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Abstract: The present paper is aimed at studying the effect of gravity on the general model of the equations of the generalized thermo-
microstretch for a homogeneous isotropic elastic half-space solid whose surface is subjected to a Mode-I crack problem. The problem
is in the context of the Green and Naghdi theory (GN). The normal mode analysis is used to obtain the exact expressions for the
displacement components, the force stresses, the temperature, the couple stresses and the microstress distribution.The variations of the
considered variables through the horizontal distance are illustrated graphically. Comparisons are made with the results in the presence
and absence of gravity with two cases: Case (1) for the generalized micropolar thermoelasticity elastic medium (without microstretch
constants) between the both types (II, III). Case (2) for thegeneralized micropolar thermoelasticity elastic medium (without micropolar
constants) between the both types II and III.
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1 Introduction

The linear theory of elasticity is of paramount importance
in the stress analysis of steel, which is the commonest
engineering structural material. To a lesser extent, the
linear elasticity describes the mechanical behavior of the
other common solid materials, e.g. concrete, wood and
coal. However, the theory does not apply to study the
behavior of many of the newly synthetic materials of the
elastomer and polymer type, e.g. polymethyl-
methacrylate (Perspex), polyethylene and polyvinyl
chloride. The linear theory of micropolar elasticity is
adequate to represent the behavior of such materials. For
ultrasonic waves i.e. in the case of elastic vibrations
characterized by high frequencies and small wavelengths,
the influence of the body microstructure becomes
significant. This influence of microstructure results in the
development of new type of waves, which are not in the
classical theory of elasticity. Metals, polymers,
composites, solids, rocks, concrete is typical media with
microstructures. More generally, most of the natural and

man-made materials including engineering, geological
and biological media possess a microstructure.
Bhattacharyya and De [1], De and Sengupta [2] observed
the effect of gravity in elastic media. Agarwal [3,4]
studied respectively thermoelastic and
magneto-thermoelastic plane wave propagation in an
infinite non-rotating medium. Ailawalia [5,6] studied the
gravitational effect along with the rotational effect on
generalized thermo-elastic and generalized thermoplastic
medium with two temperatures respectively. Mahmoud
[7] discussed the effect of gravity on granular medium.
Abed-Alla and Mahmoud [8] investigated the effect of
gravity in magneto-thermo-viscoelastic media, and Sethi
and Gupta [9] discussed the gravity effect in a
thermo-viscoelastic media of higher order. These
problems are based on the more realistic elastic model
since earth; moon and all other planets have the strong
gravitational effect.

Eringen and ?uhubi [10] and Eringen [11] developed
the linear theory of micropolar elasticity. Eringen [12]
introduced the theory of microstretch elastic solids. That
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theory is a generalization of the theory of micropolar
elasticity [11,12,13,14] and a special case of the
micromorphic theory. The material points of microstretch
elastic solids can stretch and contract independent of their
transformations and gravities. The microstretch is used to
characterize composite materials and various porous
media [15]. The theory of thermo-microstretch elastic
solids was introduced by Eringen [15]. The basic results
in the theory of microstretch elastic solids were obtained
in the literature [15,16,17,18]. An extensive review of the
theory of thermo-microstretch elastic solids can be found
in the book of Eringen’s book [15]. In the framework of
the theory of thermo-microstretch solids Eringen
established a uniqueness theorem for the mixed
initial-boundary value problem. This investigation was
illustrated through the solution of one dimensional waves
and comparing with lattice dynamical results. The
asymptotic behavior of the solutions and an existence
result were presented by Bofill and Quintanilla [19]. A
reciprocal theorem and a representation of Galerkin type
were presented by De Cicco and Nappa [20]. De Cicco
and Nappa [21] extended the linear theory of
thermo-microstretch elastic solids to permit the
transmission of heat as thermal waves at finite speed. In
Ref. [21], the uniqueness of the solution of the mixed
initial-boundary-value problem is also investigated. The
study is based on the entropy production inequality
proposed by Green and Laws [22]. The coupled theory of
thermoelasticity has been extended by including the
thermal relaxation time in the constitutive equations by
Lord and Shulman [23] and Green and Lindsay [24].
These theories eliminate the paradox of infinite velocity
of heat propagation and are termed generalized theories
of thermo-elasticity. Green and Naghdi [25,26] proposed
another three models, which are subsequently referred to
as GN-I, II and III models. The linearized version of
model-I corresponds to the classical thermoelastic
model-II the internal rate of production of entropy is
taken to be identically zero implying no dissipation of
thermal energy. This model admits un-damped
thermoelastic waves in a thermoelastic material and is
best known as the theory of thermo-elasticity without
energy dissipation. Model-III includes the previous two
models as special cases, and admits dissipation of energy
in general. Othman and Song [27] studied the effect of
rotation on the reflection of magneto-thermoelastic waves
under thermoelasticity II. Othman and Song [28]
investigated the reflection of plane waves from an elastic
solid half-space under hydrostatic initial stress without
energy dissipation. The normal mode analysis was used to
obtain the exact expression for the temperature
distribution, the thermal stresses and the displacement
components. In the recent years, considerable efforts have
been devoted to the study of failure and cracks in solids.
This is due to the application of the latter generally in the
industry and particularly in the fabrication of electronic
components. Most of the studies of dynamical crack
problem are done using the equations from coupled or

even uncoupled theories of thermoelasticity [29,30]. This
is suitable for most situations, in which longtime effects
are sought. However, when short time behavior is
important, as in many practical situations, the full system
of generalized thermoelastic equations must be used [15].
The purpose of the present paper is to obtain the normal
displacement, the temperature, the normal force stress and
the tangential couple stress in a microstretch elastic solid
under the effect of gravity. The problem of generalized
thermo-microstretch in an infinite space weakened by a
finite linear opening Mode-my crack is solved for the
above variables. The distributions of the considered
variables are represented graphically. A comparison of the
temperature, the stresses and the displacements are
carried out between the two types II, III for the
propagation of waves in a semi-infinite microstretch
elastic solid in the presence and absence of gravity.

2 Formulation of the Problem

We obtain the constitutive and the field equations for a
linear isotropic generalized thermo-micro-stretch elastic
solid in the absence of body forces. We use a rectangular
coordinate system(x,y,z)having originated on the surface
y = 0 andz− axis pointing vertically into the medium.
The basic governing equations of linear generalized
thermo-elasticity with gravity in the absence of body
forces and heat sources are

(λ + µ)(
∂ 2u
∂ x2 +

∂ 2w
∂ x∂ z

)+ (µ + k) (
∂ 2u
∂ x2 +

∂ 2u
∂ z2 )− k

∂ φ2

∂ z

λ0
∂ φ∗

∂ x
− γ̂

∂ T
∂ x

+ρg
∂w
∂x

= ρ
∂ 2u
∂ t2 (1)

(λ + µ)(
∂ 2u

∂ x∂ z
+

∂ 2w
∂ z2 )+ (µ + k)(

∂ 2w
∂x2 +

∂ 2w
∂ z2 )+ k

∂ φ2

∂ x

+λ0
∂ φ∗

∂ z
− γ̂

∂ T
∂ z

−ρg
∂u
∂x

= ρ
∂ 2w
∂ t2 , (2)

(α +β + γ )∇(∇.φ )− γ ∇× (∇×φ)+ k (∇× u)−2k φ

= j ρ
∂ 2φ
∂ t2 , (3)

α0∇2φ∗−
1
3

λ1φ∗−
1
3

λ0(∇.u )+
1
3

γ̂1T =
3
2

ρ j
∂ 2φ∗

∂ t2 , (4)

K∇2T +K∗∇2Ṫ = ρ CE T̈ + γ̂ T0 üi,i + γ̂1T0
∂ φ∗

∂ t
, (5)

σil = (λ0φ∗+λ ur,r)δil +(µ + k )ul,i+ µ ui,l − k εilrφr

−γ̂ T δil , (6)

mil = α φr,rδil + β φi,l + γ φl,i, (7)
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λi = α0 φ∗
,i (8)

ei j =
1
2
(ui, j + u j,i) (9)

whereT is the temperature above the reference
temperatureT0such that

∣

∣(T −T0)
/

T0
∣

∣ < 1,λ , µare the
counterparts of Lame parameters, the components of
displacement vectoru are ui, t is the time,σi j are the
components of stress tensor,e,is the dilatation,ei j are the
components of strain tensor,j the micro inertia moment,
k,α,β ,γ are the micropolar constants,α0,λ0, λ1are the
microstretch elastic constants,φ∗ is the scalar
microstretch,φ is the rotation vector,mi j is the couple
stress tensor,δi jis the Kronecker delta,εi jris the alternate
tensor, the mass density isρ , the specific heat at constant
strain isCE , the thermal conductivity isK (≥ 0) andK∗

material characteristic of the theory. The state of plane
strain parallel to thexz-plane is defined by

u1 = u (x,z, t),u2 = 0,u3 = w(x,z, t),φ1 = φ3 = 0,

φ2 = φ2(x,z, t),φ∗ = φ∗(x,z, t),and Ω = (0,Ω ,0),(10)

where,

γ̂ = (3λ + 2µ + k)αt1 , γ̂1 = (3λ + 2µ + k )αt2

and ∇2 =
∂ 2

∂ x2 +
∂ 2

∂ z2 (11)

The constantŝγ andγ̂1 depend on the mechanical as well
as the thermal properties of the body and the dot denote
the partial derivative with respect to time,αt1, αt2are the
coefficients of linear thermal expansions. The constitutive
relation can be written as

σxx = λ0φ∗+(λ +2µ + k)
∂ u
∂ x

+λ
∂ w
∂ z

− γ̂ T, (12)

σzz = λ0φ∗+(λ +2µ + k)
∂ w
∂ z

+λ
∂ u
∂ x

− γ̂ T, (13)

σxz = µ
∂ u
∂ z

+(µ + k)
∂ w
∂ x

+ k φ2, (14)

σzx = µ
∂ w
∂ x

+(µ + k)
∂ u
∂ z

+ k φ2, (15)

mxy = γ
∂ φ2

∂x
, (16)

mzy = γ
∂φ2

∂ z
, (17)

For convenience, the following non-dimensional variables
are used:

x̄i =
ω∗

c2
xi , ūi =

ρc2ω∗

γ̂T0
ui, t̄ = ω∗t, T̄ =

T
T0

,

σ̄i j =
σi j

γ̂T0
, m̄i j =

ω∗

c2γ̂T0
mi j, φ̄2 =

ρc2
2

γ̂T0
φ2,

λ̄3 =
ω∗

c2γ̂ T0
λ3, φ̄∗ =

ρ c2
2

γ̂ T0
φ∗,ω∗ =

ρ CEc2
2

K∗
,

ḡ =
g

c2ω∗
,c2

2 =
µ
ρ
. (18)

Using equation (18) then, equations (1)-(5) become
(dropping the dashed for convenience)

∂ 2u
∂ t2 =

(µ + k)

ρ c2
2

∇2u+
(µ +λ)

ρ c2
2

∂e
∂x

−
k

ρ c2
2

∂ φ2

∂ z

+
λ0

ρ c2
2

∂φ∗

∂x
−

∂T
∂x

+ g
∂w
∂x

(19)

∂ 2w
∂ t2 =

(µ + k)

ρ c2
2

∇2w+
(µ +λ)

ρ c2
2

∂ e
∂ z

+
k

ρ c2
2

∂ φ2

∂x

+
λ0

ρ c2
2

∂ φ∗

∂ z
−

∂T
∂ z

− g
∂u
∂x

(20)

jρ c2
2

γ
∂ 2φ2

∂ t2 =∇2φ2−
2k c2

2

γ ω∗
φ2+

kc2
2

γ ω∗2 (
∂ u
∂ z

−
∂ w
∂ x

), (21)

(
c2

3

c2
2

∇2−
c2

4

ω∗2 −
∂ 2

∂ t2 )φ∗−
c2

5

ω∗2 e+ a9T = 0, (22)

ε2 (
∂ 2T
∂x2 +

∂ 2T
∂ z2 )+ε3(

∂ 2Ṫ
∂x2 +

∂ 2Ṫ
∂ z2 ) = T̈ +ε1 ë+ε4

∂ φ∗

∂ t
(23)

where

c2
3 =

2α0

3ρ j
,c2

4 =
2λ1

9ρ j
,c2

5 =
2λ0

9ρ j
, ε1 =

γ̂2 T0

ρ2CEC2
2

,

ε2 =
K

ρCEC2
2

,ε3 =
K∗ω∗

ρCEC2
2

,ε4 =
γ̂ γ̂1T0

ρ2CEω∗C2
2

. (24)

Assuming the scalar potential functions and defined by the
relations in the non-dimensional form:

u =
∂ R
∂ x

+
∂ ψ
∂ z

,w =
∂ R
∂ z

−
∂ ψ
∂ x

(25)

,
e = ∇2R. (26)

Using equation (25) in equations (19-23), we obtain.

[∇2− a0
∂ 2

∂ t2 ]R− a0T + a1φ∗− ga0
∂ ψ
∂ x

= 0, (27)

[∇2− a2
∂ 2

∂ t2 ]ψ − a3φ2+ ga2
∂ R
∂x

= 0, (28)
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[∇2− 2a4− a5
∂ 2

∂ t2 ]φ2+ a4∇2 ψ = 0, (29)

[a6∇2 − a7−
∂ 2

∂ t2 ]φ
∗− a8∇2R+ a9T = 0, (30)

ε2 ∇2T + ε3∇2Ṫ = T̈ + ε1∇2R̈+ ε4
∂ φ∗

∂ t
, (31)

where

c2
1 =

λ +2µ + k
ρ

,a0 =
c2

2

c2
1

,a1 =
λ0

λ +2µ + k
,a2 =

ρ c2
2

µ + k
,

a3 =
k

µ + k
,a4 =

k c2
2

γ ω∗2 ,a5 =
ρ jc2

2

γ
,a6 =

c2
3

c2
2

,a7 =
c2

4

ω∗2 ,

a8 =
c2

5

ω∗2 and a9 =
2γ̂1c2

2

9γ̂ jω∗2 (32)

3 The solution of the problem

The solution of the considering physical variables can be
decomposed in terms of normal modes and are given in the
following form:

[R, ψ , φ∗,φ2 ,σil ,mil ,T,λz](x, z, t) =

[ R̄, ψ̄ , φ̄∗, φ̄2 , σ̄il , m̄il , T̄ , λ̄z] (x)exp(ω t + i bz). (33)

where[R̄, ψ̄ , φ̄∗, φ̄2 , σ̄il , m̄il , T̄ , λ̄z](x) are the amplitudes
of the functions,ω is a complex constant andb is the wave
number in thez direction. Using equation (33), then
equations (27-31) become

(D2−A1)R̄− a0 T̄ + a1 φ̄∗−A2Dψ̄ = 0, (34)

(D2−A3)ψ̄ − a3 φ̄2+A4DR̄ = 0, (35)

(D2−A5) φ̄2+ a4(D
2− b2)ψ̄ = 0, (36)

(a6D2−A6)φ̄∗− a8(D
2− b2)R̄+ a9T̄ = 0, (37)

[ε(D2− b2)−ω2] T̄ − ε1ω2(D2− b2)R̄− ε4ω φ̄∗ = 0.
(38)

Where

D =
d

d x
, A1 = b2+ a0ω2 , A2 = ga0, A3 = b2+ a2ω2,

A4 = ga2,A5 = b2+2a4+ a5ω2,A6 = b2a6+ a7+ω2

Eliminating,φ̄2, ψ̄ , R̄, T̄andφ̄∗ in equations (34-38), we get
the following tenth order ordinary differential equation for
variables

[D10−AD8+BD6−CD4+ED2 −F]
{

φ̄2(x), ψ̄(x), R̄(x), T̄ (x), φ̄∗(x)
}

= 0. (39)

Equation (39) can be factored as

( D2− k2
1)(D2− k2

2)( D2− k2
3)( D2− k2

4)( D2− k2
5)

{

φ̄2(x), ψ̄(x), R̄(x), T̄ (x), φ̄∗(x)
}

= 0, (40)

where

A = g18/εg17,B = g19/εg17,C = g20/εg17,

E = g21/ε g17,F = g22/εg17,g1 = ε4ω − a1ε1ω2,

g2 =− ε4ωA1+ a1ε1ω2b2,g3 = a1εb2+ a1ω2+ a0ε4ω ,

g4 = A2ε4ω ,g5 = A3+A5− a3a4,g6 = A3A5− a3a4b2,

g7 = g2− g1g5+A4g4,g8 =−g2g5+ g1g6−A4g4A5,

g9 = g2g6,g10 =−g3− a1εg5,g11 = g3g5+ a1εg6,

g12= g3g6,g13 = a6(εb2+ω2)

+A6ε,g14 = ε4a9ω
+A6(εb2+ω2),g15 = ε1a6ω2b2+A6ε1ω2− a8ε4ω ,

g16= ε4a8ωb2− ε1ω2A6b2,g17= (a6g1+ a1ε1ω2a6),

g18=−a6(εg7+ ε1ω2g10)+ g13g1+ a1εg15,

g19= a6(εg8+ ε1ω2g11)− g13g7+ g14g1

−a1εg16− g10g15, g20 =−a6εg9+ g13g8− g14g7

+g10g16+ g11g15+ g12a6ε1ω2,g21 =−g13g9+ g14g8

−g11g16+ g12g15,g22 =−g14g9− g12g16.

The solution of equation (39) has the form

R̄ =
5

∑
n=1

Mne− knx (41)

T̄ =
5

∑
n=1

M′
ne− knx (42)

ψ̄ =
5

∑
n=1

M′′
n e− knx (43)

φ̄2 =
5

∑
n=1

M′′′
n e−knx (44)

φ̄∗ =
5

∑
n=1

M′′′′
n e− knx (45)

whereMn,M′
n,M

′′
n ,M

′′′
n andM′′′′

n ,are some parameters,
k2

n, (n = 1,2,3,4,5) are the roots of the characteristic
equation of equation (39). Using equations (41-45) in
equations (34-38), we get the following relations

T̄ =
5

∑
n=1

H1nMne− knx (46)

ψ̄ =
5

∑
n=1

H2nMne− knx (47)

φ̄2 =
5

∑
n=1

H3nMne− knx (48)
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φ̄∗ =
5

∑
n=1

H4nMne− knx (49)

Where

H1n = [k4
n a6ε1ω2− k2

n g15− g16]
/

[k4
n a6ε − k2

n g13+ g14],
(50)

H2n = [A4kn(k
2
n −A5)]

/

[k4
n − k2

n g5+ g6], (51)

H3n =−[a4A4kn(k
2
n − b2)]

/

[k4
n − k2

n g5+ g6], (52)

H4n = [a8(k
2
n − b2)− a9H1n]

/

[a6k2
n −A6] (53)

4 Boundary conditions

The plane boundary subjects to an instantaneous normal
point force and the boundary surface is isothermal. The
boundary conditions on the vertical planey = 0and in the
beginning of the crack, atx = 0 are shown in Fig. 1:

Fig. 1: Displacement of an external Mode-I crack.

(1) The mechanical boundary condition is that the
surface of the half-space obeys

σzz =− p(z, t) , |x| < a (54)

σxz = 0, −∞ < x < ∞ (55)

σxx = 0, −∞ < x < ∞ (56)

λz = 0 −∞ < x < ∞ (57)

(2) The thermal boundary condition is that the surface of
the half-space is subjected to a thermal shock,

T = f (z, t), |x| < a (58)

Using equations (25), (12-17) with the non-dimensional
boundary conditions and using equations (46-49), we
obtain the expressions for the displacement components,
the force stress, the coupled stress and the temperature
distribution of the microstretch generalized thermoelastic
medium as follows:

ū =
5

∑
n=1

(−kn + ibH2n)Mne− knx (59)

w̄ =
5

∑
n=1

(ib+ knH2n)Mne− knx (60)

σ̄xx =
5

∑
n=1

H5nMne− knx (61)

σ̄zz =
5

∑
n=1

H6nMne− knx (62)

σ̄xz =
5

∑
n=1

H7nMne− knx (63)

σ̄zx =
5

∑
n=1

H8nMne− knx (64)

m̄xy =
5

∑
n=1

−a15knH3nMne− knx (65)

λ̄z =
5

∑
n=1

a16H4nMne− knx, (66)

here,

a10=
λ0

ρ C2
2

, a11 =
C2

1

C2
2

, a12 =
λ

ρ C2
2

, a13=
µ + k

ρ C2
2

,

a14=
k

ρ C2
2

,a15=
γω∗2

ρ C4
2

, a16=
α0ω∗

ρ C3
2

.

H5n = a10H4n − kna11(−kn + ibH2n)+ iba12(ib+ knH2n)−H1n

(67)

H6n = a10H4n + iba11(ib+ knH2n)− kna12(−kn + ibH2n)−H1n

(68)

H7n = ib(ibH2n−kn)−a13kn (ib+ knH2n)+a14H3n (69)

H8n =− kn(ib+ knH2n)+ iba13(ibH2n − kn)+ a14H3n
(70)

Applying the boundary conditions (54-58) at the surface
of the plate, we obtain a system of five equations. After
applying the inverse of matrix method,










M1
M2
M3
M4
M5











=











H61 H62 H63 H64 H65
H71 H72 H73 H74 H75
H51 H52 H53 H54 H55
k1H41 k1H42 k1H43 k1H44 k1H45
H11 H12 H13 H14 H15











−1









− p̄
0
0
0
f̄











(71)
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we obtain the values of the five constants
Mn,n = 1,2,3,4,5 Hence, we obtain the expressions for
the displacements, the force stress, the coupled stress and
the temperature distribution of the microstretch
generalized thermoelastic medium.

5 Particular Cases

Case 1: The corresponding equations for the generalized
micropolar thermoelasticity elastic medium (without
microstretch constants) can be obtained from the above
mentioned cases by taking:

α0 = λ0 = λ1 = φ∗ = 0 (72)

After substituting equation (72) in the equations (1-7) and
use equations (18-25) and (33) we get

(D2−A1)R−A2Dψ − a0T = 0, (73)

(D2−A3)ψ̄ +A4DR̄− a3φ̄2 = 0, (74)

[D2−A5]φ2+ a4(D
2− b2)ψ = 0, (75)

[ε (D2− b2)− ω2]T = ε1ω2(D2− b2)R. (76)

Eliminatingφ̄2, ψ̄ in equations (73-76), we get the
following eighth order ordinary differential equation for
φ̄2, ψ̄ , R̄andT̄

[

D8−AD6+BD4−CD2+E
]

{

φ̄2, ψ̄ , R̄, T̄
}

(x) = 0

(77)
Equation (77) can be factorized as

( D2−k2
1)(D2−k2

2)( D2−k2
3)( D2−k2

4)
{

φ̄2, ψ̄ , R̄, T̄
}

(x)= 0.
(78)

Here,
A = g′9/ε ,B = g′10/ε ,C = g′11/ε ,E = g′12/ε ,

g′1 = a0ε1ω2+ εb2+ω2+ εA1,
g′2 = a0ε1ω2b2+ εb2A1+ω2A1,
g′3 = εb2+ω2,
g′4 = A3+A5− a3a4,
g′5 = A3A5− a3a4b2,
g′6 = g′2+A3g′1−A2A4g′3,
g′7 = A3g′2,
g′8 = g′1+A3ε −A2A4ε
g′9 = εg′4+ g′1−A2A4ε,
g′10 = εg′55+ g′1g′4+ g′2−A2A4(εA5+ g′3),
g′11 = g′1g′55+ g′2g′4−A2A4A5g′3,

The solution of equation (77), has the form

R̄ =
4

∑
n=1

Zne− knx, (79)

T̄ =
4

∑
n=1

H ′
1nZne− knx, (80)

ψ̄ =
4

∑
n=1

H ′
2nZne− knx, (81)

φ̄2 =
4

∑
n=1

H ′
3nZne− knx, (82)

whereZnare some parameters,k2
n, (n = 1,2,3,4)are the

roots of the characteristic equation of equation (77).
Using equations (79-82) in equations (73-76), we get the
following relations

H ′
1n = [ε1ω2(k2

n − b2)]
/

[ε (k2
n − b2)−ω2], (83)

H ′
2n = [−k4

nε + k2
ng′1− g′2]

/

[A2kn(ε k2
n − g′3)], (84)

H ′
3n = [−k6

nε + k4
ng′8− k2

ng′6+ g′7]
/

[a3A2kn(ε k2
n − g′3)]. (85)

Using equations (72), (12-17), (18) with the
non-dimensional boundary conditions and using
equations (46-49), we obtain the expressions of the
displacement components, the force stress and the
coupled stress distribution for generalized micropolar
thermoelastic medium (without microstretch) as follows:

ū =
4

∑
n=1

(− kn + ibH ′
2n) Zn e−knx, (86)

w̄ =
4

∑
n=1

(ib+ knH ′
2n) Zn e−knx, (87)

σ̄xx =
4

∑
n=1

H ′
4nZne−knx, (88)

σ̄zz =
4

∑
n=1

H ′
5nZne−knx (89)

σ̄xz =
4

∑
n=1

H ′
6nZn e−knx, (90)

σ̄zx =
4

∑
n=1

H ′
7nZn e−knx, (91)

m̄xy =
4

∑
n=1

− a15knH ′
3nZne−knx, (92)

where

H ′
4n = − kna11(− kn + ibH ′

2n)+ iba12(ib+ knH ′
2n)

−H ′
1n, (93)

H ′
5n = iba11(ib+ knH ′

2n)− kna12(− kn + ibH ′
2n)−H ′

1n,
(94)
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H ′
6n = ib(ibH ′

2n − kn)− a13kn(ib+ knH ′
2n)+ a14H

′
3n, (95)

H ′
7n =− kn(ib+ knH ′

2n)+ iba13(ibH ′
2n − kn)+ a14H

′
3n.
(96)

Applying the boundary conditions (54) -(56) and (58) at
the surfacex = 0 of the plate, we obtain a system of four
equations.







Z1
Z2
Z3
Z4






=







H ′
51 H ′

52 H ′
53 H ′

54
H ′

61 H ′
62 H ′

63 H ′
64

H ′
41 H ′

42 H ′
43 H ′

44
H11 H12 H13 H14







−1





− p̄
0
0
f̄






(97)

After applying the inverse of matrix method, we obtain the
values of the four constantsZn ;n = 1,2,3,4

Case 2: The corresponding equations for the
generalized micropolar thermoelasticity elastic medium
(without micropolar constants) can be obtained from the
above mentioned cases by taking:

k = α = β = γ = 0 (98)

Substituting equations (98) in equations (1-7) and use
equations (18), (25) and (33) we get

(D2−A1)R̄− a0 T̄ + a1 φ̄∗−A2Dψ̄ = 0, (99)

(D2−A3)ψ̄ +A4DR̄ = 0, (100)

(a6D2−A6)φ̄∗− a8(D
2− b2)R̄+ a9T̄ = 0 (101)

[ε (D2− b2)−ω2] T̄ − ε1ω2(D2− b2)R̄− ε4ω φ̄∗ = 0.
(102)

Eliminatingψ̄, R̄, , T̄ and φ̄∗in equations (99-102), we get
the following eight order ordinary differential equations

[D8−AD6+BD4−ED2 +F]
{

ψ̄ , R̄, T̄ , φ̄∗
}

(x) = 0.
(103)

Equation (103) can be factored as

( D2− k2
1)(D2− k2

2)( D2− k2
3)( D2− k2

4)
{

ψ̄(x), R̄(x), T̄ (x), φ̄∗(x)
}

= 0, (104)

where

A = g′′18/g′′17,B = g′′19/g′′17,E = g′′20/g′′17,

F = g′′21/g′′17,g
′′
1 = ε4ω − a1ε1ω2,g′′2 =− ε4ωA1

+a1ε1ω2b2,g′′3 = a1ε b2+ a1ω2+ a0ε4ω ,g′′4 = A2ε4ω ,

g′′5 = A3− a3a4,g
′′
6 =−a3a4b2,g′′7 = g2− g1g5+ g4A4,

g′′8 =−g2g5,g
′′
9 = g′′2g′′6,g

′′
10=−g′′3 − a1ε g′′5,g

′′
11 = g′′3g′′5

+a1ε g′′6,g
′′
12= g′′3g′′6,g

′′
13 = a6(ε b2+ω2)+A6ε,

g′′14= ε4a9ω +A6(ε b2+ω2),

g′′15= ε1a6ω2b2+A6ε1ω2− a8ε4ω ,

g′′16= ε4a8ωb2− ε1ω2A6b2,g′′17= ε(a6g1+ a1ε1ω2a6),

g′′18=− a6(ε g7+ ε1ω2g′′10)+ g′′13g
′′
1 + a1ε g′′15,

g′′19= a6(ε g′′8 + ε1ω2g′′11)− g′′13g
′′
7 + g′′14g

′′
1 − a1εg′′16

−g′′10g
′′
15,g

′′
20 = g′′13g′′8 − g′′14g

′′
7 + g′′10g

′′
16+ g′′11g

′′
15,

g′′21= g′′14g′′8 − g′′11g
′′
16.

The solution of equation (103), has the form

R̄ =
4

∑
n=1

Gn e− knx, (105)

T̄ =
4

∑
n=1

H ′′
1nGne− knx, (106)

ψ̄ =
4

∑
n=1

H ′′
2nGne− knx, (107)

φ̄∗ =
4

∑
n=1

H ′′
3nGn e− knx, (108)

whereGn are some parameters,k2
n, (n = 1,2,3,4)are the

roots of the characteristic equation of equation (103).
Where

H ′′
1n = [k4

n a6ε1ω2− k2
n g′′15− g′′16]

/

[k4
n a6ε − k2

n g′′13+ g′′14]
(109)

H ′′
2n = A4kn

/

[k2
n −A3], (110)

H ′′
3n = [a8(k

2
n − b2)− a9H ′′

1n]
/

[a6k2
n −A5] (111)

Using equations (98), (12-17) , (18) with the
non-dimensional boundary conditions and using
equations (46-49), we obtain the expressions of the
displacement components, the force stress and the micro-
stress distribution for generalized thermoelastic medium
(without micropolar) as follows:

ū =
4

∑
n=1

(−kn + ibH ′′
2n)Gn e− knx, (112)

w̄ =
4

∑
n=1

(ib+ knH ′′
2n)Gne− knx, (113)
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σ̄xx =
4

∑
n=1

H ′′
5nGne− knx, (114)

σ̄zz =
4

∑
n=1

H ′′
6nGne− knx, (115)

σ̄xz =
4

∑
n=1

H ′′
7nGn e− knx, (116)

σ̄zx =
4

∑
n=1

H ′′
8nGn e− knx, (117)

λ̄z =−
4

∑
n=1

kna16H ′′
3nGn e− knx. (118)

Here

a10=
λ0

ρ C2
2

,a11 =
C2

1

C2
2

,a12 =
λ

ρ C2
2

,a13=
µ

ρ C2
2

= 1,

a16=
α0ω∗

ρ C3
2

,

H ′′
5n = a10H ′′

3n − kna11
(

−kn + ibH ′′
2n

)

+

iba12
(

ib+ knH ′′
2n

)

−H ′′
1n (119)

H ′′
6n = a10H ′′

3n + iba11
(

ib+ knH ′′
2n

)

−

kna12
(

−kn + ibH ′′
2n

)

−H ′′
1n (120)

H ′′
7n = ib(ibH ′′

2n − kn)− a13kn
(

ib+ knH ′′
2n

)

(121)

H ′′
8n =−kn(ib+ knH ′′

2n)+ iba13
(

ibH ′′
2n − kn

)

(122)

Applying the boundary conditions (54-56) and (58) at the
surfacex = 0 of the plate, we obtain a system of four
equations. After applying the inverse of matrix method,







G1
G2
G3
G4






=







H ′′
61 H ′′

62 H ′′
63 H ′′

64
H ′′

71 H ′′
72 H ′′

73 H ′′
74

H ′′
51 H ′′

52 H ′′
53 H ′′

54
H ′′

11 H ′′
12 H ′′

13 H ′′
14







−1





− p̄
0
0
f̄






(123)

We obtain the values of the four constants. Hence, we
obtain the expressions for the displacements, the force
stress, the microstress and the temperature distribution of
the generalized thermo-microstretch elastic medium.

6 Numerical Results and Discussions

In order to illustrate our theoretical results obtained in the
preceding section and to compare various theories of
thermoelasticity, we now present some numerical results.
In the calculation, we take a magnesium crystal as in
Eringen [10] as the material subjected to mechanical and
thermal disturbances. Since,ω is a complex constant, we

takeω = ω0+ iζ withω0 =−2.5 andζ = 1. The physical
constants used are:

ρ = 1.74 ×103kgm−3, j = 0.2×10−21m3, z = 0.6,

T0 = 293K,µ = 4.0×1011kgm−1s−2, k = 1×1011kgm−1s−2,

γ = 0.779×10−8kgms−2,K∗ = 0.1×10−3W m−1K−1,

K = 1.3×10−4W m−1K−1,λ0 = 0.5×1011 kgm−1s−2,

λ1 = 0.1×109kgm−1s−2,α0 = 0.779×10−4 kgm−1s−2,

λ = 9.4×1011kgm−1s−2, p̄ = 2, t = 0.1, f̄ = 1,

b = 2.1, ε1 = 0.68, ε2 = 0.9,

The variation in the field quantities i.e., the vertical
component of displacementw , the temperature
distributionT the normal stressσzz and the micro-stressλz
against the distancex are studied numerically in the
context of GN theories (types II and III) for different
values of gravityg = 9.8 andg = 0 i.e., in the presence
and absence of gravity effect. These are represented in
2-D and 3-D. Figs. 2-12 are representing the above
mentioned variation in 2D for general microstretch
material and two particular cases: (1) without
microstretch and with micropolar effect, (2) with
microstretch and without micropolar effect. These 2-D
figures are obtained for the planez = 0.1 , in these figures
the solid line and dashed line are for GN-II forg = 0,9.8
respectively, the dashed with dot line and dotted line are
for GN-III forg = 0,9.8 respectively. Figs. 13-20 illustrate
the 3-D curves of physical quantities for GN-II and III in
the presence of gravity effect. Fig. 2 gives variation in the
displacement component versus the distancex for GN-II
and III. The curves which obtained are having continuous
behavior. An interesting feature of gravity is, the curve
obtained by GN-II is higher than that obtained by GN-III
in the presence of gravity for0.42≤ x < 5 , and the curve
obtained by GN-III forg = 0 is lower than that obtained
by GN-II for0.3≤ x < 3.5 , after and before these values
both curves moves with the same value. The curve
obtained by GN-II forg = 9.8 is higher than that obtained
by GN-II forg = 0 in the range0≤ x < 1.2 and remains
below for the values ofx above this range. The same type
of behavior is obtained by GN-III for almost the
value0≤ x < 0.96, finally all curves converges to zero.
Fig. 3 shows the temperature distribution plotted against
under the both types of GN theory II and III forg = 0,9.8
. Graph represented curves obtained by GN-III forg = 9.8
being above the curve forg = 0 under0≤ x < 4.18 . For
GN-II, under this theory gravity has a decreasing effect
on temperature distribution in the range0≤ x < 3.3 after
these ranges of horizontal distance all curves moves with
same result and finally converges to zero. Fig. 4 gives the
normal stress distributionσzz againstx for GN-II and III
under different values of gravityg = 9.8,0 . Curves
obtained by both GN theories under both values of gravity
are having coincident starting point. Gravity is having an
increasing effect on the normal stress distribution in both
types of GN theories. After2.8≤ x all four curves started
moving very close to each other and finally converge to

c© 2013 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. Lett.1, No. 2, 25-38 (2013) /www.naturalspublishing.com/Journals.asp 33

zero. Fig. 5 gives variation in the microstressλz versusx by
GN-II and III forg = 0,9.8 . Starting point for all curves
are the same, it can also be seen from the figure that the
gravity has a decreasing effect on microstress for both
GN-II and III i.e., for the caseg = 0curve of being higher
than that ofg = 9.8 . Forg = 0 the curve obtained by
GN-III is below the presence by GN-II but in presence of
gravitational effect curves of GN-III is higher than GN-II.
Finally for sufficiently large values of horizontal distance
all curves converge to zero. From the above discussion it
can be concluded that the gravity has a decreasing effect
for the microstress and the normal stress for both
GN-theories. Figs. 6-8 represent the change in the vertical
component of displacement, the temperature and the
normal stress distribution with respect to distancex , for
GN-II and III with conditions of gravityg = 0,9.8 , for
without microstretch and with micropolar effect (NMST).
Fig. 6 gives the graphical representation of the relation
between displacementw and distancex . It can be seen
from the figure that, the gravity has a decreasing effect on
the vertical component of displacement for GN-II and
GN-III under0< x ≤ 1.33 and respectively and having an
increasing effect after this range up tox < 2.9 . Forg = 0
the curves of GN-II and III are moving very close to each
other but the curve obtained by GN-II is higher than the
curve obtained by GN-III. Forg = 9.8curve in placement
distribution in the case of GN-III is higher than GN-II
forx < 2.9 and opposite result for higher values of
horizontal displacement. In Fig. 7 the temperature
distribution is studied for GN-II and III forg = 0,9.8
versus the horizontal distancex . All four curves have the
same starting point; gravity has an increasing effect in
GN-III it can be seen from the figure that distance
between both curves increasing forx < 1 and after this
range of horizontal distance both curves of started closing
each other finally both curves move with the same value
for3.5< x . In GN-II gravity is having a decreasing effect
maximum effect of gravity is obtained forx ≈ 0.8 after
this the values of both curves with and without gravity
started closing and finally join and respond with the same
value to change in horizontal distance. The normal
stresses against horizontal distance represented in Fig. 8
for type II and III under two different values of gravity.
The temperature distribution curves of normal stresses
have the same starting point. Gravity is having an
increasing effect for both theories of GN (II and III).
Forg = 0 curve obtained by GN-II is higher than the curve
obtained by GN-II for the range0< x ≤ 2.8 . For the
conditiong = 9.8 the curve obtained by GN-III is higher
than the curve obtained by GN-II in the range of
0 < x ≤ 1.73 and after this normal stress distribution in
GN-II is higher. Finally for 3.75< x all curves converges
to zero. Figs. 9-12 represent a variation of the field
quantities i.e., the displacement component, the
temperature, the normal stress and the microstress versus
the distancex . For GN-II and III andg = 0,9.8 the
material selected is generalized thermo-micro-stress
elastic medium without micropolar effect (WMT). Fig. 9

represents the variation in versus for the above mentioned
values of gravity. Duringg = 0 the curves obtained are
very close to each other with the curve of GN-II is higher
than the curve of GN-III. For the second value of gravity
i.e., g = 9.8 the curve obtained by GN-III is below than
that the curve obtained by GN-II in the ranges
0.7< x ≤ 3.4and higher in the range0.3< x ≤ 0.7 before
and after these values of horizontal distance both theories
gave same distribution curve i.e., the curves obtained for
with dissipation and without dissipation are same. All the
curves obtained by GN-II converge to zero in 2.5 < x .
The temperature distribution versus of the non micropolar
material is shown in Fig. 10 forg = 0 andg = 9.8 . During
the case of GN-II gravity is having decreasing effect on
temperature distribution in the medium while for the case
of GN-III the gravity is having an increasing effect on
temperature through the medium. During both conditions
of gravity temperature distribution for in the case of
without dissipation is more than with dissipation i.e.,
temperature distribution for GN-II is higher than without
distribution. Fig. 11 gives the curves of the normal stress
versus distance under the same values of gravity under
GN-theories and different conditions of gravity. During
the cause of this material both theories are having an
increasing effect of gravity. Maximum effect of gravity is
found approximately atx = 1.6. Forg = 0 the curve
obtained by GN-III is higher than the curve obtained by
GN-II i.e., normal stress distribution during the case of
energy dissipation is greater that temperature distribution
for without energy dissipation. The same type of result
found for9.8 , finally all converges to zero. Fig. 12
represents the results of the micro-stress versusx for
GN-II and III under the same values of gravity. For the
case of GN-II gravity has an increasing effect on the
microstress in the range. Gravity has a dual type behavior
for GN-III, for sufficiently large of horizontal distance
curves converges to zero. Figs. 13-20 present 3-D graphs
for the displacementw the temperatureT the normal
stressσzz and the microstressλz versus the distancex for
GN-II and III under the effect of gravity (i.e.,g = 9.8 ) for
the material of the generalized thermo-microstretch
elastic (GTMSE) medium. These 3-D graphs are very
important to understand the variety of field quantities
with respect to vertical distance Inxy−plane the curves
are represented by lines with different color where the red
represents the peak that curve obtained while relating
with both horizontal and vertical displacement
components, the blue line represents the lowest position
which curve obtained and green line gives the value of
horizontal and vertical distance at which physical variable
obtained value equal to zero.

7 Conclusion

1. The curves in GN theory of types II and III decrease
exponentially with the increasing x, which indicates that
the thermoelastic waves are unattended and
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non-dispersive, while purely thermoelastic waves undergo
both attenuation and dispersion.

2. The presence of the microstretch plays a significant
role in all the physical quantities.

3. In most of the figures, the physical quantities based
on the GN theory of type II are lower compared with those
based on the GN theory of type III.

4. Analytical solutions based upon normal mode
analysis of the thermoelasticity problem in solids have
been developed and utilized.

5. The radial and axial distributions of the temperature
were estimated at different distances from the crack edge.

6. The stress distributions, the tangential coupled stress
and the values of microstress were evaluated as functions
of the distance from the crack edge.

7. Crack dimensions are significant to elucidate the
mechanical structure of the solid.

8. It can be concluded that a change of volume is
attended with a change of the temperature, while the
effect of the deformation upon the temperature
distribution is the subject of the theory of
thermoelasticity.

9. The values of all the physical quantities converge to
zero with an increase in the distance x and all functions are
continuous.

10. The presence of gravity plays a significant role in
all the physical quantities.
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Fig. 17: Microstress distribution of different gravity for medium
(WMT)
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Fig. 18: Microstress distribution of different gravity for medium
(WMT)
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