class
Pear(0),0 < a < 1, which is a subclass &f and consists
of analytic functions p(z), p(0) 1 such that
p(2) < [hear(2)], wherehpagr(2) is given by (2).
We note thatPpar(l) = Prar We call UST(a) and
UCV(a), the classes of strongly uniformly convex
functions, respectively. These classes are defined
follows

UST(a) = {f € A: fo;(z? € Pear(a) },
and
UcVv(a)={feA: {1+ fo/”((z?} € Pear(0) }.

In 1959, Sakaguchillg] defined the class of starlike

_z
Z>n+1 )

Let fn(2) = = ne N,
and letf,%(z) be defined such that

(Fos D) (2) = 1%2 4)

Analogous to symboD", an integral operatdi, : A — A
is defined as follows; sedT

nf(@) = (f;+ )
Z
—

- [(1—

We note thatof = zf' andl,f = f, see also§,9].

}_1* f(2),n€ No. (5)

From (4) and (5), we obtain the following identity for
In.
(N+ DI (2) =Nl 1 F(2) = 21 F(2)). (6)
aghe hypergeometric functiogi; can be used to defingf
as follows. Since

(1-22=F(a,1;1;2),a> 1,

we have
z -1
[m} = 2R(1,1;82)
1 o
_ _ _+\a-2
—(a 1)0/(1 S

functions with respect to symmetrical points. We use thisTherefore

concept and define the following.

Definition 1.Let f € A. Then {2
classUS{(a) if and only if

2z1'(2)

{ f(2)— (-2
Similarly f e UCVs(a),0< a <1,ifand only if, forze E
2(zf'(2))’
(f@—f(-2)

is said to belong to the

} € Poar(@),2€ E.

} € Poar(Q1).

The classA is closed under the Hadamard product or

convolution(x)
(frf2)(2) = 2+ iaﬁmamzzﬁl,
=
where
f(z) = z+ i ajm?tteAk=12
=1

Denote byD" : A — A, the operator defined by

z

D"(2) = 7—r * (@

,neNy={0,1,2...}.

The symboD" is called the Ruscheweyh derivativerih
order.

Inf(z) = [22F1(1,1;n;2)] % f(2),n € No.

We now define the main classes of analytic functions
which will be studied in this paper as follows.

Definition 2.Let f € A. Then fe UST(n, a) if and only if
Inf eUST(a)forO< a <1,ne Npand ze E.

We note that US[1,1) =UST. That is

f € UST(1,1) implies 222 < hear(2) in E.
Definition 3.Let f € A. Then {2) is said to belong to the
class UK(n,a) if and only if there exists g UST(n, o)

such that% € Pear z€ E.

Throughout this paper, we shall assume Ny,
0 < a < 1,z< E unless otherwise stated.

2 Preliminaries

Lemma 1([6]). Letw +iup and v= vy +iv, and let® be

a complex-valued functions satisfying the conditions:

(i) @(u,v) is continuous in a domain & C?,

(i) (1,0) e Dand®(1,0) > 0,

(i) O®(iug,v1) < 0 whenever (iuz,v1) € D and

vi < —3(1+ud).

If h(zg =14+ ¥ cmz" is a function analytic in E such
m=1

that h(z),zh(z) € D and O(h(z),zH(z)) > 0 for z € E,

thenOh(z) > 0in E.
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Lemma 2([15]). Let p(z) be an analytic function in E with

p(0)=1andOp(z) >0,zc E. Then,fors>- 0andu # —1
(complex),
szp(2)
O4p(2)+ >0 forlz <rg,
{p() p(Z) } | | 0
where g is given by
lu+1

(7)

VA+(Re— iz 1)t
A=2(s+1)%+|u>-1,
and this radius is best possible.

The following result is a special case one due to Kadhs [

Lemma 3. Let 3,0 be any complex nhumbers wifh+£ 0

and0 (8 +8) > 0. If h(2) is analytic in E, 0) = 1 and

satisfies

zH(2)
(h(Z) + W (8)

where kar(z) is given by (2), and (z) is an analytic

solution of

) < hear(2),

zct()
Ba.(z) +

then q.(z) is univalent and () < g.(2) < hpar(2).
Here q.(2) is the best dominant of (2) and is given by

(exp/u%u)_ldu) dt] 71.
t

Lemma4([3]). Let w(z) be analytic in E. If |w(z)|
assumes its maximum value on the citele=r at a point
2y, then 3w (z9) = kw(z), where k> 1.

Lemma 5([17]). Let® € C and ge S* in E. Then, for
F analytic in E with F0) = 1, 2F9 is contained in the

' Toxg
closed convex huCo of F(E).

0+(2) + =————= = hpar(2),

1

a(2) = [/

0

Lemma 6.Let pe P, ze E and z=re'®. Then

0 [1p(€)d6 < C(N) 4

isa Constant depending only @n For this result, we refer
to[2].

— 1612 14+3r2
(i) .glp(re )[7de < 5

., WhereA >landQA)

see [L3].

Lemma 7([5]). Let g(z) be a convex function in E with
g(0) =1 and let another function hE — C beJh(z) > 0
Let p(z) be analytic in E with p0) = 1 such that

(P(2) +h(z)(z8(2) < a(2).
Then gz) <q(z) € E

zcE.

3 The clasdJSTE(n,a)

Theorem 1.Let f € UST(n,a). Then the odd function
1

¥ =5[f(2-f(-2), 9)
belongsto USTn, a).
Proof.From (9), we can write
hp(2) = 3h[f(2)—f(-2)
= 3lnf(2) —Inf(-2). (10)

By logarithmic differentiation of (10), we have

Z(Iny/(2)) 1 22(1

hp(z) 2|0

f(2))
f(2))—(nf(-

= 3l +ho(2)] = h(2).

Sincef e USTE(n,a), hy,hy € Poar(a) in E.

That is,hi(z) < [hpar(z)]?,i=1,2,0< a <landzeE.
This implies that(z) < thR(z), ze€ E, and thereforey €
UST(n,a) in E. The proof is complete. O

2(-2)(Inf(~2))
2) T Ihf@)-(nF(2)

Theorem 2.Let, for ze E, f e UST(n,a) and let
W(z) = 3[f(2) — f(~2)]. Theny € UST(n+1,a) in E.
Thatis

UST(n,a) CUST(n+1,a).

ProofLet f € USE(n,a). Then ¢ = 3[f(2) — f(~2)]
belongs to the claddST(n,a) by Theorem 1.
Set
Z(Ing(2))’
———= =N(2),
iz
h(z) is analytic inE with h(0) = 1.
Using identity (6), we obtain
21y ()’
————= ={h(z)+
e R UL
Sincey € UST(n,a), it follows that

zH(2)
h(z) + n}'

{n@+ o2} < 900 = (hes2)°
inE.
Using Lemma 3, we have
h(z) < (hpar(2))®

in E, and this provesthap ¢ UST(n+1,a)in E. O

Theorem3. Let f € USK(n+ 1,a) and let, with
Y=3(t2) - f(-2),

z
02 = "1 [ty (11)

0
Then ge UST(n,a) in E.
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Proof. From (11), we have
(n+1)¥(z) = ng(2) +2zd(2) (12)

Using (6) and (12), we can write
(n + 1)|n+ll’u(z) = n|n+1g(z) + Z(|n+1g(z))/

= (n+1)lhg(2)
Therefore
|n+1LIJ(z) = |ng(z)-

Sincef e UST(n+1,0).,.% € UST(n+1,a) by
Theorem 1 and hengee UST(n,ar) inE. O

Theorem 4.Let f e UST(n+1,1) and let
W = 3(f(2) - f(~2)). Then h¥ belongs to §(3) for
| z|< R, where R is given by

|H+1]
VA+ @ 2-1p)b
A=2(s+1)%F |uP-1 p=2n+1s=2
and this radius is exact.

Ry =

(13)

Proof. Let
% - %(H(Z)“)a OH(z) >0inE, (14)

sincel, 1Y € USTC S see [14].

Using (6) and proceeding as in Theorem 2, we have

from (14)
Z(IhW(2) 1 1 zH'(2)
R A R BT o
That is

Z(In¥(2) 1
2{ Wz 5} =H@
2zH'(2)
+ H(z)+2n+1
Now, using Lemma 2,
Z(Ih,W(2) 1 2zH'(2)
D[Z{W‘z}] = D[H@”m
>0 for|z|<R

OH(z) >0

where

R, — (2n+-2)

VA+ (R | 2- 1)}
p=2n+1,A=2(s+1)%+|u|?> -1, s=20

3

We note the following special case. ) )
— — ! —
Letn._ O.ThenIOLIJ = zlP. andRy = WAt #3
Thatis, ifl%W =W e S} inE,
2

thenloW = z¢' € S; for |7 < 1.
2

Let L(r,F) denote the length of the image of the circle

|zl = r underF.

We prove the following.

Theorem 5.Let f e UST(n,a).Then, for0O<r < 1,

L) = 0).(57)

where F=I,f and (1) is a constant.

Proof.Sincef e UST(n, a), we have withF = I, f,
2zF(z2)  2zF(2)
F(2—-F(-2  ®(2
=h%(z),0h(z) >0, ® €UST.

Thus, withz=re'®, we have

2

L(r,F) = / |2F(2) | d6

0

- /|<D(z)h°’(z)|d6

IA
:1
5
9

IA
:|
-
@,
D
\
Q
\_/
Q
/N
=R
H
H
||+
< @
N———
o

SC_(E)W 1]7'(E)%

o ()"

where C,0(1) are constants and we have applied
Holder’s inequality, subordination for the odd functions
®cUSTCS; andLemmab6. O
2

As an application of Theorem 5, we have following
coefficient result.

Corollary 1. Let f € UST(n,a) and let, for (1 = F,
F(z) =z+ Y AnZz".Then, by Cauchy Theorem,
m=2

2

[ zF@ede|.2

0

1
27 m+1

1
< ﬁl—(r F)

Now, applying Theorem 5, we obtain

Am=0O(1).m@ Y

We note that, fore=1,a =1, f e USTand f(z) given
by (1), we have @= O(1), where O(1) is a constant.

| 2]

m|Am| =

(m— )

We now prove that the classSTE(n, a) is invariant under
convolution with convex univalent functions.

(@© 2016 NSP
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Theorem 6.Let f € UST(n,a) and let ge C. Then
(fxg) e USTE(n,a).

Proof. We note that

In(fxg)=gxIyf,geC.
We consider
2In[Z{ f xg}]
In[(f+9)(2) — (fx0)(—2)]
22(g* Inf)’
g*[n{f(z f(—2)}]
)/
9* A (- 1(-2
- g*InW (@)= 2
_ gxH.I¥
gkl
where
Z(::Z’LJ) thR‘<hPAR7

which implies¥ ¢ USTC S andH € Poag(a).
Now, using Lemma 5, we have

{ 27(In(f % Q)
In[(f+9)(2) = (fxg)(~2)]

This proves thatf xg) e USTK(n,a)inE. O

}(E) c CoH(E).

Applications of Theorem 6.

Letlhfi(z2) =F(2),1<i <3, I,f(2) =F(2),
f e UST(n,a), and let
(

z
(i) Fi(z :g‘@dt

z

(i) Fa(2) = Ofwdt X <1,x#1

(iii) F3(z) = 0(c) >0

The proof follows immediately since we can write
F=F=xg,1<i<3 with

z
L [t 1R (t)dt,
0

0 Zj

a@ =y > =-log(1-2).
=V
® 1 1 — Xz

gZ(Z) jzlj(l_x)z 1 Xlog 1_Z,|X|_1,X§é1
2 1+c

2)=Y ——7Z,0(c) >0,
93(2) j;Hc (c)

andg; is convex inE for eachi, 1 <i < 3, g3(z) is
convex, seelf].

Theorem 7. Let Ge UST(n,1) and let, forO < A <1,
g € A be defined by

= —zl—— t“2 (15)
2Y(2) = G(Z) -G(-2)
Then
(Ing(2))’
o{ Ihg(2) f>v.
where (16)
1

(17)

TS Y I v

Proof. SinceG € UST(n, 1), it follows from Theorem 1

that
Y(z) =G(z2) — G(—2) e UST(n,1),
and this impliedny € USTC S] inE.
Set ’
2(1n9(2))’
Ing(2)
h(z) = 1+ c1z+ 2 + ...
Then, from (15), we have
Z(1n0(2))’
4
= Re{(l—r)h(z)JrH—

=(1-r)h(z)+r,

A(1-r)zH(2)
(1=A)+rA+A(1-r)h(z)

} > %(18)
Thatis

A(l—r)zH(2) 1
(1-N)+rA+A(1-1h(z) 2

We know from the functionap(u,v) by takingu = u; +
iu = h(z),v=v; +ivp = zH(2). So, from (18), we have

Re{(l— rh(z) +r+ } > 0(19)

o0y = (L=t - 5)+ (1—)\)/—\#(r1)\_+r))\v(1—r)u'
For

1-A+rA
= R

the conditions (i) and (ii) of Lemma 1 are clearly satisfied.

We proceed to verify condition (iii).

D(D(il.lz,vl)
:2y—1+D[ A(l—y)vl ]

2 1-A+yA+iA(1-yu

2V—1+ AL=y)(1=A+yA)vg

2 (1—=A+YyA)2+A2(1—y)2u3
2v_—1_;{A(l—y)(l—HvA)(Hu%)}

2 (1=A+yA)2+A2(1—y)2u3
A+Bu3

2c

IN

(@© 2016 NSP
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where Proof.Let f € UKg(n,1). Then there existge UST((n,1)
A=(2y-1)(1=A+yAZ=A(1-y)(1-A+VA), such that /

B=(2y—1){A%(1-y)3 - A(L-y)(1-A+YA), 22f(z) _ zf(2)

C={(1-A+yA)?+A2%(1-y)%5} >0. 92-9-2 ¥

By Theorem 2, we note thag € UST(n,1) and

€ Prar, Y € UST(n, 1)

Now O @(iup,v1) <0 ifand only ifA< 0 andB < 0. From SN

A < 0, we obtainy as given by (16) an® < 0 ensures ::onsequljzgt_:_nge UST((n + 1,1). This implies that

Thus all the three conditions of Lemma 1 are satisfied andSet

we apply it to havd&reh(z) > O E. This proves thal,g € § (Z(ner f(2))

in E andr is given by (16). O W =
n+

Using identity (6), we have
4 The clasdJKg(n, a)

Z(Inf(2)) {H zH'(2) }
2] L) 4 € Poan

Theorem 8.Let f € UKg(n, a). Then, with Iny(2) h(z) +n AR
where

z=1€'0,0< 6, < 6, < 21, F = I f, ,
h(z _Anab@) p oy g

we have In1y(2)

/GZD (2F )Y oo T Therefore, we have

4 F'(2) 2 {H(2) +ho(2)(zH (2))} < hpar(2) in E,

1

where
ProofSince f € UKg(n,a), there existgg € USTE(n, a), 1
such that, with- = I, f, G = I,,9, we have ho(2) = D T cP
Z)+n
1
ZF(2) = (9h?(2), heP, (20) Now applying Lemma 7, we have
_ G(2)-G(—2)
Y2 =——— H(2) < hpar(2),z€ E.

This proves thaf € UKg(n+1,1)inE. O

Now by definitionzﬂg ~ (hpar(2))?. This implies that

Remark 1. Let

arg @ | am 1 2
Yz |~ 4 Ln(F)z_n; "I (t)dt
) 0
Thus W(/-:‘ can write Then
(2 g ®
- P 21 j
Logarithmic differentiation of (19) and using (20), we have ® o
_ 22 (n-‘rl)](l.)JZj *F(Z)
(ZF(2) 1zH(2) a . jSo (M2
/ - = +—=p(2), h,peP in E (22)
F(z 2h(z ' 2 = [zRa(L.n+1,n+2;2)]xF(2)
Now, forh € P, we have .y . 1 =
% _zH(2) 1 2 B e B
< - 3 .
MaX| Jo, D=y 96| = 72008 <1—r2> (23) = (@) * f, 1 (2 xF(2)
see [LO. This implies that

i <
Hence, from (19) and (20), with€ 6, < 6, < 11, we have InLn(F) = InsaF (2).

/
/92 O (ir({(zz))) de > _7_2T Thus we can easily drive the following.
o _
' Theorem10. Let F € UKg(n + 1,a). Then

This completes the proof.O Ln(F) € UKs(n, @).
Theorem 9. U Ks(n, 1) cu Ks(n+ 1, 1) We a|50 prove:
(@© 2016 NSP
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Theorem 11. Let with
geUST(n,1).

Let

f € UKs(n,1) respect to

Then
Z(ln+1(2)
D{m} >0, forzeE.

ProofLet f € UKg(n,1). Then there existg € UST(n, 1),
with

such that

Z(Inf(2))’
0{ 2 } >0,

wherelnp eUSTC S(3) inE.

Definew(z) in E such that

Z(Ins1f(2)) _1-w@
Int1¢(2) 14+w(z

)
wherew(0) = 0 andw(z) # —1.
We shall show thaw(z)| < 1
From (23), we have

1-w(z)

Aln1f(2)) = |n+1¢’(z)-rw(z)-

So, from (24) and identity (6), we have

(l f(@)’
2)

: (24)

(25)

(n+1)— ==

(
(|n+lf
N [1—|—W }
<In+1f<z>> —2zvv<> 1-w(z)
g Trwer e @
We now apply identity (6) for the functiogy and since,

by Theorem 1UST(n,a) C UST(n+ 1,a), there exists
an analytic functiomw, (z) with wy(0) = 0 and|wy(z)| < 1

such that
h(z)  1-wi(2)
(2 1+wi(2) (@7)
We note here that, from identity (6), that
Z(|n+1(j,l(2))/
v )0
and (2 .
nP(z
Hivaw@) ™10
are equivalent.
Thus, from (25) and (26), we have
Z(Inf(2))  1-w(2)
hz) — 1+w(2)
1 /14+wi(2) 22w (2)
+n+1(1—w1(z))((1+w(z))2)' (28)

Suppose now that, fare E,

max w(z)| = w(z0)] = 1,(W(z0) # D).

Then it follows, from Lemma 4, that
oW (20) = kw(2o),

=d? andw; (z) = re'? in (28), we have

wherek > 1.

Settingw(zp)

(Inf(20))
S TS

_ D{ 1 2k(ei9+e*i9+2)(1+r2+2rcos<p)}
n+1 |1+ rei?|?|14 9|2

—4K { (cosf +1)(1+r?+ 2r cosp) }

n+1 |1+ rei®|2|1+ €92

Hence, ifp = 7, we have

wherel, € S* andk > 1.
This contradicts our hypothesis thate UKg(n,1). Thus

|w(z)| < 1 and so from (23), we obtain the required result.

O

Theorem 12.Let f € UKg(n,a) and let, foras,a; > 0,
0<ai+ax=1.

z
1@ = [ (1) (f3(0) .

0

(29)

Then fe UK(n,a) in E.
Proof. From (28), we have
f'(2) = (f1(2)™ (f2(2))".
Therefore
Pz (2
= fn ( 2)«[(11(2")(f2(2)%)]
= (fo '+ (1(2)™)-(f. 1) * 15(2)),
This gives us
(Inf(2)" = [Inf1(2)] " [Inf2(2)] 2
Letl,f =F,I,fi = F. Then we have

(0{1+ ar = 1).

z

F@) = [ (FI0)™ (R0,

0

(30)

where, with

Gi(2) - Gi(—2

. = i(2),G =g e UST(a),
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zF'(2) = ¢i(2)Hi(2), Zlf' € Pear(@), Hi € Pear(1).

From (30), we have

ZF'(2) = (1(2H1(2))™ (y(9)Ha(2)*
= (Y1(2))"™(Y2(2) "2 (H1(2)) " (H2(2)) ™

=Y(2).H(2),

where

¥(2) = (¢a(2)" (4a(2)*,
H(2) = (H1(2)* (Ha(2))"2.

Now it is easy to note that

2/(2)
V(@

2y (2) 25(2)
Y (2) o Yr(2)

= Q1

= 01p1(2) + az2p2(2) = p(2),

wherep; € Poar(@), a1+ a2 = 1.

SincePear(a), 0 < a < 1is a convex set, it follows that

p € Pear(a) inE.

Thereforez"’/—(zZ> € Pear(@) in E. Also

v

H(2) = (H1(2))™ (H2(2))",

whereH;(z) < hpar(2),i = 1,2.

Sincea; + oz = 1, we haveH (2) < hpar(2).

ThereforeH € Pparin E.

Hence, from (31), we have

zF(2)
Y(2)

This proves thaF = I,f e UKInE. O

Theorem 13.Let f € UKs(n+1,1). Then hf is close-to-

convex forlz] < rp, where

2(n+1)
3+/9+4n(n+1)

h=

Proof. Let f € UKs(nh+ 1,1).

g€ USTE(n+1,1) such that{MfU))

where

w(z) = 39792 L ystinra 1),

2

We shall first show thalt,y@ € S in |z < rn, wherery, is
2

given by (31).

Sincelp 1P € USTC Sf, we can write
2

Z(ln1(2))

gz

€ Pear Y € UST(a).

Then there exists
< hpAR( )} inE,

NI =

Using identity (6), we have

Z(Iny(2)
|n+1lll(2)

Using well-known [] distortion results forh € P, we
obtain

Z(Ing(2)) r 2r 1

D( Ih(2) ) > 0h(@) _1_ 1—r2{ 1+r+”H
2r

_(1—r)+n(1—r2)}
rl—r+n—nr2—2r
L (n+1)—r—nr? }
r(n+1)—3r—nr?
_(n+1)—r—nr2]'

zH(2)

=Mt Ry

(32)

The right hand side of (32) is greater than or equal to zero
if |z =r < r, wherery is given by (31). Now, again using
identity (6) andny € S; C S"in |z < rn, we have

2

o[ =0l g )

where

-

A rnaagn(2)’ 1
Oho(2) = O [W} >
Using distortion results fad andhg, we get

ZInf(2))
Hen

> OH(2)[1- r 1 ]

_r2 1
1f1—+r+n

B (1+n)—3r—nr?
B DH(Z)[(l—r)jLn(l—r?)}’

and this shows that right hand side is greater than or equal
to zero for|zl = r < rp wherery is given by (31).

Sincelp € S*in |Z] < ry, it follows thatl,f is close-to-
convex in|z| < rp and this proves our result.0

Remark 2. Following the similar technique of Theorem
6, we can also prove that the cla$ks(n+ 1, o) is closed
under convolution with convex univalent functions, and
consequently it is invariant under the integral operators
given in the applications of Theorem 6.
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