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Abstract: The present paper is aimed at studying the effect of gravityhe general model of the equations of the generalized therm
microstretch for a homogeneous isotropic elastic haltslid whose surface is subjected to a Mode-I crack prabléra problem

is in the context of the Green and Naghdi theory (GN). The mbrmode analysis is used to obtain the exact expression$éor t
displacement components, the force stresses, the temperidite couple stresses and the microstress distribdti@variations of the
considered variables through the horizontal distancellagrated graphically. Comparisons are made with theltegsuthe presence
and absence of gravity with two cases: Case (1) for the greulanicropolar thermoelasticity elastic medium (withouicrostretch
constants) between the both types (11, ). Case (2) forgieeralized micropolar thermoelasticity elastic mediwithout micropolar
constants) between the both types Il and III.

Keywords: Green and Naghdi theory, thermoelasticity, gravity, nstretch, Mode-I crack

1 Introduction man-made materials including engineering, geological
and biological media possess a microstructure.
Bhattacharyya and Dd], De and Sengupt&] observed

The linear theory of elasticity is of paramount importance he effect of gravity in elastic media. Agarwas,f]

in the stress analysis of steel, which is the commones tudied respectively thermoelastic and

engineering structural material. To a lesser extent, thema neto-thermoelastic plane wave bpropadation in an
linear elasticity describes the mechanical behavior of thaJ g b propag

other common solid materials. e.a. concrete. wood an nfinite non-rotating medium. Ailawaliab[6] studied the

coal. However, the theory doés .r?(.)t apply to’ study the ravitational effect along with the rotational effect on
behévior of ma{ny of the newly synthetic materials of the generalized thermo-elastic and generalized thermoplasti
clastomer and polymer type, e.g. polymethyl- medium with two temperatures respectively. Mahmoud

2 [7] discussed the effect of gravity on granular medium.
meth_acrylate (_Perspex), polyeth_ylene and p.o!yv".]ylAbed-AIIa and Mahmoud§] investigated the effect of
chloride. The linear theory of mlcropolar elasthlty 1S ravity in magneto-thermo-viscoelastic media, and Sethi
adequate to represent the behavior of such materials. F '

it : e in th f elastic vibrati nd Gupta 9] discussed the gravity effect in a
ultrasonic waves 1.e. In € case ol elastic vibrations,, ., viscoelastic media  of higher order. These

characterized by high frequencies and small Wavelengthsproblems are based on the more realistic elastic model

the _fl_nflu?n_lgﬁ_ (.)fﬂ the bo?Iy _m|crtost[{ucture kl)teC.OTheSsince earth; moon and all other planets have the strong
significant. This influence of microstructure results in egravitational effect.

development of new type of waves, which are not in the
classical theory of elasticity. Metals, polymers, Eringen and ?uhubilf)] and Eringen 11] developed
composites, solids, rocks, concrete is typical media withthe linear theory of micropolar elasticity. Eringeh2]
microstructures. More generally, most of the natural andintroduced the theory of microstretch elastic solids. That
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theory is a generalization of the theory of micropolar even uncoupled theories of thermoelastic29,B0]. This
elasticity [11,12,13,14] and a special case of the is suitable for most situations, in which longtime effects
micromorphic theory. The material points of microstretch are sought. However, when short time behavior is
elastic solids can stretch and contract independent af theimportant, as in many practical situations, the full system
transformations and gravities. The microstretch is used tmf generalized thermoelastic equations must be usgd [
characterize composite materials and various poroudhe purpose of the present paper is to obtain the normal
media [L5]. The theory of thermo-microstretch elastic displacement, the temperature, the normal force stress and
solids was introduced by Eringetq]. The basic results the tangential couple stress in a microstretch elastic soli
in the theory of microstretch elastic solids were obtainedunder the effect of gravity. The problem of generalized
in the literature 15,16,17,18]. An extensive review of the thermo-microstretch in an infinite space weakened by a
theory of thermo-microstretch elastic solids can be foundfinite linear opening Mode-my crack is solved for the
in the book of Eringen’s booklf]. In the framework of above variables. The distributions of the considered
the theory of thermo-microstretch solids Eringen variables are represented graphically. A comparison of the
established a uniqueness theorem for the mixedemperature, the stresses and the displacements are
initial-boundary value problem. This investigation was carried out between the two types II, Il for the
illustrated through the solution of one dimensional wavespropagation of waves in a semi-infinite microstretch
and comparing with lattice dynamical results. The elastic solid in the presence and absence of gravity.
asymptotic behavior of the solutions and an existence

result were presented by Bofill and Quintanille9]. A

reciprocal theorem and a representation of Galerkin type Formulation of the Problem

were presented by De Cicco and Nappé][ De Cicco

and Nappa 21] extended the linear theory of e obtain the constitutive and the field equations for a
thermo-microstretch elastic solids to permit the jinear isotropic generalized thermo-micro-stretch éast
transmission of heat as thermal waves at finite speed. 1Rolid in the absence of body forces. We use a rectangular
Ref. [21], the uniqueness of the solution of the mixed coordinate syste(w,y,z)having originated on the surface
initial-boundary-value problem is also investigated. They — 0 and— axis pointing vertically into the medium.
study is based on the entropy production inequalityThe basic governing equations of linear generalized

proposed by Green and Lawad. The coupled theory of  thermo-elasticity with gravity in the absence of body
thermoelasticity has been extended by including thefgorces and heat sources are

thermal relaxation time in the constitutive equations by

- 2u  d*w 0%u % oQ
Lord and ShulmanZ3] and Green and Lindsay24]. A bR K) (— 4+ ——) — k—=*=
These theories eliminate the paradox of infinite velocity A+ “)(axz " dxdz) tls >(‘9XZ " ‘922) 0z
of heat propagation and are termed generalized theories, d¢* .0T ow d2u 1
of thermo-elasticity. Green and Nagh@®5[26] proposed °ax  Yax ergﬁ = Poz @)
another three models, which are subsequently referred to
as GN-I, Il and Il models. The linearized version of 2u 92w 2w 32w P
model-I corresponds to the classical thermoelastic (A + ) (—+ =)+ (U+K) (== + == ) + 2%
model-1l the internal rate of production of entropy is 0xdz 07 ox2 07 IX

do* 0T du 92w
2%

taken to be identically zero implying no dissipation of o7  du 0w
az Yoz P9~ P

thermal energy. This model admits un-damped
thermoelastic waves in a thermoelastic material and is
best known as the theory of thermo-elasticity without
energy dissipation. Model-Ill includes the previous two (a+B+y)0(0.¢) —yOx (Ox @)+k(Ox u)—2ke
models as special cases, and admits dissipation of energy 92¢

in general. Othman and Song7 studied the effect of =P 3)
rotation on the reflection of magneto-thermoelastic waves

under thermoelasticity Il. Othman and Son@8[

investigated the reflection of plane waves fromanelastic . =~ 1 1 1. 3 0%
solid half-space under hydrostatic initial stress without @05°¢" = 3A1¢" — ZA0(L.u) + Z%T =505 (4)
energy dissipation. The normal mode analysis was used to

obtain the exact expression for the temperature 5 . . o _0¢
distribution, the thermal stresses and the displacemenf0°T +K*0°T = pCeT + yTolii; +V1TOW’ (5)
components. In the recent years, considerable efforts have

been devoted to the study of failure and cracks in solids. g — (Ag@* + A ur )& + (M +K) Ui + Ui —Ker @
This is due to the application of the latter generally in the ’ ’ '

(@)

industry and particularly in the fabrication of electronic —YTa, (6)
components. Most of the studies of dynamical crack
problem are done using the equations from coupled or mi=oa@a+ 8@+ va,, (7
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For convenience, the following non-dimensional variables
are used:

Ai = Qo @ (8) .
_ w _ pewt — v =
= —Xj,U=———1U, t=wt, T=—
. X CZ Iy M y-I—0 B ) TO,
£3 2
&j = = (Uij+Uj,) 9) - _0j - w o~ PG
2 ’ ’ Oi — AT 0 m - A, m 9 — A= 5
Ty T gy BT g #
wherél is the temperature above the reference — w* — pC% . chcg
temperatur@such thal(T —To) /To| < 1,A, pare the 3= T 3P = 7T ¢,0 =
counterparts of Lame parameters, the components of 9 U
displacement vectou are u;, tis the timeg;; are the g= oo = 3 (18)
2

components of stress tenspis the dilatationg; are the
components of strain tenspithe micro inertia moment,
k,a,B,y are the micropolar constants, Ag, A1are the
microstretch  elastic constangs, is the scalar
microstretchp is the rotation vectomy; is the couple
stress tensad,jis the Kronecker deltg, is the alternate
tensor, the mass densitypisthe specific heat at constant
strain isCg, the thermal conductivity i& (> 0) andK*

material characteristic of the theory. The state of plane

strain parallel to thez-plane is defined by

up = u(x,zt),ur =0,u3 =w(x,zt), o = @ =0,
®=@(Xzt),¢0" = ¢*(x,zt),and Q =(0,2,0),(10)

where,

y=0CA +2u + Koy, pp= (32 +2u + K)oy,
0? 02

2 _
and O 7

- ox2 (1)

The constanty and y; depend on the mechanical as well

as the thermal properties of the body and the dot denote 2T 02T

the partial derivative with respect to tinog,, ar,are the

coefficients of linear thermal expansions. The constiéutiv

relation can be written as

axx:/\oqo*+(/\+2u+k)%+)\%—vzv—w, (12)
Gzz:/\o<p*+()\+2u+k)z—vzv+)\%fﬁ, (13)
oﬂzu%+(u+k)%\l+k@, (14)
GD(:“‘;_V)Z+(”+k)% + ke, (15)

my =y 22, (16)

my =y 22, a7)

Using equation 18) then, equations 1j-(5) become
(dropping the dashed for convenience)

u_ Wtk o, (utA)de  k o
at? pcs pcs 0x pcs 0z
Ao a(p* oT ow
o2 ox ox "9ax (19)
oW _ (WK (HtA)oe K I
at? pcs pcs 9z pcs Ox
Ao 0 OT Ju
o3 0z 9z Yox (20)
iPG*p _ o 2kG kS Ju dw
y dtZ_quz yw*@+yw*2(dz (3x)’ (21)
2 2 2 2
Bre_ G 9, G _
(CZD 2 0t2)(p w*2e+agT_0, (22)
2T 92T . .00
82(W+ﬁ)+83(ﬁ+ﬁ)— T +eétea—
(23)
where
@ 20 2 M, 2o P
T3t 9Tt 9T p2CeCE
& K K*w y¥iTo (24)

pCeC2' ™~ pCeC2'™ ™ p2CewC2

Assuming the scalar potential functions and defined by the
relations in the non-dimensional form:

LR ow, R oy
U=ax T a2V a2 X (25)
’ e= %R (26)

Using equationZ5) in equations19-23), we obtain.

92 oY
2 v _ O ¥ _
[O aodtZ]R al + a1@" —gag Ix 0, (27)
[szaa—z] _ asm+gamR =0 (28)
20,[2 l,U 3¢ +0 Zax =Y
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Equation 89) can be factored as

02
[Dz—Zm—asW]@Jramzw:O, (29) (gz—ki_)(oz_—kg)_(nz__kg)(Dz_kﬁ)(Dz_kg)
, {®00), §(x),RX),T(x), ¢ ()} = 0, (40)
7]
[agl? — a7 — el agl?’R+agT =0,  (30) Wwhere
. A= 018/€017,B = 010/€017,C = g20/ €017,
PT+e0T= T +0°R+g d{;’; , (31) E = 021/€017,F = 022/€017,01 = &40 — a1 €1 0%,
02 = — E2WAL + 2161w b2, g3 = a16b? + a1w? + ap€aw,
where 2
04 = A2€40, 95 = Az + As — 8gay, Js = AsAs — agaub”,
5 A+2u+k 3 Ao P — = A
= —— &= Za=y +2H+k’a2 =K 07 = 02 — 0195 + A404,98 = —0205 + 0196 — Aal4As,
P S ,  09=0206.010= ~0s — @105, 011 = 005 + 10,
az = K ,a4 = kcfz,a = PJCZ,a6:0_27a7: Cjz, 912:93967913:36(5b2+w2)
u+K yw y c5 w +A6E, 014 = E4839W
2 o2
ag = — and ag = 9%chi2 (32)  TAS(ED’ 0. 015 = 21260+ Agtres” —2and
@ viw O16 = E488WD° — £10°A6h?, 017 = (3601 + 21610076,
018 = —as(£07 + £1WT10) + G130 + A1 €015,
3 The solution of the problem 010 = 86(EQs + £10°Q11) — 91397 + G101

The solution of the considering physical variables can be 8016~ 910015, 020 = — 86500 + G133 ~ 1l

2 e
decomposed in terms of normal modes and are given in the 910916 + 9110915+ §12868100°, G21 = —01300 + 01408
following form: —011916 + 912015, 922 = —01499 — 912016

R ¢, ¢, ¢, 00, my, T, A (X, Z t) The solution of equatior8@) has the form

R @, @, @, 0y,my, T, A (Xexp(wt+ibz). (33)

_ 5
- - - _ R:ZMne’k”X (41)
wheréR, ¢, ¢*, @, 0;,my, T, A7(X) are the amplitudes &
of the functionsw is a complex constant ariis the wave
number in thez direction. Using equation3@), then _ 5
equations27-31) become T=7S Me (42)
n=1
(D?—A)R—aT+a1¢" —ADP =0, (34) 5
g=5 Mje ko (43)
_ _ n=1
(D?— Ag) () — ag @ + AsDR=0, (35) 5
@=y Mye ™ (44)
(D?—As) @2 +a4(D? ~ b)) =0, (36) =
5
. . . ot M/ e~ KnX 45
(26D? -~ Aq)§ — 26(D? ~tAR +agT =0, (37) 2, “o
_ _ _ whereMip, M/, M}/, M/’ andM/” .are  some parameters,
[e(D? —b?) — w?] T — w?(D? — b?)R— g @" = 0. k2, (n=1,2,3,4,5) are the roots of the characteristic
(38) equation of equation3@). Using equations41-45) in
Where equations34-38), we get the following relations
Dzi,Alzbz-i-aowZ, Ao = gag, Ag=b’+aw?, _ 5
dx T= HlnMnei knX (46)
Ay = gap,As = b? +2a4 + asw?, A = b?ag + a7 + w? =}
Eliminating,@, (¥, R Tandp* in equations34-38), we get 5
the following tenth order ordinary differential equatiar f Y= HonMpe™ KnX 47)
variables n=1
D — AD®+ BD® —CD*+ED? - F - 5
[ ~ TN PIvY T ] @ = ) HaMpe~ ko (48)
{ @), ¥(x),RX),T(x), 9" ()} =0. (39) &
@© 2013 NSP
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Using equations?b), (12-17) with the non-dimensional
boundary conditions and using equatior6-49), we
obtain the expressions for the displacement components,
the force stress, the coupled stress and the temperature
distribution of the microstretch generalized thermodtast
medium as follows:

(49)

Where

Hin = [k agerw® — k2gas— glG]/M apE — k2 013+ 014,

(50) Z Ko+ ibHan) Mg kX (59)
n=1
Han = [Adkn (K3 — As)] /[Ky — kigs + 06l (51) )
2 12 2 W= (ib+knHzn) Mne™ knx (60)
Han = —[asAskn(k; — %)) /[Ks — Kags + 06l (52) =t
_— ox
Han = [as(k2 — b) — agHu]/[a6k; — Ad]  (53) O = ZlemMne (e1)
> kn
. 0z= Y HgMpe % 62
4 Boundary conditions z n; onin (62)
. : 5
The plane boundary subjects to an instantaneous normal For— N HonMoae— KX 63
point force and the boundary surface is isothermal. The Oe nzl 7Vin® (63)
boundary conditions on the vertical plaype- Oand in the 5
beginning of the crack, at= 0 are shown in Fig. 1: T = z HgnMpe~ Kn* (64)
n=1
B 5
My = z — aysknHanMpe™ (65)
n=1
_ 5
P Az= Z ageHanMne™ kX, (66)
v here,
Ao C? A Utk
Q0= 1= 5, A= 5, A3E 5,
: pCs 3 pCs pCs
a k a 0w*2 a apw*
14 — — 5,45 T A~A 16 — .
pC3 pC; pC3
Fig. 1. Displacement of an external Mode-I crack. ) ) )
Hsn = a10H4n — Knag1(—kn +ibHapn) +ibago(i b+ knHzn) — Hin

(1) The mechanical boundary condition is that the
surface of the half-space obeys

Hsn = a1oHan + ibaga(ib+ knHan) —

H7n =ib(ibHan—kn)

(67)

knai2(—kn +ibHzn) — Hin

(68)

—ay3kn (ib+kaHon) +a14Hzn (69)

Oz = — p(Z,t), |X| <a (54)
Hgn = — Kn(ib+ knHazn) +ibag 3(ibHzn — kn) + a14Hzn
Oy, =0, —00 < X < 00 (55) ) - (70)
Applying the boundary condition$4-58) at the surface
of the plate, we obtain a system of five equations. After
O =0, —00 X < 00 (56)  applying the inverse of matrix method,
B My Het Hez Hes Hea Hes\ ' /-p
Az=0 TOSXS® (57) Mz H;1 H7z2 Hzz Hza Hys 0
(2) The thermal boundary condition is that the surface of| M3 | = | Hs1  Hsp Hsz Hsq Hss 0
the half-space is subjected to a thermal shock, My kiHa1 kiHaz KiHaz KiHag kiHags 0
Ms Hiz  Hiz Hiz His His f
T="f(zt), IX| <a (58) (71)
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we obtain the values of the five constants
Mn,n = 1,2,3,4.5 Hence, we obtain the expressions for

IN

! — KnX

the displacements, the force stress, the coupled stress and T= Y HinZne (80)

the temperature distribution of the microstretch =

generalized thermoelastic medium. 4
J=Y HpZoe ¥, (81)

A=1

5 Particular Cases _ 4
@ =3 HiZae ™, (82)

n=1

Case 1: The corresponding equations for the generalized

micropolar thermoelasticity elastic medium (without where z,are some parametekd, (n = 1,2,3,4)are the
microstretch constants) can be obtained from the abovegots of the characteristic equation of equatiof)(

mentioned cases by taking: Using equations79-82) in equations 73-76), we get the
. following relations
do=Ao=A=¢ =0 (72) / 2012 12 2 W2 2
- o | Hiy = (1022 — b?)] /[e (K — b?) — w?], (83)
After subs_tltutlng equation/@) in the equationsl¢7) and
use equationslg-25) and 83) we get Hyn = [—Kie +K2gh — 0h) /[Ackn(ek2 — gb)], (84)
D?— A;)R— ADy —agT =0, 73
( 2 SR (73) H3, = [—kRe +kigs — kids + 9]/ [asAokn(€kZ — g5)]. (85)
) _ — - Using equations 72, (1217), (18 with the
(D —Ag)y + A\DR—az@, = 0, (74)  non-dimensional boundary conditons and using
equations 46-49), we obtain the expressions of the
[DZ—A5] q02+a4(D2— bz)l,U —0, (75) displacement components, the force stress and the

coupled stress distribution for generalized micropolar

thermoelastic medium (without microstretch) as follows:
[€(D?—b?) — T =gw?(D’-b)R  (76)

- _ 4
Eliminatingg, /in  equations 13-76), we get the 0= z (— Kn+ibHb,) Zne ko (86)
following eighth order ordinary differential equation for e " '

@, W, RandT
4
[D®— AD®+BD* — CD?+E| { ¢, IR T} () =0 W= 5 (ib-+lakn) Zoe (87)
n=
(77)
Equation {7) can be factorized as — 4
a & ) o= 3 HinZne ™, (88)
(D?—Kf) (D?~K5)( D? ~K5)(D?—Kj) { @, ,R T} (x) = 0. i
(78) _ 4 e
Here, Oy = z Hg,Zne (89)
A=dy/e . B=0d10/e.C=d11/6 , E=0d1,/€, n=1
4
/| = a0&10w? + £b? + WP + €Ay, Gy — I 7 g kox
g’; = deia)zbz +eb?A + ooZAl\l, e nZlenZne ’ (20)
g/3 = gbZ + w27 4
A _ — _
e St o
5= - , =1
g:6 = ,%:2 + Asg'1 — AoA4d's, .
g7=~A30y, — -
g/; =0 +2A38 — PoPye My = nzlf agsknHgnZne ", (92)
Uo=¢€94+0d1— AP, B
9110 = 5/9'5; + 9'1/9'4/ﬁL 92— A2A4/(€A5 +9'3), where
I =105+ 0204~ AAfeds Hin = — Kna1a(— kn+ibH) +ibasa(ib-+ ko)
The solution of equatior/(/), has the form —Hiy, (93)
4 . . .
R=Y Ze " (79)  Hen=1bawi(ib-+knHzn) — kndaa(— kn-+ibHz) - Hé&)
1

n
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Hgn = ib(ibH5, — kn) — aagkn(ib+ kaH2,) + a14H5,, (95)  where

/lea /917, - /gl7,
/ 9177 91 =&W— 818100 gz = — &400A,
212 _ 2 "o
H7n = — Kn(ib+ knH2p,) +ibag (i bHa, — kn) + az4H3, +arg w?h? gs = areb? + ayw® + ap&sw, g = AoEsw,

i the bound ditons (54) -(56) d(?ﬁ)) 95 = As — asu, 05 = —asaub”, g7 = g2 — 9105 + Ga/As,
Applying the boundary conditions (54) -(56) and (58) at _ 1 — ! —ais — o'
the surface = 0 of the plate, we obtain a system of four % G205, 0o = 0ze. G0 = 95 — 12 05, 91 = 03

equations. +a1£0¢, 97, = 0306, 073 = 86(£b” + ) + Aet,
014 = Es800+ Ae(£0” + W),
4 H51 H52 H53 H54 e Ofs = £1860°D" + Ac10° — Bgesco.
52 _ EGl Eez Ees EM 8 (97) U6 = E438wb” — £10°Ach?, 07 = £(a601 + a1€107a6),
Zi Hﬁ Hi; Hig Hij i dis = — a6(£97 + £160°00) + 91391 + @€ g5,
Jfo = a6(£ g5+ E107011) — 007 + 91401 — 21T
After applying the inverse of matrix method, we obtain the ~ 910975 920 = 91398 91497 + Ylodie + 91915,
values of the four constars ;n=1,2,3,4 021 = 01498 — 911976

Case 2: The corresponding equations for theThe solution of equatiorlQ3), has the form
generalized micropolar thermoelasticity elastic medium

(without micropolar constants) can be obtained from the - & ke
above mentioned cases by taking: R= nilc‘“e % (105)
e, _ 4
k=a= B =y= 0 (98) T= Z Hi/nGnei an7 (106)
Substituting equations9g) in equations 1-7) and use 4
equations18), (25 and @3) we get g= Z Hor Gne™ kX (107)
n=1

D2 -A)R—aT+a ¢ —ADP=0, (99 ~
( J)R—aT+a @' —ADY =0, (99) = S HY Gne kX, (108)

RS
M~

=]
Il
PR

whereG, are some parameteil§, (n=1,2,3,4)are the
roots of the characteristic equation of equation (103).

(D? — Ag) (i + AJDR =0, (100)  Where
Hin = [kt ase10” — K3gs — gl /[ @€ — K303+ 014
(109)
2 x 2 N\ D T _
(26D” —A¢)¢" —ag(D* —b*)R+aT =0 (101) Hyp = Akn/[K2 — Ad, (110)

Hin = [ag(ky — b®) —agH1y] /[acks —As]  (111)

[£(D? —b%) — w?] T — w?(D? — b*)R— g0 " = Using equations 98), (12-17) , (18) with the
(102) non-dimensional boundary conditions and using
Ellmmatlngw,R,,Tandqo in equations 99102, we get  equations 46-49), we obtain the expressions of the
the following eight order ordinary differential equations  displacement components, the force stress and the micro-
stress distribution for generalized thermoelastic medium

8 5 4 ) o — - (without micropolar) as follows:
[D®—AD®°+BD*—ED” +F] {¢,R T, ¢"} (x) =0.

(103) 4
Equation (03 can be factored as =3 (—kn+ ibHJ,) Gpe™ kX, (112)
n=1
(D )( k3)(D? - K3) (D — Kj) 4 »
{ ) ¢ (X} =0, (104) W= 3 (ibtkabig) Gre " (113)
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4
O =y HgyGre™ v, (114)
n=1
_ 4
Oz =Y HgGne™ %, (115)
n=1
_ 4
Oc= Y HpnGne kX (116)
n=1
_ 4
O =Y HenGne kX (117)
n=1
_ 4
A== knaeH3,Gne™ M. (118)
n=1
Here
Ao C% A H
a0=—5,11= —,2= —5,d3= — = 1,
pC3 G pC3 pC3
a apw*
16 DR
pC3
Hs, = a10H3, — kna11 (—kn +i bHé/n) +
ibagz (ib+ knHzn) — Hip (119)
Hgn = alOHé/n + iba]_l (|b+ ané/n) —
knaio (*kn + iné’n) — Hi,n (120)
Hy, = ib(ibHZ, — kn) — aagkn (ib+kaHz,)  (121)
Hgn, = —kn(ib+ knH2,) +ibags (iné’n — kn) (122)

Applying the boundary condition$4-56) and 68) at the

surface = 0 of the plate, we obtain a system of four
equations. After applying the inverse of matrix method,

—1 —
G\ (M e o
2| = 71 T2 1173 Mg 123
G | = | Mg | o )
G4 Hll H12 H13 H14 f

takew = ap+1i withay = —2.5 and] = 1. The physical
constants used are:

p=174 x10%gm 2,j = 0.2 x 10 ?'m®, z=0.,

To =293, 1t = 4.0 x 10 kgm 1572 k=1 x 10t kgm 152,
y=0.779% 10 %kgms 2, K* = 0.1 x 10 *Wm K1,
K=13x10"*Wm K™% Ag=05 x 10" kgm s,
A1 = 0.1 x 10%kgm 152,00 = 0.779 x 10~ * kgm*s72,
A=94x10"%gm s 2 p=2t=01,f=1,

b=21, & =068 &=0.9,

The variation in the field quantities i.e., the vertical
component of displacememt , the temperature
distributionT the normal stress, and the micro-stresk,
against the distangeare studied numerically in the
context of GN theories (types Il and Ill) for different
values of gravitg = 9.8 andg = 0 i.e., in the presence
and absence of gravity effect. These are represented in
2-D and 3-D. Figs. 2-12 are representing the above
mentioned variation in 2D for general microstretch
material and two particular cases: (1) without
microstretch and with micropolar effect, (2) with
microstretch and without micropolar effect. These 2-D
figures are obtained for the plane 0.1, in these figures
the solid line and dashed line are for GN-Il fge= 0,9.8
respectively, the dashed with dot line and dotted line are
for GN-I1l forg = 0,9.8 respectively. Figs. 13-20 illustrate
the 3-D curves of physical quantities for GN-II and Il in
the presence of gravity effect. Fig. 2 gives variation in the
displacement component versus the distanéer GN-II

and lll. The curves which obtained are having continuous
behavior. An interesting feature of gravity is, the curve
obtained by GN-IlI is higher than that obtained by GN-III
in the presence of gravity for2 < x < 5, and the curve
obtained by GN-III forg = 0 is lower than that obtained
by GN-II for0.3 < x < 3.5, after and before these values
both curves moves with the same value. The curve
obtained by GN-II fog = 9.8 is higher than that obtained
by GN-II forg = 0 in the range x < 1.2 and remains
below for the values ofabove this range. The same type
of behavior is obtained by GN-Ill for almost the
valueO< x < 0.96, finally all curves converges to zero.
Fig. 3 shows the temperature distribution plotted against

We obtain the values of the four constants. Hence, weunder the both types of GN theory Il and Ill fpe= 0,9.8
obtain the expressions for the displacements, the force Graph represented curves obtained by GN-lIgfer9.8
stress, the microstress and the temperature distribufion eing above the curve fgre= 0 under0< x < 4.18 . For

the generalized thermo-microstretch elastic medium.

6 Numerical Resultsand Discussions

In order to illustrate our theoretical results obtainedha t

GN-II, under this theory gravity has a decreasing effect
on temperature distribution in the range < 3.3 after
these ranges of horizontal distance all curves moves with
same result and finally converges to zero. Fig. 4 gives the
normal stress distributian, againstx for GN-II and ll|
under different values of gravigy= 9.8,0 . Curves

preceding section and to compare various theories obbtained by both GN theories under both values of gravity
thermoelasticity, we now present some numerical resultsare having coincident starting point. Gravity is having an
In the calculation, we take a magnesium crystal as inincreasing effect on the normal stress distribution in both
Eringen [10] as the material subjected to mechanical andypes of GN theories. After8 < x all four curves started

thermal disturbances. Sincejs a complex constant, we moving very close to each other and finally converge to
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zero. Fig. 5 gives variation in the microstrassersus by represents the variation in versus for the above mentioned
GN-II and 11l forg = 0,9.8 . Starting point for all curves values of gravity. Duringg = O the curves obtained are
are the same, it can also be seen from the figure that theery close to each other with the curve of GN-II is higher
gravity has a decreasing effect on microstress for botithan the curve of GN-III. For the second value of gravity
GN-Il and Il i.e., for the casg = Ocurve of being higher i.e.,g= 9.8 the curve obtained by GN-III is below than
than that of = 9.8 . Folg = 0 the curve obtained by that the curve obtained by GN-Il in the ranges
GN-1ll is below the presence by GN-II but in presence of 0.7 < x < 3.4and higher in the range®< x < 0.7 before
gravitational effect curves of GN-III is higher than GN-II. and after these values of horizontal distance both theories
Finally for sufficiently large values of horizontal distanc gave same distribution curve i.e., the curves obtained for
all curves converge to zero. From the above discussion itvith dissipation and without dissipation are same. All the
can be concluded that the gravity has a decreasing effeaurves obtained by GN-II converge to zero irb2 x .

for the microstress and the normal stress for bothThe temperature distribution versus of the non micropolar
GN-theories. Figs. 6-8 represent the change in the verticaiaterial is shown in Fig. 10 fogr= 0 andy= 9.8 . During
component of displacement, the temperature and the¢he case of GN-II gravity is having decreasing effect on
normal stress distribution with respect to distancdor temperature distribution in the medium while for the case
GN-II and IIl with conditions of gravitg = 0,9.8 , for of GN-IIl the gravity is having an increasing effect on
without microstretch and with micropolar effect (NMST). temperature through the medium. During both conditions
Fig. 6 gives the graphical representation of the relationof gravity temperature distribution for in the case of
between displacement and distance . It can be seen without dissipation is more than with dissipation i.e.,
from the figure that, the gravity has a decreasing effect ortemperature distribution for GN-II is higher than without
the vertical component of displacement for GN-II and distribution. Fig. 11 gives the curves of the normal stress
GN-IIl underO< x < 1.33 and respectively and having an versus distance under the same values of gravity under
increasing effect after this range upxta 2.9 . Forg=0 GN-theories and different conditions of gravity. During
the curves of GN-Il and IIl are moving very close to each the cause of this material both theories are having an
other but the curve obtained by GN-II is higher than theincreasing effect of gravity. Maximum effect of gravity is
curve obtained by GN-III. Fog = 9.8curve in placement found approximately ax = 1.6. Foig = 0 the curve
distribution in the case of GN-Ill is higher than GN-II obtained by GN-III is higher than the curve obtained by
forx < 2.9 and opposite result for higher values of GN-II i.e., normal stress distribution during the case of
horizontal displacement. In Fig. 7 the temperatureenergy dissipation is greater that temperature distobuti
distribution is studied for GN-Il and Il fay = 0,9.8 for without energy dissipation. The same type of result
versus the horizontal distanceAll four curves have the found for@8 , finally all converges to zero. Fig. 12
same starting point; gravity has an increasing effect inrepresents the results of the micro-stress verdos
GN-lll it can be seen from the figure that distance GN-Il and Ill under the same values of gravity. For the
between both curves increasing fok 1 and after this case of GN-Il gravity has an increasing effect on the
range of horizontal distance both curves of started closingnicrostress in the range. Gravity has a dual type behavior
each other finally both curves move with the same valuefor GN-III, for sufficiently large of horizontal distance
for3.5 < x. In GN-II gravity is having a decreasing effect curves converges to zero. Figs. 13-20 present 3-D graphs
maximum effect of gravity is obtained fora 0.8 after  for the displacemenw the temperaturél the normal
this the values of both curves with and without gravity stresso, and the microstress, versus the distangeor
started closing and finally join and respond with the sameGN-Il and 11l under the effect of gravity (i.eg= 9.8 ) for
value to change in horizontal distance. The normalthe material of the generalized thermo-microstretch
stresses against horizontal distance represented in Fig. @astic (GTMSE) medium. These 3-D graphs are very
for type Il and Il under two different values of gravity. important to understand the variety of field quantities
The temperature distribution curves of normal stressewith respect to vertical distance ky—plane the curves
have the same starting point. Gravity is having anare represented by lines with different color where the red
increasing effect for both theories of GN (Il and Ill). represents the peak that curve obtained while relating
Forg = 0 curve obtained by GN-II is higher than the curve with both horizontal and vertical displacement
obtained by GN-II for the range@ x < 2.8 . For the  components, the blue line represents the lowest position
conditiorg = 9.8 the curve obtained by GN-III is higher which curve obtained and green line gives the value of
than the curve obtained by GN-II in the range of horizontal and vertical distance at which physical vagabl

0 < x < 1.73 and after this normal stress distribution in obtained value equal to zero.

GN-Il is higher. Finally for 375 < x all curves converges

to zero. Figs. 9-12 represent a variation of the field

quantities i.e., the displacement component, the7 Conclusion

temperature, the normal stress and the microstress versus

the distancex . For GN-Il and Ill andg = 0,9.8 the 1. The curves in GN theory of types Il and Ill decrease
material selected is generalized thermo-micro-stresgxponentially with the increasing x, which indicates that
elastic medium without micropolar effect (WMT). Fig. 9 the thermoelastic waves are unattended and
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