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Abstract: Starting from a general sequence of linear and positive operators of summation integral type, we associate itsr-th order
generalization. This construction involves high order derivatives of a signal and it looses the positivity property. Considering that the
initial approximation process is A-statistically pointwise convergent, we prove that the property is inherited by the new sequence. The
study is developed for smooth functions defined both on an unbounded interval and on a compact interval.
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1. Introduction

Following the investigations of P. P. Korovkin [8], it is
known that the positive linear operators (PLOs) have a
low rate of convergence and they failing to respond to the
smoothness of the function that approximates. The disad-
vantage of the positive linear approximating sequences is
definitely determined by the fact that they don’t react to
the improvement of the smoothness of functions they are
generated from. To overcome this fact, Kirov and Popova
[7] proposed a generalization of ther-th order,r ∈ N. For
a given PLO, this generalization is obtained by the action
of the operator not directly on the signalf , but on itsr-
th degree Taylor polynomial. The new operator keeps the
linearity property but loose the positivity.

On the other hand, a current subject in Approximation
Theory is the approximation of continuous functions by
PLOs using the statistical convergence, the first research
on this topic being done by Gadjiev and Orhan [6].

In this note, starting from a general class of summa-
tion integral PLOs, we indicate its r-generalization. Under
the assumption that the initial sequence is A-statistically
pointwise convergent, we study how this property is inher-
ited by the new sequence. Also, some examples are de-
livered. This approach is also interesting from the follow-
ing perspective: the approximation property of the first se-
quence can be proved by using a Bohman-Korovkin type
criterion. Since the new sequence is not longer positive,

this criterion can not be applied to highlight its approxi-
mation property. So, we need to use a different technique.

2. The operatorsLn and Ln,r

Let J be a given interval on the real line. To approximate
continuous functionsf on J , we use a sequence(ln)n≥1

of PLOs defined by

(lnf)(x) =
∑

k∈Jn

λn,k(x)f(xn,k), x ∈ J, (1)

where, for eachn ∈ N, In ⊂ N is a set of indices,λn,k,
k ∈ In, are non-negative functions on the spaceC(J) and
(xn,k)k∈In is a mesh of nodes onJ . We assume thatln
reproduces every constant function, this meaning

∑

k∈In

λn,k(x) = 1, x ∈ J. (2)

In order to generalizeln defined by (1) to a summation-
integral operatorLn, inspired by Durrmeyer technique [4],
we use a non-negative familyωn,k, k ∈ In, of functions
belonging to Lebesgue spaceL1(J) and normalized by

∫

J

ωn,k(t)dt = 1, k ∈ In. (3)
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Further on, we defineLn as

(Lnf)(x) =
∑

k∈In

λn,k(x)
∫

J

ωn,k(t)f(t)dt, (4)

x ∈ J , f ∈ F(J), whereF(J) contains all functions
f ∈ RJ for which the right hand side in (4) is well defined.

As usual, byCr(J), r = 0, 1, 2, . . ., we denote the
space of all real valued functions defined on the interval
J with a continuous derivative of orderr on J . Also, ej

stands for the monomial ofj-th degree. Letf belong to
Cr(J) such thatesf

(s) ∈ F(J) for s = 0, 1, . . . , r, and let
Trf(x; ·) be ther-th degree Taylor polynomial associated
to the functionf at the pointx ∈ J . We define the linear
operators

(Ln,rf)(x) = Ln(Trf ; x)

=
∑

k∈In

λn,k(x)
r∑

s=0

1
s!

∫

J

ωn,k(t)f (s)(t)(x− t)sdt, (5)

x ∈ J . Clearly,Ln,0 = Ln, n ∈ N.
We mention that the general class defined by (4) in-

cludes those considered in the literature under the name
of ”modified operators” being integral analogue in Dur-
rmeyer sense of some classical discrete PLOs.

Examples.1◦ If J = [0, 1], In = {0, 1, . . . , n},

λn,k(x)=
(

n

k

)
xk(1−x)n−k, ωn,k(t) = (n+1)λn,k(t),

thenLn becomes the Bernstein-Durrmeyer operatorMn

studied by Derrienic [2].
2◦ If J = [0, 1], In = N,

λn,k(x) =
(

n + k

k

)
xk(1− x)n+1,

ωn,k(t) =
(n + k + 1)(n + k + 2)

n + 1
λn,k(t),

thenLn becomes the modified operator of Meyer-König
and Zeller studied in [1].

3◦ ChooseJ = [0,∞), I = N and

λn,k(x) = e−nx(nx)k/k!, ωn,k(t) = nλn,k(t).

Ln becomes the Szász-Durrmeyer operatorSn defined
by Mazhar and Totik [9].

4◦ ChooseJ = [0,∞), In = N and

λn,k(x) =
(

n + k − 1
k

)
xk(1 + x)−n−k,

ωn,k(t) = (n− 1)λn,k(t).

This timeLn reduced to the Baskakov-Durrmeyer opera-
tor Vn, see [10].

The generalizations ofr-th order of all four classes of
operators mentioned above are described by (5).

Throughout the paper we need the following test func-
tion namelyϕx. For eachx ∈ J , we defineϕx as follows

ϕx(t) = |x− t|, t ∈ J. (6)

At this point we briefly recall some basic facts with re-
gard to the notion of statistical convergence. This concept,
originally appeared in Steinhaus [11] and Fast [5] papers,
is based on the notion of the density of subsets ofN and
it can be viewed as a regular method of summability of
sequences. The density of a setK ⊂ N is defined by

δ(K) = lim
n→∞

1
n

n∑

k=1

χK(k),

provided the limit exists, whereχK is the characteristic
function of K. Actually, the sum of the right hand side
represents the cardinality of the set{k ≤ n : k ∈ K}. A
sequencex = (xk)k≥1 is statistically convergent to a real
numberL, denotedst− lim

k
xk = L, if, for everyε > 0,

δ({k ∈ N : |xk − L| ≥ ε}) = 0

holds. Closely related to this notion is A-statistical conver-
gence, whereA = (an,k)n,k∈N is an infinite summability
matrix. For the above given sequencex, the A-transform
of x, denoted byAx = ((Ax)n), is defined as follows

(Ax)n =
∞∑

k=1

an,kxk, n ∈ N,

provided the series convergences for eachn. Suppose
that A is non-negative regular summability matrix, regu-
lar meaning that any convergent sequence is A-summable
to its limit. The sequencex is A-statistically convergent to
the real numberL if, for everyε > 0, one has

lim
n→∞

∑

k∈I(ε)

an,k = 0,

whereI(ε) = {k ∈ N : |xk − L| ≥ ε}. This limit is de-
noted bystA− lim

k
xk = L. In the particular caseA = C1,

the Ces̀aro matrix of first order, A-statistical convergence
reduces to statistical convergence, see, e.g., [5]. Also, ifA
is the identity matrix, then A-statistical convergence coin-
cides with the ordinary convergence.

3. Results

GivenM > 0 and0 < α ≤ 1, we shall denote byLipMα
the subset of all Ḧolder continuous functionsf on J with
exponentα and constantM , i.e.

|f(x)− f(y)| ≤ M |x− y|α

for every(x, y) ∈ J × J .
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At first, we focus to the general case when the interval
J is unbounded.

Theorem 1. Let A = (an,k)(n,k)∈N×N be a non-
negative regular summability matrix. Letr ∈ N be fixed,
α ∈ (0, 1] and M > 0. Let the operatorsLn and Ln,r,
n ∈ N, be defined by (4) and (5), respectively, whereJ is
unbounded. Ifx ∈ J andϕr+α

x ∈ F(J) such that

stA − lim
n

(Lnϕr+α
x )(x) = 0, (7)

then
stA − lim

n
|f(x)− (Ln,rf)(x)| = 0 (8)

holds for any functionf ∈ Cr(J) with the properties
esf

(s) ∈ F(J), s = 0, 1, . . . , r andf (r) ∈ LipMα. Here
ϕx is given at (6).

Proof.For an arbitrary fixedx ∈ J and for anyt ∈ J ,
we can write

−|f(x)− (Trf)(t; x)| ≤ f(x)− (Trf)(t; x)
≤ |f(x)− (Trf)(t; x)|.

The operatorLn is linear and positive, consequently it
is monotone. In the above, applyingLn, one gets

−Ln(|f(x)− Trf |; x) ≤ f(x)(Lne0)(x)− Ln(Trf ;x)
≤ Ln(|f(x)− Trf |;x).

In view of (2) and (3) we deduceLne0 = e0 and the
above inequalities imply

|f(x)− (Ln,rf)(x)| ≤ Ln(|f(x)− Trf |; x). (9)

We also call Taylor’s formula with integral form of the
remainder.

Taking into account thatf belongs toCr(J), for all t
andx in J , we have

f(x) = (Tr−1f)(t; x)+
∫ x

t

(x− u)r−1

(r − 1)!
f (r)(u)du. (10)

Since

(Tr−1f)(t; x) = (Trf)(t; x)

− (x− t)r

(r − 1)!
f (r)(t)

∫ 1

0

(1− u)r−1du

and
∫ x

t

(x− u)r−1f (r)(u)du

=
∫ 1

0

(x− t)r(1− u)r−1f (r)(t + u(x− t))du,

the relation (10) can be rewritten as follows

f(x)− (Trf)(t; x)

=
(x− t)r

(r − 1)!

∫ 1

0

(1−u)r−1(f (r)(t+u(x−t))−f (r)(t))du.

Sincef (r) ∈ LipMα, we obtain

|f(x)− (Trf)(t; x)| ≤ M
|x− t|r+α

(r − 1)!
B(r, α + 1)

=
M

(α + 1)(r)
ϕr+α

x (t),

whereB indicates Beta function,ϕx is defined by (6) and
a(h) represents the Pochhammer symbol for rising facto-

rial, a(h) =
h−1∏

j=0

(a + j), h ∈ N.

Returning at (9), we deduce

|f(x)− (Ln,rf)(x)| ≤ M

(α + 1)(r)
(Lnϕr+α

x )(x). (11)

Now, for an arbitrary fixedε > 0, we define the fol-
lowing two sets

S1(x, ε) = {n ∈ N : |f(x)− (Ln,rf)(x)| ≥ ε},

S2(x, ε) =
{

n ∈ N : (Lnϕr+α
x )(x) ≥ ε(α + 1)(r)

M

}
.

On the basis of (11), we haveS1(x, ε) ⊂ S2(x, ε).
Consequently, for anyj ∈ N we can write

∑

n∈S1(x,ε)

aj,n ≤
∑

n∈S2(x,ε)

aj,n.

Becauseε is arbitrary, the relation (7) leads us to the
identity

lim
j→∞

∑

n∈S1(x,ε)

aj,n = 0

which ensures the required relation (8). The proof is com-
pleted. ¤

Remark 2. Even if (8) is achieved when one single
condition is fulfilled, namely (7), in practice it is difficult
to work with fractional powers asr+α ∈ (r, r+1]. There-
fore, we replace (7) with two more friendly conditions in-
volving only natural powers of the test-functionϕx. Let
x ∈ J . For eacht ∈ J with the property|x − t| ≤ 1,
one hasϕr+α

x (t) ≤ ϕr
x(t). For thoset ∈ J satisfying

|x − t| > 1, one hasϕr+α
x (t) ≤ ϕr+1

x (t). Consequently,
ϕr+α

x ≤ ϕr
x + ϕr+1

x on the intervalJ . Knowing thatLn

is monotone and appealing to the properties ofstA − lim
n

,

we deduce the following.
If ϕk

x ∈ F(J) verifies

stA− lim
n

(Lnϕk
x)(x) = 0 for k = r andk = r + 1, (12)

then (7) takes place.
Remark 3. Let K be a compact interval,K ⊂ J . We

consider the spaceC(K) endowed with usual sup-norm
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‖ ·‖C(K), ‖h‖C(K) = sup
x∈K

|h(x)|. If Ln(C(K)) ⊂ C(K),

n ∈ N, relation (11) implies

‖Ln,rf − f‖C(K) ≤
M

(α + 1)(r)
‖Lnϕr+α

x ‖C(K).

Consequently, the A-statistical pointwise convergence
in (7) and (8) can be replaced by A-statistical uniform con-
vergence, whereA is a non-negative regular summability
matrix. In short, we state: if

stA − lim
n
‖Lnϕr+α

x ‖C(K) = 0, (13)

then
stA − lim ‖f − Ln,rf‖C(K) = 0. (14)

Finally, we analyze the particular caseJ = [a, b] and
Ln : C([a, b]) → B([a, b]). HereB([a, b]) stands for the
space of all real valued bounded functions defined on[a, b],
endowed with the uniform norm.

At this point we recall the result established in [6;
Theorem 1].

Theorem 4. If the sequence of positive linear opera-
torsΛn : C([a, b]) → B([a, b]) satisfies the conditions

st− lim
n
‖Λnej − ej‖C([a,b]) = 0, (15)

wherej ∈ {0, 1, 2}, then, for any functionf ∈ C([a, b]),
we have

st− lim
n
‖Λnf − f‖C([a,b]) = 0. (16)

Examining the proof of the above theorem given by
the authors, we notice that the statement is also true for A-
statistical convergence, whereA is a non-negative regular
summability matrix.

Due to (2) and (3), for our operatorsLn the first re-
quirement in (15) is obviously satisfied. Thus, the condi-
tions imposed in (15) are reduced to two, forj = 1 and
j = 2. If for our operatorsLn, n ∈ N, we require to take
place these two conditions, then, on the basis of (16), we
deducestA− lim

n
‖Lϕr+α

x ‖C([a,b]) = 0, this being exactly

the hypothesis formulated in (13). We underline, in a more
general framework, the proof of this relation was given by
O. Duman and C. Orhan [3; Lemma 3.4]. Since (13) holds,
will result that (15) is true. This way, we have proved the
following result.

Theorem 5. Let A = (an,k)(n,k)∈N×N be a non-
negative regular summability matrix. Letr ∈ N be fixed,
α ∈ (0, 1], M > 0. We consider the operatorsLn :
C([a, b]) → B([a, b]) defined by (4) and their general-
izationsLn,r of r-th order defined by (5). If

stA − lim
n
‖Lnej − ej‖C([a,b]) = 0 for j = 1 andj = 2,

then
stA − lim

n
‖Ln,rf − f‖C([a,b]) = 0

holds for any functionf ∈ Cr([a, b]) with the property
f (r) ∈ LipMα.
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