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Abstract: An important application of Grover’s search algorithm [2] in the domain of experimental physics is its use in the synthesis of
any selected superposition state [3]. This paper is about showing how one can speedup this synthesis when selected superposition state
to be synthesised factorizes into smaller sized factors under the application of factorization algorithm [1]. When selected superposition
state is factorable we first factorize this state and carry out the synthesis of its factors in parallel by applying the algorithm for synthesis
[3] simultaneously to each factor. Main steps of ourmodified algorithmare as follows: By making use of the factors we construct the
corresponding operators needed for the synthesis of these factors as per [3]. We then build the operator calledsynthesiserby taking
tensor product of these operators constructed for the synthesis of the factors. We then build a suitable registerA, say, whose all the
qubits have been initialized to|0〉. Note that this registerA is prepared by taking tensor product of smaller sized registers of suitable
lengths chosen from lengths of the computational basis states required to represent the corresponding factors and the first qubit of
all these smaller sized registers is ancilla qubit. We then apply the synthesiser on registerA and carry out the measurement of all the
ancillae qubits. If the measurement finds all the ancillae qubits in state|0〉 then we have arrived at the desired selected superposition
state. We see that the greater the number of factors to the state, the easier it is to synthesise and the task of synthesising ann-qubit state
which is completely factorable inton single qubit factors is exponentially easier than the task of synthesising ann-qubit completely
entangled state having no factors.
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1 Introduction

A well known application of Grover’s search algorithm
[2] in the domain of experimental physics is to synthesise
any desiredn-qubit quantum state [3] which can be any
arbitrary superposition of computational basis states of
lengthn, i.e. containingn qubits. A systematic algorithm
for synthesis of any selected superposition developed in
[3] consists of performing the following two main steps:

(i)To construct certain operators (matrices of size
2(n+1)×2(n+1) when the selected state is superposition on
computational basis states of lengthn) using the
coefficients of computational basis states present in the
superposition state to be synthesised and to carry out
certain compositions of these operators and construct the
operator calledsynthesiser.

(ii)To operate the synthesiser on the register of length
(n+ 1) whose all qubits are initialized to|0〉 and whose
first qubit is ancilla qubit and then finally to measure the
ancilla quibit .

When the measurement finds the ancilla qubit in state
|0〉 the other qubits together form the desired state to be
sythesised.

It should noted that this algorithm [3] for
systematically manufacturing the desired quantum state
does not take into consideration the nature of the desired
quantum state, i.e. it does not take into account whether
the desiredn-qubit quantum state is factorable and has
any factors or it is not at all factorable, etc. The aim of
this paper is to show the advantage of such consideration.
In this paper we begin by applying the factorization
algorithm developed in [1] to the desired quantum state to
be synthesised and we see that the modified quantum
algorithm will very much simplify the task of synthesis
for completely separable states but for those quantum
states which are completely entangled and have no factors
at all our modified algorithm reduces to the original
algorithm in [3].

The following definition describing the action of the
product operatoris important to us and so we state it below
explicitely:
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Let A andB be theoperatorsfrom vector spacesV and
W respectively into a vector spaceU, say. Then the action
of theproduct operator A⊗B on product space V⊗W is
defined by

(A⊗B)(|v〉⊗ |w〉) = A|v〉⊗B|w〉.

where|v〉εV and|w〉εW.

To generalize, letAi , i = 1,2, · · · ,n be theoperators
from vector spacesVi, i = 1,2, · · · ,n respectively into
vector spaceU, say. Then the action of theproduct
operator A1 ⊗ A2 ⊗ ·· · ⊗ An on the product space
V1⊗V2⊗·· ·⊗Vn is defined by

(
⊗n

∏
i=1

Ai)(
⊗n

∏
i=1

|vi〉) = (
⊗n

∏
i=1

Ai |vi〉)

where|vi〉εVi for all i = 1,2, · · · ,n.
This definition which appears very natural is at the

heart of our modified algorithm for synthesising the
desired quantum state. This important definition allows us
to decompose an operation on an entire quantum system
into operations on individual components which not only
makes the construction of our quantum algorithm much
simpler but also causes the exponential rise in its speed
when then−qubit state to be synthesised is separable.

With these preliminaries we now proceed with our
modified algorithmand show how the existence of factors
speeds up the synthesis of the desired quantum state. Note
that when the desired superposition does not have any
factors then our modified algorithm reduces to (or
remains identical with) the existing algorithm given in [3]
but when the desired superposition to be synthesized is
factorable and if it so happens that by applying procedure
of full factorization in [1] it factors into sayp, factors
then the modified algorithm runs in parallelp processes
of synthesising thesep factors. The detailed discussion
below will make it clear why and how much time saving
will be achieved in completing the task of synthesising
the desired superposition.

2 Algorithm

The desired quantum state,|ψ〉, that one wishes to
synthesize can be any arbitrary superposition and let it be

|ψ〉= ∑
i1,i2,...in

ai1i2...in|i1i2 . . . in〉

where allai1i2...in belongs toC, the field of complex
numbers, and where each ofi1, i2 . . . , in takes values in
{0,1}. We further assume without any loss of generality
(since we can always normalize a state if and when
required) that this n-qubit pure quantum state is
normalized, i.e.∑i1,i2,...in |ai1i2...in|2 = 1. This expression
for |ψ〉 as sum over computational basis states can
contain in allN = 2n computational basis states, each of

lengthn, namely,|00. . .0〉, |00. . .1〉, . . . , |i1i2 . . . in〉, . . . ,
|11. . .1〉.

Some useful definitions are in order:
Definition 1: The factorization of any superposition

state,|ψ〉, obtained by applying factorization algorithm
given in [1] is calledfull factorizationof that state.

Definition 2: A quantum state, |ψ〉, is called
completely entangledif it does not factorizes into
nontrivial factors under its full factorization.

Definition 3: A quantum state, |ψ〉, is called
completely separable orif it factorizes into tensor product
of n single qubit factors under its full factorization.

Definition 4: The operator which is either a single
operator when the quantum state to be synthesised has no
factors, or made up of the tensor product of somep
operators when the quantum state to be synthesized has
somep factors, is calledSynthesiserif when this operator
is operated on the register of suitable length whose all
qubits are initialized to zero leads to desired quantum
state to be synthesised when all the ancillae qubits are
found in state|0〉 when measured.

Our goal is to show the substantial advantage of full
factorization using [1] in speeding up the process of
synthesising the desired quantum state when the desired
quantum state hasp factors. The idea behind achieving
this enormous advantage is in making use of quantum
parallelism by simultaneously runningp processes in
parallel of synthesizing thep factors.

We now proceed with the steps of ourmodified
algorithm:

(i) Using [1] we carry out full factorization of the
quantum state,|ψ〉, desired to be synthesized. Suppose
this full factorization leads us to

|ψ〉=
⊗p

∏
i=1

|φki 〉

where

|φki 〉= ∑
j1, j2,... jki

ai
j1 j2... jki

| j1 j2 . . . jki 〉

Case (i)p= 1.
In this case|ψ〉 is a completely entangled state and has

no factors and for this case the modified algorithm remains
identical with the existing algorithm in [3].

Case (ii)p> 1.
In this case|ψ〉 is not a completely entangled state and

we see that we arrive at its two or more than two factors
by carrying out full factorization using [1].

Thus the given quantum state factors into tensor
product of p factors, namely,
|φk1〉, |φk2〉, . . . , |φki 〉, . . . , |φkp〉 such that each factor in
itself is a normalized quantum state.

Suppose states|φki 〉, i = 1,2, . . . , p are respectively
superpositions of computational basis states of lengthski
such that∑p

i=1ki = n.
Now our job is to make use of thesep quantum states,

|φki 〉, i = 1,2, . . . , p to prepare p suitable operators,
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Oki , i = 1,2, . . . , p corresponding to thesep factors using
[3] such that these operators are prepared using the the
coefficients of the corresponding computational basis
states that compose together these factors,
|φki 〉, i = 1,2, . . . , p, of the desired quantum state to be
manufactured. Note that these operators are needed in the
synthesis of the corresponding factors, for example, if the
operatorOki will be operated on state|0〉|00. . .0〉ki where
the first qubit |0〉 corresponds to ancilla qubit and
|00. . .0〉ki corresponds to a ket vector of lengthki and
further if the measurement of the first qubit (ancilla) will
be carried out after operating with this operator,Oki , and
if the ancilla qubit will be found to be in the state|0〉 then
the remaining qubits will be in the state we wish to
synthesize, i.e.Oki |0〉|00. . .0〉ki produce the factor state
|0〉|φki 〉. Thus, we have prepared the operators,
Oki , i = 1,2, . . . , p, which are needed in the synthesis of
the corresponding factors,|φki 〉, i = 1,2, . . . , p.

(ii) We now build the operator,O, needed to synthesise
the originally given quantum state|ψ〉 as follows:

O= (
⊗p

∏
i=1

Oki )

Thus, the operator,O, is the tensor product of the
operators,Oki , i = 1,2, . . . , p, which are needed in the
synthesis of the corresponding factors,
|φki 〉, i = 1,2, . . . , p.

(iii) We now build asuitablequantum register,|R〉, as
follows:

|R〉= (
⊗p

∏
i=1

|0〉|00. . .0〉ki )

where|0〉 in each|0〉|00. . .0〉ki , i = 1,2, . . . , p, corresponds
to ancilla qubit and|00. . .0〉ki , i = 1,2, . . . , p, corresponds
to ket vector of lengthki , i = 1,2, . . . , p whose all qubits
are initialized to|0〉.

(iv) We operate the operatorO on the register|R〉, i.e.
in other words we evaluateO|R〉. Thus, using the definition
of the action of the operatorO which is the tensor product
operatorsOki we have

O|R〉=(
⊗p

∏
i=1

Oki )(
⊗p

∏
i=1

|0〉|00. . .0〉ki )= (
⊗p

∏
i=1

Oki |0〉|00. . .0〉ki )

(v) We then measure together all the ancillae qubits, in
O|R〉. If we will find all these ancillae qubits in state|0〉
then the remaining qubits together will be in the state we
wish to synthesize, i.e. the superposition will be projected
into state

|Ψ〉=
⊗p

∏
i=1

(|0〉|φki 〉).

where

|φki 〉= ∑
j1, j2,... jki

ai
j1 j2... jki

| j1 j2 . . . jki 〉.

It is clear to see that the quantum state|Ψ〉 is actually the
desired quantum state|ψ〉 in disguise.

3 Remarks

(1)The case of completely separable quantum state:
When givenn-qubit quantum state|ψ〉 to be synthesized
is completely separable inton 1-qubit factors, i.e. when
|ψ〉 = ∏⊗n

i=1 |φi〉, where|φi〉 aren 1-qubit factors then the
synthesiser,O, will be tensor product ofn operators,
Oi , i = 1,2, · · ·n and each of these operators,Oi , is
constructed using corresponding factor among then
factors. These operators have representation in terms of
22 × 22 matrices and they are required to be raised to
power m = π

4

√
22 when the quantum state to be

synthesized is normalized. We require to operate this
operatorO on state∏⊗(n) |0〉|0〉 and measure all accillae

(2)The case of completely entangled quantum state:
When given n-qubit normalized quantum state to be
synthesized is completely entangled then no
simplification is possible and we need to carry out the
algorithm given in [3] as it is. The synthesizer (operator)
in this case is directly constucted using the the
coefficients of the desired quantum state to be synthesised
and has representation in terms of the composition of
certain 2(n+1)×2(n+1) matrices and one of these matrices
is required to be raised to powerm = π

4

√
2n. To

synthesize the desired normalized quantum state we
require to operate in this case the synthesiser on state
|0〉|00. . .0〉n where first qubit is ancilla. We then measure
the ancilla qubit and if it will be in state|0〉 then it will
produce the state|0〉|ψ〉.

(3)Speeding up the synthesis of desired quantum
state:It is clear that if desired quantum state factors then
it becomes easier to synthesize it by carrying out the
synthesis of its factors simultaneously with much less
effort (in terms of sizes and powers of the matrices
involved therein). Suppose a state to be synthesized has
following factorization:

|ψ〉=
⊗p

∏
i=1

|φki 〉.

where kl = max{ki , i = 1,2, . . . , p}. So, to build the
operator,Okl , the size of the matrices involved and the
power to which these matrices are required to be raised
will be largest. So, in the synthesis of|ψ〉 through parallel
processing as

|Ψ〉=
⊗p

∏
i=1

|0〉|φki 〉

the entire synthesis through parallel processing will
complete in the time required for synthesis of|0〉|φkl 〉.

4 Examples

Example 1:
Synthesise the following quantum state:

|ψ〉= 1
87

[4|0000〉−6|0001〉+10i|0010〉−14i|0011〉
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−6|0100〉+9|0101〉−15i|0110〉+21i|0111〉

+10i|1000〉−15i|1001〉−25|1010〉+35|1011〉

−14i|1100〉+21i|1101〉+35|1110〉−49|1111〉]

Solution:
We follow the steps of Grover’s algorithm for synthesis

as described in [4].
(1.1) Firstly we directly proceed as per [3], [4] without

seeking the factorization of|ψ〉 to build the operatorO,

called synthesizer:
(1.2) We introduce an ancilla qubit prepared in the state

|0〉 and thus prepare register containing in all 5 qubits, all
initialized to state|0〉, namely,|0〉|0000〉.

(1.3) We define operator

U1 = I ⊗H ⊗H⊗H⊗H.

U1 is a matrix of size 25×25 = 32×32.
(1.4) We define operator

U2 : U2|0〉|i1i2i3i4〉

→ ci1i2i3i4|0〉|i1i2i3i4〉

+
√

1−|ci1i2i3i4|2|1〉|i1i2i3i4〉

plus the remaining orthonormal columns.i j takes values
in the set{0,1} and jε{1,2,3,4}. Also, ci1i2i3i4 are the
coefficients of the respective states|i1i2i3i4〉 in |ψ〉 given
above.U2 is a matrix of size 32×32.

(1.5) We define operator
It = diag(−1,−1, . . .−1,+1,+1, . . .+1), i.e. a sequence
of (-1)s 16 in number followed by a sequence of (+1)s
again 16 in number along the diagonal of matrix.It is a
matrix of size 32×32.

(1.6) We define operatorIs = diag(−1,+1,+1, . . .+
1), i.e. a sequence of only one (-1) followed by a sequence
of (+1)s in all 31 in number along the diagonal of matrix.
Is is a matrix of size 32×32.

(1.7) We define operatorU = U2.U1. Note thatU will
be a matrix of size 32×32.

(1.8) We define operatorQ = −(Is.U−1.It .U). Note
thatQ will be a matrix of size 32×32.

(1.9) We defineO = U.Qm, where m = π
4

√
24 and

computeO|0〉|0000〉
(1.10) We measure the ancilla (i.e. the first qubit). If

ancilla is found in state|0〉, the remaining qubits will be in
the state to be synthesized.

It is important to note that this procedure involves
construction oflarge sized matrices and taking theirlarge
powers.

Now, we proceed with the factorization using [1] of
given state,|ψ〉, and see that when this state factorizes then
into two or more factors then how our modified algorithm
helps to simplify and speedup the synthesis.

(2.1) We apply factorization algorithm [1] to the state
|ψ〉 as given above. It can be seen that it factorizes into
two identical factors, i.e. we get|ψ〉= |Θ〉⊗ |Θ〉, where

|Θ〉= 1√
87

[2|00〉−3|01〉+5i|10〉−7i|11〉].

(2.2) The full factorization of |ψ〉 produces two
factors so we need to build (as per modified algorithm
above) two operators using these factors and since these
factors happen to be identical in the present case these
operators will be identical. Thus, we get the theproduct
operator orsynthesiserto synthesise|ψ〉 as O = T ⊗ T
and (as per our modified algorithm) we introduce two
ancillae qubits both prepared in the state|0〉 and thus we
prepare register containing in all 6 qubits, namely,
|R〉= |0〉|00〉|0〉|00〉. We then compute

O|R〉= (T ⊗T)(|0〉|00〉⊗ |0〉|00〉)

= T|0〉|00〉⊗T|0〉|00〉
and measure both the acillae qubits simultaneously. If and
when we found them in state|0〉 the other qubits will form
the desired state to be synthesised.

We now proceed to build the required operatorT using
the factor state|Θ〉.

(2.3) We define operator

V1 = I ⊗H⊗H.

V1 will be a matrix of size 23×23 = 8×8.
(2.4) We define operator

V2 : V2|0〉|i1i2〉 → di1i2|0〉|i1i2〉+
√

1−|di1i2|2|1〉|i1i2〉

plus the remaining orthonormal columns.i j takes values in
the set{0,1} and jε{1,2}. Also, di1i2 are the coefficients
of the respective states|i1i2〉 in |Θ〉 given above.V2 will be
a matrix of size 8×8.

(2.5) We define operator
Jt = diag(−1,−1, . . .−1,+1,+1, . . .+1), i.e. a sequence
of (-1)s, 4 in number, followed by a sequence of (+1)s
again 4 in number along the diagonal of matrix.Jt will be
a matrix of size 8×8.

(2.6) We define operatorJs = diag(−1,+1,+1, . . .+
1), i.e. a sequence of only one (-1) followed by a sequence
of (+1)s in all 7 in number along the diagonal of matrix.Js
will be a matrix of size 8×8.

(2.7) We define operatorV = V2.V1. Note thatV will
be a matrix of size 8×8.

(2.8) We define operatorS=−(Js.V−1.Jt .V). Note that
Swill be a matrix of size 8×8.

(2.9) We defineT = V.Sm, where m = π
4

√
22 and

compute(T|0〉|00〉)⊗ (T|0〉|00〉)
(2.10) We measure both the ancillae (i.e. the first qubit

and fourth qubit together). If both the ancillae are found
in state|0〉, the remaining qubits will be in the state to be
synthesized.
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For the present example the synthesis as per modified
algorithm produces the state:|Φ〉 = (|0〉|Θ)⊗ (|0〉|Θ),
which is the desired state|ψ〉 in disguise, with
significantly less efforts.

Example 2:
Synthesise the following two qubit state

|ψ〉= 1√
3
|00〉− 1√

3
|01〉+ 1√

6
|10〉− 1√

6
|11〉.

Solution:
Instead of directly applying the steps of Grover’s

algorithm as given in [4] we first apply the factorization
algorithm in [1] to check whether this state factorizes into
two linear factors and if yes then we apply ourmodified
algorithm to the factored state and synthesise this
factored state with much reduced efforts.

One can easily check that the above given state
factorizes into two single qubit factors as follows:

|ψ〉= |ψ1〉⊗ |ψ2〉

where

|ψ1〉=
√

2
3
|0〉+

√

1
3
|1〉

and

|ψ2〉=
√

1
2
|0〉−

√

1
2
|1〉.

To synthesise|ψ〉
(i)We create the synthesiser,O = T1 ⊗ T2, where

operatorsT1, T2 are synthesisers for|ψ1〉, and |ψ2〉
respectively.

(ii)We create register|R〉= |0〉|0〉⊗ |0〉|0〉, where first
and third qubits are ancillae qubits.

(iii)We evaluate

O|R〉= (T1⊗T2)(|0〉|0〉⊗ |0〉|0〉) = T1|0〉|0〉⊗T2|0〉|0〉.

(iv)We measure both the ancilla qubits and when both
ancillae qubits are in state|0〉 the remaining qubits will be
comprising the desired state|ψ〉 to be synthesised.

Firstly, we proceed to build the operatorT1, the
synthesiser for |ψ1〉 by following the steps of the
algorithm for synthesis given in [4].

(3.1)U1 = I ⊗H, therefore

U1 =

















√

1
2

√

1
2 0 0

√

1
2 −

√

1
2 0 0

0 0
√

1
2

√

1
2

0 0
√

1
2 −

√

1
2

















(3.2)U2 : U2|0〉|i〉 → ci |0〉|i〉 +
√

1−|ci|2|1〉|i〉 plus
remaining orthonormal columns, where ci are the

coefficients of computational basis states in|ψ1〉,
therefore

U2 =

















√

2
3 0 −

√

1
3 0

0
√

1
3 0 −

√

2
3

√

1
3 0

√

2
3 0

0
√

2
3 0

√

1
3

















(3.3)We define operatorIt = diag(−1,−1,+1,+1),
i.e. a sequence of (-1)s, 2 in number, followed by a
sequence of (+1)s again 2 in number along the diagonal
of the matrix.It will be a matrix of size 4×4. Thus,

It =







−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1







(3.4)We define operatorIs = diag(−1,+1,+1,+1),
i.e. a sequence of only one (-1) followed by a sequence of
(+1)s in all 3 in number along the diagonal of matrix.Is
will be a matrix of size 4×4. Thus,

Is =







−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







(3.5)We define operatorU = U2.U1. Note thatU will
be a matrix of size 4×4. Thus,

U =







0.5774 0.5774 −0.4082−0.4082
0.4082−0.4082−0.5774 0.5774
0.4082 0.4082 0.5774 0.5774
0.5774−0.5774 0.4082 −0.4082







(3.6)We define operatorS=−(Is.U−1.It .U). Note that
Swill be a matrix of size 4×4. Thus,

S =







0 −0.3333 0.9428 0
0.3333 0 0 −0.9428
−0.9428−0.0000 0.0000 −0.3333
−0.0000−0.9428−0.3333 0.0000







(3.7)We defineT1 =U.Sm, wherem= π
4

√
21. Thus,

T1 =







0.5774 0.1925 0.6804−0.4082
0.4082 −0.6804 0.1925 0.5774
−0.4082−0.6804 0.1925−0.5774
−0.5774 0.1925 0.6804 0.4082







(3.8)We proceed exactly on similar lines and build the
operatorT2, the synthesiser for|ψ2〉 using this time the
corresponding coefficients of the computational basis
states in|ψ2〉. Thus,

T2 =







0.5000 0.5000 0.5000 −0.5000
−0.5000 0.5000 −0.5000−0.5000
−0.5000−0.5000 0.5000 −0.5000
−0.5000 0.5000 0.5000 0.5000






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(3.9)We evaluate

O|R〉=(T1⊗T2)(|0〉|0〉⊗|0〉|0〉)= (T1|0〉|0〉)⊗(T2|0〉|0〉).
Thus, we get

|Φ〉= |φ1〉⊗ |φ2〉,
where

|φ1〉= 0.5774|00〉+0.4082|01〉−0.4082|10〉−0.5774|11〉,
and

|φ2〉= 0.5000|00〉−0.5000|01〉−0.5000|10〉−0.5000|11〉.
We measure thefirst qubit (ancilla qubit)of |φ1〉. It will be
found to be|0〉 with probability |0.5774|2+ |0.4082|2 =
0.5000. In this case the state|φ1〉 is projected into state

0.5774√
0.5000

|00〉+ 0.4082√
0.5000

|01〉= |0〉|ψ1〉

which is equal to|ψ1〉 ignoring the ancilla qubit. Similarly
|φ2〉 leads to|ψ2〉.

(3.10)Essentially, we measure both the ancillae (i.e. the
first qubit and third qubit together) in|Φ〉. When both the
ancillae are found in state|0〉, the remaining qubits will be
in the state to be synthesized, i.e. we get

|Ψ〉= (|0〉|ψ1〉)⊗ (|0〉|ψ2〉).
Clearly, |Ψ〉 is the desired state|ψ〉 to be synthesised in
disguise.

It is important to note that when the state to be
synthesized has factors then the process of synthesis
involves construction ofsmaller sized matrices and
raising them to smaller powers and theparallel
processing in the modified algorithm consisting of
simultaneously synthesising the factors in parallel
significantly speeds up of the process of synthesis.
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