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Abstract: Scalability and performance implications of semantic net visualization tegésiare open research challenges. This paper
focuses on developing a visualization technique that mitigates these clesll&¥g present a novel approach that exploits the underlying
concept of power-law degree distribution as many realistic semanticemisssto possess a power law degree distribution and present
a small world phenomenon. The core concept is to partition the nodd aegraph into power and non-power nodes and to apply
a modified force-directed method that emphasizes the power nodel msiglts in establishing local neighborhood clusters among
power nodes. We also made refinements in conventional force-direwtthod by tuning the temperature cooling mechanism in order
to resolve ‘local-minima’ problem. To avoid cluttered view, we appbethantic filtrationon nodes, ensuring zero loss of semantics.
Results show that our technique handles very large scale semantic netsswitistantial performance improvement while producing
aesthetically pleasant layouts. A visualization tdddyvigOWL, is developed by using this technique which has been ported as a plug-in
for Protege, a famous ontology editor.

Keywords: Ontology visualization, semantic net visualization, power law graphs,tdeal&ected graphs, force-directed graphs.

1 Introduction node cluttering edge crossingslocal minima problem
angular resolution problemcomputational inefficiengy

Due to recent advancements in semantic web, the web othape/view distortionineffective rendering techniques
data is continuously growing. One evidencelimked and asymmetrical drawingsare observed. Hence an
Datainitiative?, which has resulted into billions of triples. €fféctive and scalable visualization technique is needed,
Similarly, several large ontology structures have evolvedthat should clearly depict the structure of complete
over the last few years. There is a growing need ofontolog_y while  maintaining persistent aesthetic
effective visualization methods that could be adopted forconstraints. We present the optimized, scalable, and

an effective representation of ontologies in order to fully Performance oriented directed graph layout technique to
understand the structures. visualize the large-scale ontology graph by maintaining

Literature indicates that several research initiativesth® @esthetics aspects of visualization as discuss@bjn [

have targeted 2D and 3D ontology Vvisualization

techniques 16,7,3,29,22,14,6,8,9,23,17,10,31,11,13, We exploited the underlying concept of power-law
19]. Several tools exist to visualize the semantic n2@.[]  degree distribution topology pertaining to the property
Different layout techniques have been implemented inthat a small proportion of nodes have a high degree
these tools, but each technique has shortcomings due t@ower nodes) while the vast majority of nodes have a
which either the structure of ontology becomeslow degree (non-power nodes). Thus, in a realistic
ambiguous to the user or the view losses the semanticsietwork, there exists few power-nodes that needs to be
As the ontology size increases, several issues such amphasized more as compared to other non-power nodes.
The basic idea is to partition all the nodes/vertices based
1 http://linkeddata.org upon power-law degree distribution and then to apply our
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optimized and modified force-directed layout algorithm highlights certain shortcomings likeccluding vertices
which manages scalability and performance implications.with edges edge-crossings and angular resolution

We begin by summarizing previous approaches thafroblemi.e. the angle between incident edges may be too
have been applied to graph layout and their aesthetismall, and it may get smaller in case of larger graphs.
measures along with review of various tools of semantic  Another variant by Fruchterman and ReingoltB]
net visualizations in SectioB. Section3 discusses the simplified forces formulae and made several refinements
detailed design of our novel graph layout technique alongoy using cooling scheduleto limit nodes maximum
with refinements. In Sectiod we discuss our developed displacement. Repulsive force is still being calculated
visualization tool NavigOWL, and plug-in for Protege. In  between every node in a graph, yielding to a complexity
Section5, we demonstrate how our algorithm achieves of © (|V?|).

substantially better performance and mitigates scatgbili Similarly, a modified spring layout was presented by
challenge by comparing it to the existing approachesHuang et al. 17, in which they used Online
while visualizing large scale semantic nets. Force-Directed Animated Visualizati@@FDAV)

technique for assisting web-navigation. This technique

describes, which most of existing visualization systems
2 Related Work have problems presenting, huge graphs like fish-8¢g [

hyperbolic browser, cone tree23. The main issue of

In this section we discuss the generally accepted aesthetfg"s technique izero angular resolution problerie. the

criteria for graph layouts and describe various graph:smallest angle between two neighboring edges incident

drawing layout techniques that have been implemented sgh common _vertex. Also, no _role- relation h'eTarChy a_nd
far. Further, we discuss few existing ontology context details are observed in graphs and this technique

visualization tools. also does not resolve issue of overlapping edges of
common vertex.
Later Lin and Yen also proposed a variant of
i ) Eades 10]. As many conventional force-directed methods
2.1 Graph Drawing Aesthetics and Layouts are based on either vertex-vertex repulsi@1f] or
vertex-edge repulsionlf,29], therefore this approach is
There are certain graph drawing constraints that aan enhancement which is based ujgdige-edge repulsion
visualization must follow. These constraints are appliedto draw graphs. Although this technique resolved problem
on a graph in order to get better understanding ancof minimum angular resolutiof12], but it was not
structure of graph. These constraints are aestheticallgcalable and results show the drawings of smaller graphs
measured. We are concerned with an optimized andwith upto few dozen nodes. Further, this technique does
scalable layout technique that posses generally acceptatbt always guarantee to produce nice symmetrical
aesthetic criteriaZ5). drawing and pose$ocal minima problemwhere forces
Moreover, visualization of semantic net gets complexget too week to spread graph. The main issue of this
due to its structure or role-relations hierarchy defined inalgorithm is its complexity which is in square. i.e.
an ontology. One node can be linked to many other node “\”2Jr |E|). Hence performance of algorithm is worst
so the user is hardly able to understand the structure o]

semantic net. In order to create clear mental map for thdn case of Iargg scale.ont.olpgles.. . .
user, a layout has to be applied to the visualization. From the discussion it is evident that despite various

Following are few existing layout techniques that are modifications and implementations, the force-directed

discussed in detail. algorithm is not scale_lble and gives worst perfo_rm_anc_e in
The most popular layout algorithms are based onC3S€ of large ontqlpgles. There is a need to optimize it for

force-directed or spring-embedded metho8s10,9,13 managing scalability challenge and to preserve aesthetic

29,4,17]. Eades designed the earliest spring-embedded/isualization.

model for graph drawing§]. The basic idea was to

embed a graph by replacing the vertices by steel rings and

replace each edge with a spring to form a mechanical.2 Graph Clustering Algorithms

system. The vertices are placed in some initial layout and

then released so that the spring forces on the rings movApart from traditional force directed algorithms,

the system to a minimal energy state. The attractive forcesignificant research work has been done on clustering of

is calculated between neighbors with complexity of the graphs 30,9,1,154,24,27,32]. Cluster graph is

O (|E|) whereas the repulsive force is calculated betweeranother important concept to visualize semantic nets. The

every pair of vertices with complexity a® (\V2|) This clusters are built for the aesthetic view of graph structure

technique generates aesthetically pleasing layoutsFew implementations, by tuning the force directed

However, the repulsive force complexity poses seriousalgorithms with clustering techniques, are given 409

computational issues for large graphs, hence it has to b&7]. In this section, we review various approaches being

limited to few hundred nodes. Moreover, this techniqueadopted to build the graph clusters.
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Clusters or groups are investivated for biological andand so on. They partitioned the graph into multiple layers
social community structures by Girvahd] be exploiting  based upon out-degrees. The graph layout is being adjust
centrality in order to find community boundaries. The by using Fruchterman-Reingold (FR) Force Directed
worst case complexity of algorithm though &(m?n) Algorithm [13]. Complexity of FR algorithm is
wherem represents the number of edges aras number O<|N\2+\E|), but the overall complexity of their
of vertices. This technique was not highly scalable and
supported few thousands nodes. Moreover, it isalgorithm is @(Z|Nk|2+z\Ek|), where Ny and Eg
algorithmically complex as it operates on edges. In casgyesents the No. of nodes and edges in layer
of sparse graphs, its complexity ©(n®), which is  respectively. They tested the BGP networks of up to 7,000
inefficient. _ nodes and compared the results with traditional

Another variant of clustering approach was presentedygorithms ~ (including 10,13,28) and achieved
by Yuruk et al. B2] in which finding the hierarchical gjgnificant improvement in aesthetic layouts, though the
structure of clusters without any input parameters wasyjew gets cluttered if the structure of network is complex.
discussed. They presented, haerarchical structural Focus-based filtering and clustering technique in

clustering algorithm for networks. Although, this nower-law network graphs provides better layout as
approach is considered as highly effective in finding compared to classical filtering technique as it is based

hierarchical clusters in social networks, but the upon power-law distribution5]. Dense graphs can be
implementations showed small scale graphs, thus thigjjereqd into clear view. However, scalability remains an
approach is also not highly scalable. Algorithm is not gnen challenge as this technique is only demonstrated for

efficiently applicable in semantic networks, as using only gma|| graph of 1,511 nodes and 7,902 co-authoring links.
structural similarity is not sufficient for building clus®  noreover. it is computationally inefficient as firstly

Results also showed node cluttering and edge-overlapping|,sier cores are extracted and then layout is applied.

issues. _ _ _ Also, changing user-focus in this technique, gives
Wallner also described hierarchical cluster graphs that,ttered view in few silhouettes.

impose higher level of granularity controlled by | hower-law topology a small portion of nodes have
users R7]. Although cluster center detection technique is many connections to other nodes which means that in a
efficient and controlled by user-defined threshold, semantic net, core nodes have the maximum degree and
however, this technique has certain shortcomingsi, he whole graph, there exists very few core-nodes.
Algorithm’s complexity is very high due to cluster puild Similarly, as the degree of the nodes increase, the
phase and further Fruchterman and Re'hgddfrequency behavior of the degree decreases, which is the
force-directed algorithm13) is applied, which has high paqic property of mathematical power-law. It has been
complexity. Because of breakdown condition problem, i”proven to be effective by various approaches that the
some cases, algorithm aborts too early, hence shows l0ngeraction networks (Graphs containing actors and
distances between meta-nodes. Finally, no computatiofg|ationships among actors) or semantic nets exhibit the
time and scalability aspects are mentioned in literature. power-law behavior. Thus we can follow the power-law
property in ontology visualization as ontology also
exhibit power-law property, as the degree of nodes
2.3 Power Law Graphs increases, its frequency decreases (i.e frequency of core

nodes is very low) §]. Our technique also exploit the
Several research efforts have targeted the power-lawnqerlying concept of power-law degree distribution, that
graphs and their combinations with the traditional \,q discuss in Sectiod.
force-directed algorithms 1p] by exploiting the
underlying structure of  power-law  network
distribution [6,2,5]. In this section we review the research L.
work related to power-law graphs. 2.4 Ontology Visualization

Chan and colleagues presented a novel algorithm of

Out Degree Layoufor the visualization of large scale Various ontology visualization tools are in use including
network topologies§]. They divided the whole network Cytoscape Giny, graphViz HyperGraph rdfGravity,
into multiple layers based upon the Out Degree (thelsaViz Jambalaya Owl2Prefuse and SocNetV[3,19].
number of edges coming out of the node). They adoptedviost of these tools either lack in visualizing role-relatio
the Power Law topologywhich is commonly being found hierarchies of complete ontology or in aspect of drawing
in topology networks.A power-law topology has the layouts. Figurel represents the visualization éfmino
property that a small proportion of nodes have a high Acid Ontologyof 1,484 triples, the drawing layout is fine
out-degree i.e., have many connections to other nodedyut it misses role-relation hierarchy and simply represent
while the vast majority of nodes have a low out-degree,classes along with their instances. Moreover, the
i.e., have connections to few nodé$ The methodology animation doesn’t stops in layout process as graph
adopted is to layout the nodes with highest out-degreecontinuously adjusts itself which makes it harder for user
first, then to layout the nodes with smaller out-degreesto preserve mental map.
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rdfGravity is another popular ontology visualization
tool. It represents the ontology graph with complete
role-relation hierarchy and in full context along with
literals and other constructs with filtering features.
Unfortunately, it does not support any graph drawing
layout so it gives holistic view after filtering but gives
cluttered view for complete ontology graph. FiguBe
represents graph dfransOntology-Bhaktithis ontology
graph consists of only 195 triples yet we can observe
cluttered view and node-overlap in asymmetrical view of
ontology graph. Its also not scalable to support large
ontology graphs as the view becomes ambiguous and
unstructured.

1

Fig. 1: Owl2Prefuse: view of classes and their instances, missing
role-relation hierarchy, and other constructs in AminoAcid
ontology graph

We also visualized samé&mino Acid ontology to
compare its graph in another popular ontology
visualization tool named a&SocNetV The tool is enriched
with various graph properties and used mostly to
visualize and exploit the properties of social networks.
The tool is computationally not very efficient, layouts are
ambiguous, and lacks role-relation hierarchy. Fig@re

N &= ]
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represents snapshot of amino-acid ontology after applying9- 3: rdfGravity: Cluttered view with node-overlap,

force-directed layout on, it shows ambiguous view wit
lack of details about role-relations.

h asymmetrical drawing on small TransOntology-Bhakti graph.

Current ontology visualization tools tend to avoid
scalability issues by limiting the number of visible nodes
on graph canvas to about 10,000ntSpherereports
occlusion and label-overlap problems for little over
10,000 nodes. Another problem in visualization tools over
large scale ontologies is node labels display, similarly
visualization of relation links is also problematic.
Figure 4 shows snapshot oOntoGraf where we can
observe cluttered view and node-overlap over ontology of
just 195 triples.

Similarly, use ofTGVizTabandOntoVizis not possible
when relation links are visible even for an ontology of less
than 300 nodesl]. In Jambalaya users cannot exploit
the relation links. 18] categorized the existing ontology
visualization tools that support up to 10,000 nodes. Our

Fig. 2: SocNetV: Force-directed layout applied over AminoAcid Main challenge is to cope with scalability issue as large
ontology, cluttered view with node-overlaps, missing role- Scale ontologies contains million of triples.

relations details.

Summarizing the discussion on existing visualization
tools, following shortcomings are observed which needs
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1.Sort nodes as per degrees and convert semantic net to

bipartite graph of Power and Non Power nodes.
2.Whiletemperature# 0

Perm| @ Friendship

@ Conjugal_Love

—Calculate attraction force among Power-Nodes and
their neighboring nodes.

/ —Calculate repulsive force among Power-Nodes.

—Calculate attraction force among Non-power
'1“_”‘."1“.,8_% e Nodes and their neighboring Nodes.

YT — —Calculate repulsive force among Non-power

e — ® biiiog BLD 227 Nodes.
Boine ‘Mm/ " —Calculate nodes positions and update the (x; y)
P coordinates of each node.

e —— —-Reducaemperatureat each iteration.

@ Positive_Action
s

ha

® Vyabhicar-bhav
a

The core algorithm contains various methods which
are discussed here in detalil.

Fig. 4: OntoGraf spring layout: Cluttered view and node-overlap )
3.1.1 NodeDegreeMapping Method

This method is central to the proposed power law based
algorithm. The basic idea of this method is to partition the
to be covered in order to focus on ontology visualizationnodes of a graph into power and non-power nodes based
domain. upon their degree distribution. We also tuned this method
to apply variant node-scale on graph canvas based upon
—Many visualization tools support graphs up to few degree distribution (i.e the node with maximum scale on
hundred nodes only like rdfGravity, Jambalaya, canvas will be the node with maximum degree). By doing
GraphViz. S0, visualization can provide aesthetic aspect by disptpyi
—In large scale graphs these tools either take significanhodes of variant scale on graph canvas. We defined scaling
time in computation and/or produce ambiguous factor of node by following equation.
layouts as being observed in rdfGravity.
—Node cluttering and edge overlap issues are also | d < K @
present as in Prefuse, graphViz, and OntGraf. A (G)
—Tools are not enriched enough for describing
role-relation hierarchy, like in OntGraf, a Protege
plugin, it only visualizes class-hierarchy. i — scale of nodé.
—Force-directed and spring layouts are implemented in :
several visualization tools, however, local-minima d = degree of node
problem has been found in case of large scale A (G) = maximum degree of grap@.
ontologies as observed BocNetV andg; < k;wherex is a defined constant.

where,

The outline of this method is as follows:

3 Design and Methodology 1.Sort node~ degree distribution of whole graph.
2.Extract power nodes, i.e. top 20% nodes from the

This section covers the design of our proposed ontology sorted distribution.

algorithm along with sub-functions detail. Complexity of ~ 3.Extract non power nodes, i.e. remaining 80% nodes.

the algorithm has been discussed and compared with other4.Calculate each node’s scale relative to its degree as per

approaches as well. Equationl.

3.1 Power Law Based Ontology Visualization ~ 31-2 AttractionForce Method
Algorithm This method is based on the force-directed model. The
basic principle of this method is to bring together the
The proposed layout algorithm exhibits the underlying nodes which are connected by an edge, than acts like a
structure of mathematical power-law property along with spring between two nodes. The aim is to bring all
existing force-directed algorithm. The outline of core neighboring nodes close to their power nodes, to build a
algorithm is as follows: local cluster around power nodes. An attraction force is

© 2014 NSP
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Algorithm 1: AttractionForce Algorithm 2: RepulsionForce
Data: n — noded — degree Data: n — nodgd — degree;
N — NodesE — Edgesk « StretchConstant N — NodesE — Edges ;
Input : The graphG < N,V > and< n,d >— set k — Repulsion Constant;
of node-degree pairs; dx — distance co-efficient afiy;
Description: Attraction force among connected nodes, by dy — distance co-efficient afp;R = Random Value;
updating their(x,y) coordinates to bring A — a constanct initially set to 700;
. them closer to each other. Input : < n,d >— nodes along their degrees;
1 begin _ Description: Repulsive force between non-connected
2 for i + _1to IN| do nodes, by updating thefx,y) coordinates to
3 for j« 1to |Ep|do move them away from each other.
4 n; < i andny «— Other end node afi; 1 begin
5 AX < Nyy — Moy 2 forielt_oNdo
3 ng <1
6 Ay + ngy —Nyy 4 for j«i+1toNdo
7 Length < /Ax x Ax+ Ay x Ay 5 nz < jdx=0anddy =0
Length—k 6 AX<—N1x — N
8 force « K< (100 ) ) X ) x
7 — -
9 dy + force x Ax y 1y 2y
8 Length < \/Axx Ax+ Ay x Ay
10 dy < force x Ay )
9 if Length equal to Othen;;
u Ny 4 Nix— Ok /1 Collision Detection
12 Nyy ¢ Ngy —dy 10
11 ‘ dy =Randdy =R
13 Moy — Npx + Oy
d
Npy <— Noy + d 12 en
“ 2y 2y + 0y 13 end
15 end 14 else ifLength < A2 then ; /1 Distance
16 end Limt
17 end 15
A A4y
16 O Lenéth anddy A Length
17 end
(M xNp)
computed based upon the distance between two'® force — g
connected nodes. Our optimized approach is presented in9 N1y < N1y + Oy x force
Algorithm 1. . . Y My < Ny +dy + force
The complexity of attraction force method in
force-directed model i® (E), whereE represents number Mox ¢ Nax — G xforce
of edges in graph. In our power-law based approach its 22 N2y < N2y — dy x force
complexity is reduced to® (|Vp||Ep|), where V, » | end
represents number of Power-Vertices dfgrepresents end

the number of edges of power-vertices in a graph
Moreover, |V,| < |V| and|Ep| < |E|, i.e the complexity
is being reduced.

to 6 (|Vp?|), whereV, represents of power vertices and
Vol < V.

This method is based on the force-directed model. The
basic principle of this method is to move away the nodes
which are not connected by an edge. All non-connected
nodes are moved away from each other. A repulsive force 1.4 UpdateNodesPosition Method
is computed based upon the distance between two
connected nodes. The optimized method is provided in

3.1.3 RepulsionForce Method

Algorithm 2.
The major pit fall of force-directed algorithm is the This method changes the node positions once they have
complexity of repulsive force method which 8(E?), been processed by attraction and repulsion forces and

where E represents number of edges in graph. In ourupdates each nodelx,y) coordinates based on node’s
power-law based approached, we reduced its complexityemperature and distance co-efficients.
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3.1.5 CoolDown Method 3.3.1 Semantic Based Filtration

This method iteratively reduces the temperature (or heat).

As Temperaturell SpringForcesor we can say at each )
iteration the heat is being cooled down. It has been observed that in an ontology many concepts

synchronized iterations. We have tuned algorithmfdf:Class When an ontology is visualized, many edges
temperature cooling mechanism such that while operatin%eem connected to the RDF and OWL specific core nodes.
on Power-Nodes temperature slowly cools down, as thes8Y considering this fact we have applied the filtering
are core nodes and need maximum temperature throughfocess on graph drawing canvas. Figérexplains the
which maximum force value can be exerted upon these/iew-complexity over Amino Acid Ontology of 1,484
nodes. On the other hand, when algorithm calculatedriples which has been reduced due to filtration process.
forces on Non-Power nodes, temperature falls quickly by
rapid cooling as it is least important to exert equal amount
of force on non-power nodes as compared to
power-nodes.

Logically, power-nodes need high temperature which
is slowly decreasing and non-Power should need
relatively low temperature which is rapidly decreasing,
because of their least importance. By tuning this cooling .:
mechanism, we achieved significant improvement in
layout (tightly coupled cluster built around power-nodes) *
and performance as temperature rapidly decreases ¢
power-nodes thus saving iterations and execution time.

32 Time Complexity (a) G[V=350,E=1484) (b) G(V=319,E=1167)

The major pitfall in the traditional force-directed Fig.5: Semantic filtration (a) Unfiltered graph, (b) Filtered graph
algorithm is its complexity which i®(|V2| +|E|), where

V are Vertices and are Edges. In our algorithm the time

complexity for each function is as under:

We have filtered primitive constructs of RDF, RDFS,

—Attractive Force=- ©(|Vy| |Ep|) OWL, and XML. Similarly, we also filtered the primitive

—Repulsive Force> O(|Vp?|) constructs related to predicates BDF, RDFS, OWL,
—Forces Complexity= O(|Vp| - (|Vp| +|Epl)) XML. Any built up edges due to this property are not
—Vp — Number of Power Nodes. shown in graph like propertiesdf:Domain, rdf:Range
—£p — Number of Edges connected to Power Nodeshowever, we do not loss the semantics of visualization by
—MoreoverVp <V andEp < E retaining all the information in a tool-tip over nodes. The

) Table 1 explains the filtered number of nodes and edges
Force complexity of our proposed power-law based ;¢ compared to un-filtered.

algorithm is significantly reduced as compare to
force-directed algorithm’s forces complexity. Moreover,
the complexity of each function is almost linear therefore
total complexity of power-law based algorithm is also

linear which indicates significant improvement in Table 1: Filtration statistics on nodes and edges
complexity . Unfiltered Graph | Filtered Graph
' Triples

Nodes | Edges | Nodes | Edges
1515 | 474 | 1515 | 246 | 1,245
3.3 Refinements and Optimizations 5,527 | 3,045 | 5,527 | 1,738 | 3,467

7,330 | 3,090 | 7,330 | 1,052 | 2,149
10,893 | 5,937 | 10,893 | 3,446 | 6,830
16,229 | 8,697 | 16,629 | 5,097 | 10,250
47,003 | 34,291 47,003 | 11,767 | 23,490

In the previous section, we claimed thag| < [V| and

|Ep| < |E|. We optimized our algorithm along with
performance tweaks due to which we are able to gain
significant performance as well as more aesthetic and
clear visualization of semantic net.

© 2014 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

362 NS 2 A. Hussain et al: Scalable Visualization of Semantic Nets using...

4 Implementation Details role-relations defined in ontology taxonomy. The

node-labels along with edge-relations is shown in

We implemented the power-law based semantic net yjsualization in Figure.

visualization algorithm in a tool calleNavigOw?. It is —Facilitates large-scale semantic nets a.k.a ontologies.

developed in Java and for graph drawing we used _jtrecongnizes various pre-configurB®F/ OW. node

Piccold®. Jend is used for the processing of semantic types such aswl:Classand handles them differently

models. compared to rest of the nodes. This helps in separating
the core model specific nodes from the actual ontology
concepts.

—Supports fully scalable directed graphs. Visualizes
whole role relation hierarchy, defined in ontology.
Node’s tool-tip exhibits complete role relation
hierarchy as shown in Figug

—Zoomable user interface and handling mouse events
like pan, drag, mouse-Over, for nodes of a graph.

—Graph overview is also provided to show holistic view
of large scale graphs to traverse through whole graph.

—Tool facilitates user to apply various drawing layouts
techniques to produce appealing symmetric results of
whole graphs.

—Power-law based layout technique produces appealing
drawing based upon node-degree distribution, in order
to understand node’s importance.

—Node search feature is included which highlights the

The tool enriched with complete ontology searched node in whole of graph.
visualization contains whole role-relation hierarchy of —Show /Hide labels of all nodes.
each concept (node) and has applied semantic based —Node cluttering and edges-overlapping is minimized

Fig. 6: Snapshot of NavigOwl.

filtration as we have discussed in Sect®B.1 This tool up to optimum level. However, as in case of large
supports RDF and OWL ontology files. The snapshot of semantic nets, where ontology possess rich
NavigOwlis given in Figure6. It supports many features role-relation model structure, node-cluttering and
as listed below: edge-overlapping cannot be overcome.

Graph coloring is very important feature used in most
of the visualization tools. In case of visualization for
large-scale semantic nets, which are enriched with many
roles and relationships and ontologies contain different
types of concepts, instances and roles among them. We
used a color-scheme inspired from Protege to remain
consistent. As in an ontology file, different types of
relations exist between concepts which are represented by
edge line in graph, keeping this concept in view, we have
implemented specific arrow shapes and strokes to
represent distinct type of edges for user-understandabili

Protegé is a famous ontology editor. We have ported
NavigOwl in Protege as a tab-widget plugin where users
would be able to visualize the RDF / OWL ontology within
Protegé. Figure9 shows the snapshot of NavigOwl plugin
for Protege.

Fig. 7: NavigOw! visualization exhibiting labels of all graph In Protege there are different view panels like
nodes. class-hierarchy, object-properties, data-type progerti
therefore we have integrated the NavigOwl drawing
canvas with Protege class-hierarchy panel. When user
selects a patrticular class node in Protege class-hierarchy
—Loads RDF/OWL ontology file and configures its panel, that particular node is highlighted on drawing
graph by rendering nodes and edges based upoBanvas. This functionality helps users to identify selécte

2 http://Klatif.seecs.nust.edu.pk/navigowl node.
3 A 2D graphics API http://www.piccolo2d.org 5 http://protege.stanford.edu
4 http://jena.apache.org 6 http:/protegewiki.stanford.edu/wiki/NavigOWL
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B s]-? sglandard_error_multiplier
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W flag_values

LS e .
\. :flag_meanings cell_methods

1_mapping hitp:firidl.ldeo columbi
a.edufontologies/cf-att.o

wlicell_methods
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Fig. 8: NavigOwl visualization exhibiting role-relation model of
ontology.

Fig. 9: NavigOwl as plugin of Protege

5 Performance Evaluation

We tested visualization of large scale ontologies on a i /

Core2 Duo 2.99GHmachine with 4GB memory. We also

implemented two previous approaches of traditional force

directed algorithms including
Fruchterman-Reingol{i13], andmodified spring21]. We

then visualized same ontology on these two algorithm
and compared performance results with the propose
algorithm. FigurelO shows the speedup over existing

Force-Directed algorithm approaches.

Execution Time Vs Layout Algorithms

1000

100

10 +

Time [seconds)

01

1515 2332 5354 5527 5633 6012 7303 | 10893 | 16229 | 47003

——FR
—&—ModifiedSpring

0.234 | 1.297 | 12.08 | 58.467 | 65.171 [124.663 | 108.346| 279.401 | 303.29 | 732.456

0.636
0.131

2.313
0.647

10.569
3.004

14.596
3.085

13.611
3.065

16.406
4.289

10.987
3.288

22.402
11.825

102.202 | 324.789
23.927

—a—NavigOwl 06.951

Ontology Triples

Fig. 10: Comparison of time to layout (in logrithmic scale) of
various graph layout algorithms.

5.1 Comparison Over Fruchterman-Reingold

Our implementation showed following observations as

compared to the performance impact over
Fruchterman-Reingold algorithm:
=Significant improvement in graph layout by

expanding over canvas, symmetrical, minimum edge
crossings and almost zero node cluttering as shown in
Figurell
—Significant improvement in execution time as shown in
Figure10.
—Linear improvement in algorithm complexity, as
shown in Sectior3.2
—Fruchterman-Reingold algorithm is not highly
scalable, takes much longer computation time over
large scale ontologies as shown in Figutg, on
47,003 triples it took 732.456 seconds but our
algorithm only took 66.951 seconds.

a) Power Layout

b) Modified Spring

¢) Frutcherman-Reingold

Fig. 11: Layout comparison on OCW Ontology of 1,515 triples

Siltered graph G(V=246,E=1,245).
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H 'S _ H Table 2: NavigOwl Results on power-layout

5.2 Comparison Over Modified-Spring ST Toloe V] B TC]
GeoNames 104 28 52 0.037
Similar implementation showed following observations as ITFEflarl_sk?molgng Bhakti ;3: 33 1553 8-835

: 3 : ibrary .
compared to the performance impact over Modified sprin URIplay =57 07 e 023
algorithm pR1]: SIOC-NS 615 104 279 0.039
SKOS 1,954 399 1,544 0.146
—Improvement in graph layout as shown in Figure School 2178 | 476 779 0.231
and12 University (LUBH) 5,454 1,095 3,737 2.103
. . . . . ) . DBPedia 5,633 1,563 1,842 3.198
—Significant improvement in Execution time as in [Barion Subgraph 5863 | 1,902 | 3,691 | 4593
Figure10. Open-BioMed TCM 5950 | 2,554 | 5098 | 6.768
1 . . . . TDWG Geography 7,303 1,052 2,149 3.807
Linear improvement in algorithm Complexity as 55 6anancesumvey 47,003 | 11,767 | 23,490 | 17595

shown in Algorithm3.2
—Modified-Spring algorithm is not highly scalable,
takes much longer computation time over large-scale

. ® . LI e
ontologies. Joe . .
- ° P oo . = *
. N .
° .
. . .
° * - .
B G
. ° o .
. .
@ P,
° v °
o 0 e & . .
. -
® ° W e ° °
GeoNames Ontology SIOC-NS Ontology NetCDF-discovery Ontology
Triples=104, G(28,52) Triples=615, G(104.279) Triples=150, G(51,82)
/

URIPlay Ontology NetCDF-attribute Ol'uology Bhakti Ontology
Triples=597. G(147. i 335) Triples=378, G(77.133) Triples=195, G(58,56)

a) Power Layout b) Modified Spring ¢) Frutcherman-Reingold

Fig. 12: Layout comparison on Food ontology of 870 triples
filtered graph G(V=339,E=604).

School Ontology
Triples=2178, G(476,779)

5.3 Visualization Results DBPelia Ontlogy
Triples=5633, G(1563,1842)
We have rendered various ontologies in NavigOwl, by
applying our power-layout algorithm and obtained Fig. 13: Symmetrical and clustered graphs of small ontologies.
promising results in aesthetic preservation of produced
graphs with low execution time as compared to
force-directed and spring layouts. Taleshows these
results as follows: ‘ , ) )
Visualizations of various ontology datasets are shown Who follows who?'type of relationship tuples as shown
in Figure13and14 in Figure3.
We have created a semantic model of this information
transformed all records into that schema in order to
6 Discussion and Case Study visualize it in NavigOwl for better understanding of
complexity and role-relation hierarchy. The relationship
In order to get insight of the complexity of social tuples after transformation to semantic model were

networks, we have takefiwitter as our case study to Visualized as shown in Figuds.

analyze relationship graph. In order to understand the Table4 represents the mapping @fvitter schema to
scheme of relationships and network characteristics, wentology model. We have visualized these networks in
obtained dataset dfollower relationships which contains NavigOwl After applying power layout we obtained
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Table 4: Mapping of Twitter dataset to ontology schema.

Dataset Records| Ontology Triples V| |E]
5,000 532 280 528
10,000 906 473 902
15,000 5,393 2,706 | 5,389
20,000 11,346 5,663 | 11,342
30,000 20,533 10,250 | 20,529
40,000 28,504 14,161 | 28,500
A el ST A 50,000 36,230 17,929 36,226
Triplemt s GO%E 574) T3, Cr0es) 60,000 42,649 21,004 | 42,645

ACMTaxonomy Ontology UniversityDataset (LUBH) Ontology Dataset Tuples=5000 Dataset Tuples=10000
Triples=3728, G(1768,1758 Triples=5454_ G( 10953737 ataset Tuples=. . o
PRE=RE S TRR LD R H(1029:3737) Triples=532, G(280.528) Triples=906, G(432.902)

SRR

Dataset Tuples=15000
Triples=5393, G(2706,5389)

Dataset Tuples=20000
Triples=11346, G(5663,11342)

M Ontology

SKOS Ontology Open-Bio
Triples=1954. G(399.1544) Triples=5950, G(2554,5098)

Fig. 14: Large scale symmetrical, dense, clustered visualizations

Table 3: Tuples represntingvho follows who?’in Twitter

Twitter User ID | Twitter Follower ID
6353282 783214
6633812 6353282
7017692 6633812 Triplga:ﬂzag?g?gﬁg;ggg%ﬂ?)
14951565 7017692
14681199 7017692
8195652 14681199 Fig. 15: Twitter Dataset Visualizations on NavigOWL.
15015170 8195652
68998614 15015170
3785461 68998614
40887009 3785461 visualizing large-scale semantic nets. We propose a
53268444 40887009 solution to simultaneously address these open issues by
— — developing modified force-directed layout and exploiting

the under-laying concept of power-law degree
distribution. The layout was implemented as a
visualization tool that can handle large-scale ontolagies
symmetrical, clustered, and aesthetic persistent layoutgye compared our layout algorithm over previous

(c.f. Figurel5). implementations, and achieved significant performance
results.
Future direction for this research includes
7 Conclusion and Future Work implemention over distributed platform. A distributed

layout algorithm can be devised which can be executed

This paper proposes the first known solution to mitigateover parallel multiple compute nodes and may be
the scalability challenge and performance implications incomputationally more efficient and robust through
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exploitation of under-laying parallel computing benefits. [14] V. Geroimenko and C. ChelVisualizing the semantic web:
Moreover, we also plan to further enrich visualization tool XML-based internet and information visualizatjarhapter
with ontology editing, text searching and SPARQL query  Spring-Embedded Graphs for Semantic Visualization, pages
options along with formal assessment of our results over ~ 172-182. Springer-Verlag New York Inc, 2006.

more complex large-scale semantic nets. [15] M. Girvan and M.E.J. Newman. Community structures in
social and biological networkRINAS 99(12):7821-7826,
2002.

[16] J. Golbeck and P. Mutton. Force-Directed Drawing
Algorithms chapter Force-Directed Drawing Algorithms,

. . pages 8493—-8957. CRC Press LLC, 2004.
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