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Abstract: There is growing interest in memristive devices following their recent nanoscale fabrication. This paper describes initial
consideration of the implementation of artificial intelligence within predominantlymemristive hardware. In particular, versions of Alan
Turing’s discrete dynamical network formalism — the unorganised machine — are used as the knowledge representation scheme and
a population-based search technique is used to design appropriate networks. Issues including memristor count and global network
synchrony are compared for two memristive logic implementations (NANDand IMP) on a well-known simulated robotics benchmark
task. It is shown that IMP networks are harder to design than NAND, butare simpler to implement and require fewer processor cycles.
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1. Introduction

The memory-resistor or “memristor”, identified
experimentally by Widrow [19] and then theoretically by
Chua [6] has become the focus of significant attention
after the fabrication of nano-scale devices by Williams et
al. through sandwiching Titanium Dioxide between two
platinum electrodes (e.g., see [20] for details). Two of the
anticipated applications of this fourth fundamental circuit
element are non-volatile memory and neuromorphic
architectures, the latter almost exclusively as synapse
analogues in conjunction with standard Complementary
Metal Oxide Semiconductor (CMOS) neurons. We are
interested in the hardware implementation of artificial
intelligence within predominantly memristive technology,
e.g., as low-energy devices, and this article presents initial
results from that endeavour.

Borghetti et al. [2] have recently described how their
aforementioned memristors can be used for Boolean logic
operations (see also [12][13] for related work). In
particular, they demonstrate how two-input material
implication (IMP) can be implemented using two
memristors and a load resistor, further showing how this
enables the implementation of two-input NAND. In 1948
Alan Turing produced an internal paper in which he
presented a formalism he termed “unorganised machines”
(UM) by which to represent intelligence within
computers (eventually published as [16]). These consisted
of various types, the simplest being “A-type” unorganised

machines (AUM), which were composed of two-input
NAND gates connected into disorganised networks. Here
each NAND gate node updates in parallel on a discrete
time step, with the output from each node arriving at the
input of the node(s) on each connection for the next time
step. The structure of unorganised machines is therefore
very much like a simple artificial neural network with
recurrent connections and this has led to their also being
known as “Turings connectionism” (e.g., [7]). Moreover,
as Teuscher [15] has noted, AUM are (discrete) nonlinear
dynamical systems and therefore have the potential to
exhibit complex behaviour despite their construction from
simple elements. The current work aims to explore the
use of AUM as a general representation scheme for
implementation within memristive hardware. Turing
suggested a number of mechanisms by which to program
UM but a culture-inspired search technique is used here,
presented following the highlighting of the analogy he
makes between culture and intellectual search in the 1948
paper [3].

The main contribution of this paper is the comparison
of memristive IMP-based circuitry to traditional NAND
circuitry, and extensions using single-memristor nodes
and asynchronous updating. IMP and NAND circuits are
tested on a suite of logic problems and two robotics
navigation tasks. Overall, it is shown that IMP circuits are
harder to automatically design, but provide benefits in
that fewer components are required for a given
implementation. Single-memristor elements are shown to
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provide a more complex design challenge, yet require
fewer memristors overall to solve a given problem.
Asynchronous updating is shown to require larger
networks but bring an order-ambivalence which may be
highly beneficial to physical circuit implementations. The
simulated circuits generated herein are intended to serve
as a precursor to deployment of purely hardware circuits,
where the beneficial characteristics of non-volatility and
charge-dependent resistance are implicit in their chemical
makeup.

2. Materials and Methods

2.1. Representation: Unorganised Machines

A-type unorganised machines have a finite number of
possible states and they are deterministic, hence such
networks eventually fall into a basin of attraction. It has
previously been shown that the typical percentage of
nodes/gates which change state per update cycle for
randomly created networks, for various numbers of nodes
N, rises to near 100% after around 15 update cycles,
which is when an attractor is typically reached [3]. As
such, networks are run for 15 update cycles here before
the state of the output node(s) is ascertained. TheI inputs
of a given task are applied as constant signals to the first
connection of the firstI nodes in an AUM. This scheme
follows that indicated by Turing, although others are
possible [3]. Figure1 shows a simple example of an AUM
for a task with one input and one output.

Figure 1: Example A-type unorganised machine
consisting of four two-input NAND gate nodes (N=4),
with one input (node 1) and one output (node 4) as
indicated by the bold arrows.

2.2. Target Hardware: Memristors

A memristor can be formally defined as a passive
two-terminal electronic device that is described by the

non-linear relation between the device terminal voltage,v,
terminal current,i (which is related to the chargeq
transferred onto the device), and magnetic flux,
i = W(ϕ)v. Memristance (M) is a nonlinear function:
M(q) = dϕ(q)/dq.

As noted above, Borghetti et al. [2] have presented a
scheme by which memristors can be used as switches to
implement Boolean logic. They use two memristors to
realise material implication (IMP), a much-forgotten
function originally highlighted by Whitehead and Russel
[18]. The authors then construct two-input NAND, using
two IMP gates in serial from three memristors and a
constant False signal as shown in Figure2. The reader is
referred to their paper for full circuit and voltage details.

Figure 2: Showing how NAND can be created from two
IMP gates.

As NAND is computationally complete, anything
computable can therefore be implemented using
memristors in principle. However, Turings AUM can be
seen as a low-level representation scheme which can be
mapped directly onto memristive hardware due to its use
of two-input NAND gates. As will be shown, AUM are
also amenable to design using automated search
techniques.

2.3. Search: Imitation Programming

Imitation Programming (IP) is a population-based
stochastic search process which has been found to be
competitive with related evolutionary search techniques
for network design [3]. Pseudocode is shown in Figure3.

For AUM design, IP utilizes a variable-length
representation of pairs of integers defining node inputs,
each with an accompanying single bit defining the nodes
start state. There are three imitation operators - copy a
node connection, copy a node start state, and change size
through copying. In this paper, each operator can occur
with or without error, with equal probability, such that an
individual performs one of the six during the imitation
process as follows:
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Figure 3: Showing pseudocode of the Imitation Programming algorithm.

To copy a node connection, a randomly chosen node
has one of its randomly chosen connections set to the
same value as the corresponding node and its same
connection in the individual it is imitating. When an error
occurs, the connection is set to the next or previous node
(equal probability, bounded by solution size). Imitation
can also copy the start state for a randomly chosen node
from the corresponding node, or do it with error (bit flip
here). Size is altered by adding or deleting nodes and
depends upon whether the two individuals are the same
size. If the individual being imitated is larger than the
copier, the connections and node start state of the first
extra node are copied to the imitator, a randomly chosen
node being connected to it. If the individual being
imitated is smaller than the copied, the last added node is
cut from the imitator and all connections to it re-assigned.
If the two individuals are the same size, either event can
occur (with equal probability). Node addition adds a
randomly chosen node from the individual being imitated
onto the end of the copier and it is randomly connected
into the network. The operation can also occur with errors
such that copied connections are either incremented or
decremented. For a problem with a given number of
binary inputsI and a given number of binary outputsO,
the node deletion operator has no effect if the parent
consists of onlyO + I + 2 nodes. The extra two inputs are
constant True and False lines. Similarly, there is a
maximum size (100) defined beyond which the growth
operator has no effect.

In this article, each individual in the populationP
creates one variant of itself and it is adopted if better per
iteration. In the case of ties, the solution with the fewest
number of nodes is kept to reduce size, otherwise the
decision is random. The individual to imitate is chosen
using a roulette-wheel scheme based on proportional
solution utility, i.e., the traditional reproduction selection
scheme used in Genetic Algorithms [10]. Other forms of
updating, imitation processes, and imitation selection are,
of course, possible [3].

3. Results I: Logic

In the following, three well-known logic problems are
used to begin to explore the characteristics and
capabilities of the general approach. The multiplexer task
is used since they can be used to build many other logic
circuits, including larger multiplexers. These Boolean
functions are defined for binary strings of length
l = k+2k under which thek bits index into the remaining
2k bits, returning the value of the indexed bit. Hence the
multiplexer has multiple inputs and a single output. The
demultiplexer and adders have multiple inputs and
multiple outputs. As such, simple examples of each are
also used here. In all cases, the correct response to a given
input results in a quality increment of 1, with all possible
binary inputs being presented per solution evaluation.
Upon each presentation of an input, each node in an AUM
has its state set to its specified start state. The input is
applied to the first connection of each correspondingI
input node. The AUM is then executed for 15 cycles. The
value on the output node(s) is then taken as the response.
All results presented are the average of 20 runs, with
P=20. Experience found giving initial random solutions
N = O + I + 2 + 30 nodes was useful across all the
problems explored here, i.e., with the other
parameter/algorithmic settings described.

Figure4(a), (c), and (e) show the performance of IP to
design NAND AUM onk=2 versions of the three tasks:
the 6-bit multiplexer (opt. 64), 2-bit adder (opt. 16) and
6-bit demultiplexer (opt. 8) respectively. As can be seen,
optimal performance is reached in all cases, well within
the allowed time, and that the AUM solution sizes are
adjusted to the given task. Hence any of the resultant
(dynamical) circuits may be implemented almost directly
into appropriately configured memristive hardware, three
per NAND gate.

As noted above, Borghetti et al.[2] have implemented
material implication as the basic logic function within
memristive hardware, using two per IMP gate. The same
experiments were repeated using IMP at each node, as
opposed to NAND as Turing specified. Figure4(b), (d),
and (f) show the comparative performance. As can be
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(a) (b)

(c) (d)

(e) (f)

Figure 4: Showing the performance of AUM on the three logic tasks, and comparative performance when IMP is used at
each node as opposed to NAND.

seen, use of IMP means it takes longer to discover an
optimal solution in all cases (T-test, p<0.05). Indeed,
optimality for the 2-bit adder is not reached in the allotted
time (longer runs needed, not shown). However, when
optimality is reached, the size of the AUM is smaller for
all tasks in terms of the nodes used with IMP (T-test,
p<0.05). This implies IP does not construct NAND gates
from two IMP gates. Moreover, given only two

memristors are needed per gate, the equivalent circuits are
more efficient when hardware implementation is
considered (T-test, p<0.05). The same has been found for
k=3 versions of the three problems (not shown).
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4. Results II: Asynchronous Logic

As stated above, Turings unorganized machines were
originally defined as updating synchronously in discrete
time steps. However, there is no reason why this should
be the case and it has recently been shown [3] that their
behaviour changes significantly when nodes are updated
asynchronously. That is, in a random order, with
replacement, and N updates allowed per equivalent cycle.
Around 20% of nodes are found to change state per
update cycle, as opposed to around 100% in the
synchronous case. There may be significant benefits from
relaxing the synchrony constraint: asynchronous CMOS
devices are known to have the potential to consume less
power and dissipate less heat (e.g. [17]); they are also
known to have the potential for improved fault tolerance,
particularly through delay insensitive schemes (e.g. [8]);
removing the need for a global clock signal may ease the
use of novel physical memristive devices; and, given the
non-volatile nature of memristors, efficient power
“pulsing” schemes may be envisaged for updating.

Figure5 shows an example of the performance of IP
to design asynchronous AUM using the aforementioned
random order updating, together with those using IMP
gates per node on tasks from above. That is, an
assumption of local synchrony per node in the AUM is
assumed, but not global synchrony. As can be seen, the
same general result as in the synchronous case is again
true IMP solutions are smaller but take longer to find
(T-test, p<0.05). It can also be noted that the use of
asynchronous node updating means the design task is
significantly slower in each case (T-test, p<0.05) and it
has altered the topology of the networks, with more nodes
(T-test, p<0.05) being exploited. This is perhaps to be
expected since redundancy, e.g., through sub-network
duplication, presumably provides robustness to exact
updating order during computation.

5. Results III: Synapse

As noted above, one of the largest areas of current interest
in memristors is their use as hardware implementations of
synapse within neuromorphic hardware (e.g., [1]). The
first known example of such work was undertaken [19]
with a device termed a “memistor” within a hardware
implementation of his seminal Adaline neural network. A
memistor was used to store the current weight setting of
each neuron input and created by the electro-plating of a
pencil lead with copper; the conductance of the memistor
was varied by varying the amount of copper plating on the
lead at any time.

Given their temporally dynamic nature, a very simple
approximation of a single memristive element has been
included within AUM along with the logic gate nodes.
These may be seen as synapse-like but, in keeping with
AUM, less prescriptive in placement. This is done using
the Widrow-Hoff delta rule in the form of single-input

(a)

(b)

Figure 5: (a) shows the performance of asynchronous
AUM on one of the logic tasks. (b) Shows the comparative
performance when IMP is used at each node as opposed to
NAND.

nodes. Of course, the actual non-linear behaviour of a
given memristive device primarily depends upon the
substrate in which it is fabricated (e.g., see[11]). The
resistive state (M) of a node is maintained using the
running average of inputs to the node:
M←M+β (currentinput−M), with learning rateβ=0.2.
If M ≤ 0.5, the state of the node is equal to the current
input and is logical ‘0’ otherwise. Hence the resistive
behaviour of the node varies based upon the temporal
sequence of inputs it receives. The imitation process is
altered to include the potential copying of node type, with
and without error. Nodes have a 50% chance of being
either logic gates or single memristors at initialization.

Figure 6 shows example results on the same logic
tasks as before, using synchronous updating. As can be
seen, compared to the results shown in Figure6, the
additional single memristive nodes appear to make the
design problem harder as it takes longer to find optimality
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(a)

(b)

(c)

(d)

Figure 6: (a) shows the performance of AUM augmented
with single memristor nodes on two of the logic tasks. (b)
shows the comparative performance when IMP is used at
each node as opposed to NAND.

in all cases (T-test, p<0.05). For example, on the 6-bit
multiplexer, the NAND node AUM takes almost 100,000
iterations here whereas it previously took 3000 iterations.
Similarly, the IMP node AUM takes over 200,000
iterations here whereas it previously took around 15,000.
However, the resulting AUM contain fewer nodes at
optimality in all cases (T-test, p<0.05). Again, given only
one memristor is needed in the new type of nodes, the
equivalent circuits are more efficient when hardware
implementation is considered (T-test, p<0.05). Similar
results were found using asynchronous updating (not
shown).

6. Results IV: Robotics

For this initial study, AUM have also been applied to a
simple multi-step control problem in which a robot must
navigate an obstacle to reach a light source. The chosen
robotics simulator was Webots [14].

6.1. The Agent

The agent was a simulated Khepera II robot with eight
light sensors and eight IR distance sensors; three of each
sensor type were used as input (sensors at positions 0, 2
and 5 as shown in Figure7(a)). At each step (64ms in
simulation time), the agent sampled its light and IR
sensors, whose scaled response values ranged from 0 (no
light / no object detected) to 1 (fully illuminated / object
very close). To make this continuous-valued input
amenable to processing by an AUM, each of the 6 sensors
was encoded as two-bit binary (sensor value<0.25 = 00,
between 0.25 and 0.5 = 01, 0.5 to 0.75 = 10 and>0.75 =
11). The input state was then applied as the first
connection of the required 12 input nodes, such that the
first input to the first two nodes encodes the first sensor
reading, etc. Two further input nodes carry constant “1”
and “0” as before. Three actions were possible: forward,
(11 or 00 at the two output nodes) and continuous turns to
both the left (01) and right (10). Additionally, two bump
sensors were added to the front-left and front-right of the
agent to prevent it from becoming stuck against an object.
If either bump sensor was activated, an interrupt was sent
causing the agent to reverse 0.1 units and the agent to be
penalised by 10 steps.

6.2. The Environment

The agent was placed within a walled arena which it
could not leave, with coordinates ranging from [-1,1] in
bothx andy directions. A box was placed centrally in the
arena and a light source was placed atx=1, y=1. The
agent’s random start position was constrained (initial
x + y < -1.5), forcing the agent to learn obstacle

c© 2013 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.7, No. 4, 1275-1283 (2013) /www.naturalspublishing.com/Journals.asp 1281

(a)

(b)

Figure 7: (a) Showing the sensor configuration of the
Khepera II robot; 3 light sensors and 3 IR sensors at
positions 0, 2 and 5 are used to create the environmental
input. Each real-valued sensor response is thresholded into
two-bit binary for network processing. Bumpers B1 and
B2, angled at 45 degrees to the front of the agent, prevent
the agent from becoming stuck in the environment. (b)
Showing the test environment used in the experiment.
The start zone is in the lower left, the goal state is in
the upper right. Checkered boxes indicate obstacles. Paths
indicate the best-evolved behaviour for asynchronous
NAND synapse networks from generation 0 (path 1),
generation 250 (path 2), and the final generation (path 3).

avoidance behaviour. The environment is shown in
Figure 7(b). The fitness functionf ( f > 0) is shown
in (1), the denominator accounts for the position of the
goal state (1.6) and the agent’s position (posx and posy);
ts is the current number of steps.

f = 1/1.6− (|posx− posy|)∗1000− ts. (1)

For this task, reaching the goal state (where
x+ y > 1.6) provided the AUM with constant fitness
bonus of 2500; optimal performance givesf ≈11800, or
≈700 steps.

6.3. Experimental Setup

All experiments had a population size of 20. As this was a
multi-step problem, start states were used only once (at
the start of the trial). An experiment began with the
generation of 20 networks of a given node type (IMP or
NAND). Every network in the population was then
trialled on the test problem, withts= 4000 (long enough to
allow for initial exploration). A trial began with the
placement of the agent in the arena and ended with either
(a) location of the reward or (b) a time out. Each step of
processing consisted of the receipt of the current state at
the input nodes, lasted 15 update cycles, and ended with
determination of an action based upon the states of the
output nodes.

6.4. Results

Figure 8 shows the performance of AUM and the IMP
node AUM on the simple navigation task. As can be seen,
and as predicted by the above results for logic gate
design, the IMP node AUM learns (significantly) more
slowly than the original NAND version, with optimality
not found in the allowed time; the NAND node AUM are
typically optimal around 950 iterations. Figure8 also
shows the performance of the asynchronous AUM with
and without additional single memristive nodes. Again,
relative performance and behaviour matches that seen
above on the logic tasks, as do the IMP node versions (not
shown).

Following [11], to further test the capabilities of the
system a dynamic version of the task was also explored.
Here, once the agent finds the location of the goal state in
the top right corner (Figure8(b)) it is able to increase its
fitness by then moving to the top left corner. It should be
noted that the light source does not move and if the agent
did not locate the goal in the first part, it cannot receive
reward when the goal is moved. The results (not shown)
were again as those above with synchronous NAND node
AUM learning the task optimally more quickly than any
other combination but smaller networks were found with
IMP nodes. A 100% change in network states was still
possible with 15 updates per AUM cycle, however note
that we do not reset start states in these multi-step
scenarios, so the networks in these experiments undergo
many more state changes in their lifetimes when
compared to the logic experiments..

7. Conclusions

We are interested in the hardware implementation of
artificial intelligence within predominantly memristive
technology and this research presents initial results from
that endeavour using versions of Turings unorganised
machine representation.
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(a)

(b)

(c)

(d)

Figure 8: (a) Showing the performance of the NAND
AUM on the robot task. (b) When IMP AUMs are used as
opposed to NAND. The other two figures show the utility
of the asynchronous NAND AUM (c) and synapse NAND
AUM (d).

Results were found to significantly vary based on the
type of logic gate used. Pertinent findings include, on all
tasks, (i) IMP-based solutions being more compact (in
terms the required number of components) than the
equivalent NAND circuitry. (ii) Asynchronous solutions
were highlighted as an attractive implementation
paradigm, as they are required to update less frequently
and therefore consume less power and generate less heat
then synchronous circuits. Inclusion of the
single-memristor synapse (iii) was shown to further
reduce the required number of memristors for a given
circuit whilst more fully embodying the dynamic
nonvolatile state of the device.

We are currently exploring the manufacture of
memristive hardware using sol-gel chemistry and
drop-coating (e.g., see [9]) with the aim of implementing
some of the designs discovered. Not least for this reason,
the subjects of asynchrony and memristor count covered
here are particularly significant. It can also be noted that
the former issue of asynchrony remains an important
topic in neuroscience (e.g.,[4]) and has been explored in
some neural network models (e.g.,[5]). We suggest our
work will highlight this for consideration within
neuromorphic hardware. Future work will consider more
complex applications.
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