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Abstract: In this article, we generalize the generalized Rayleigh distribution using thératic rank transmutation map studied by
Shaw et al. §] to develop a transmuted generalized Rayleigh distribution. We provide n@pretensive description of the
mathematical properties of the subject distribution along with its reliability hehalhe usefulness of the transmuted generalized
Rayleigh distribution for modeling data is illustrated using real data.
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1 Introduction

In many applied sciences such as medicine, engineeringraarttk, amongst others, modeling and analyzing lifetime dat
are crucial. Several lifetime distributions have been usedodel such kinds of data. The quality of the procedured use
in a statistical analysis depends heavily on the assumedthpiidy model or distributions. Because of this, consadide
effort has been expended in the development of large clagsaandard probability distributions along with relevant
statistical methodologies. However, there still remaimyianportant problems where the real data does not follow any
of the classical or standard probability models.

Burr [3] introduced twelve different forms of cumulative distritan functions for modeling lifetime data. Among
those twelve distribution functions, Burr-Typé and Burr-TypeXI| received the maximum attention. For more detail
about those two distributions se®.[Recently,Surles and Padget)] introduced two-parameter Burr Type X distribution
and correctly named as the generalized Rayleigh distabutn this paper, we also prefer to call the two-parameter Bu
Type X distribution as the generalized Rayleigh (GR) disition. Fora > 0 andf > 0, the two-parameter GR distribution
has the cumulative distribution function(cdf):

Foxa,B)=(1-e ®")" x>0 )
and the respective probability density function(pdf) is:
f(x a,B) = 2a B2xe P¥? (1— e*</3X>2)afl, x> 0. @)
In this article we present a new generalization of the geizedh Rayleigh distribution called the transmuted

generalized Rayleigh distribution.

Definition 1(Shaw et al.(2009))A randomvariable X is said to have transmuted distribution if its cumulative distribution
function(cdf) is given by

G(X) = (L+A)F(X) —AF?(x),[A| < 1. (3)
where F (x) isthe cdf of the base distribution.
Observe that &t = 0 we have the distribution of the base random variable. Aayal. [1] studied the transmuted Gumbel
distribution and it has been observed that transmuted Gloiidigbution can be used to model climate data. In the prese

study we will provide mathematical formulations of the sanuted generalized Rayleigh distribution and also somis of i
properties.
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Fig. 1: The pdf’s of various transmuted generalized Rayleigh distribuf®rs2).
2 Transmuted generalized Rayleigh Distribution

Definition 2.The pdf of transmuted generalized Rayleigh distribution is:
-1
g(xa,B,A) = 2aB2xe PY* (1 - e‘(Mz) ! [1+ A—2A (1— e‘<’3x)2) a} 4)
and the respective cdf is:

G a,B,A) = (1_ ef(ﬁX)z)a [1—1-)\ Y (1_ e*(Bx)z)a} (5)

Note that the transmuted generalized Rayleigh distribuisoan extended model to analyze more complex data. The
generalized Rayleigh distribution is clearly a speciakcfms A = 0. Figure 1 illustrates some of the possible shapes of
the pdf of a transmuted generalized Rayleigh distributmrstlected values of the parametérsr andf3.
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Fig. 2: The cdf’s of various transmuted generalized Rayleigh distribuf®as2).

3 Moments

Theorem 1The r'" moment E(X") of a transmuted generalized Rayleigh distributed random variable X is given as

N ey S (CDI( D) (A )M (@) AT (2a)
EX) =api(3) 3, j 2r (a—j) _I'(Za—j)] ©)
Especially we have
o S22 +Y) B (@) AT (20)
E(X)=ap Wﬁ% il {Zr(a—j) _F(Za—j)}’ )
L2 (CDI(+D) 2 A+ (a) AT (2a)
var() =ap 5 Fa- f@a-p) ®)

: A[@A+A)M(a) AT (2a)
x{1+an(1+1) 1{ @) I'(20{—j)”'
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Proof.

— 2032 7 g 602 (1 g B0) 1A —2a (1- e 9%) ]
a J X 'e ( e ) [ + ( e ) } X

-1
= 2aB%(1+2) r“e*(ﬁ’oz(l—e*(ﬁx)z)a dx

o\s

~ 4ap?) / xr“e’(ﬁx)z(1—e*<BX>2)2a_ldx

:ZC(B (1+/\) jc'r) J)CJ( /Xr+l —(j+1)( BX d
0

I (2a) 7
2 r+1 —(j+1)(Bx)?
401[3)\2 I'2a—J)J O/X dx

S (~Di[(j+1)BY"
2 2 r(a

+2

2 (a)

, - it
1 +1B2 r+2 2
raBZ,\r(;)ZO( )I[(] (2;_]”]! I (2a)

e (-)i(j+1) % [(1+)\) (a) Al(2a)

= aB‘rrF(é) JZO i

=a52(1+)\)%r(

Ma-j) ra-j

Here, we used

[oe]

XV le WPax = Zv/er 9
0/ pu () ©
for p,v, 4 > 0 (see Gradshtein and Ryzhnik(2000), Sec. 3.478), and|fer1
1 e (F1IT(b)
2 Fb-i)]! a0

By puttingr = 1, we have:

o 2D+ R A+ (@) AT (2a)
E(X)=aB 1‘@; i [ 2r(a—J) _I'(Za—j)] (11)
The second moment is
P (—1)J(j+1)‘2 A+M) (a) AT (2a)
E(X?) = 203 2,; [ e 7r(20_j)] (12)

and the variance is

var (X) = E(X?) — [E(X )]2
2r(a—j) r[(2a—j)
X{ZM"(”l)_l[ T@—j) T2a—]

g i ~1))(] [(1+)\)I‘(a) }\F(Za)}
(1+A)r(a) )\I'(Za)]}
s
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The skewness and kurtosis measures are:

E(X3)—3E(X?)u+2u®

Skewness = 3
o

1 L2 (-DIj+)2 A+ A (a) AT (2a) ,
03'{3"'5 21; i a(a—j) T(2a— )HOS\FB 'R )05_2“}““3}’

E(X*) — 4E(X3)u + 6E(X?)u? — 3u*
0'4

© [ -2
2014.{4@_2]20( DY 2 (@) M (2a) g

< [ 2141 L 15V AB (1 +1) 05+ 32 +3u4}.

Kurtosis=

ar(a—j) F@a—j)

Theorem 2Let X have a transmuted generalized Rayleigh distribution. Then the moment generating function of X, say
Mx (t)v is

Me(t) =1t a s L (13)

(-DI(+1) "% [(A+M) (@) AT (20)
[ 2r (a—j) /'(20—1')} '

2
Proof.

My (t) = E() :/metxf(x)dx

thxn

_/ (1+tx++ 4 —|—-->f(x)dx

i= :
0 ti
=

|

O R G (j+) "% [A+ ) (@) AT (2a)
{B |r(2)go il { 2T (a— j) F(20—j)]}'

Theqg" quantilexq of the transmuted generalized Rayleigh distribution caoldtained from$) as

1
2
} . (14)
In particular, the distribution median is

1 1+A —V1+A
XO'SB{In[l \/ 2 ‘} (15)
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4 Random Number Generation and Parameters Estimation
Using the method of inversion we can generate random nunfilmensthe transmuted generalized Rayleigh distribution
as
a a
(17e—(l3x)2) [1+)\ —A (1fe‘(ﬁx>2) } =u,

whereu ~ U (0,1). After simple calculation this yields

X=—

B

. [1_ §/1+A —\/(;)\+A)2—4Au‘. 6

One can use equatiofi®) to generate random numbers when the parametgBsandA are known.
Let X1,Xp,---, X, be a sample of siza from a transmuted generalized Rayleigh distribution. Ttrenlikelihood
function is given by

fﬁzﬁx?” a2\ a-1 2\
L=(2aB%)"% it [x(1—e P¥ 1+A—2A(1—e () 17)
Mx( ) ( )|
so, the log-likelihood function is:
n
LL:InL:n(In2+Ina+2In,8)—BZZ><,-2 (18)
i=

+_iln(xa) +(a—1) iln (1—e (B
+_iln {14—)\ —2A (1—e’<5"‘)2>a}

For ease of notation, we will denote, for any functibix;y), the first partial derivatives by, fy, and the second partial
derivatives byfyy, fyy, fuy, fyx.

Now setting
LLg =0, LLg=0 and LL,=0,
we have ( )a ( )
n & s n (1—e B)?) In(1—e Bx)?
E+i;In(1—e (Bx) )—Mi; [1+)\_2,\(1_e7(l3xi)2)a} =0, (19)
%—2,8 iixiz_ (a-1) ii e(BXi);mSuMe);Bmz) o)
— 4apA i X|-2e*(13><i)2 (1—e(5>ﬁ)2)aa12 .
A 14221 (1-e®02)7]
and
" 1—2(1_ef<ﬁxi>2>“ —o .

i; 14+A—2A (1—e*(BXi>2)a

The maximum likelihood estimata = (&,B,ﬁ\)' of 6 = (a,B,)) is obtained by solving this nonlinear system of
equations. It is usually more convenient to use nonlinedinopation algorithms such as the quasi-Newton algorithm
to numerically maximize the log-likelihood function givém (17). Applying the usual large sample approximation, the
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maximum likelihood estimators @ can be treated as being approximately trivariate normédd miéan6 and variance-
covariance matrix equal to the inverse of the expectediméion matrix. That is,

V(6 —0) — N3(0,171(8))

Wherelfl(é) is the variance-covariance matrix of the unknown parareélet (a,(3,A). The elements of the 83
matrix| =%, 1;;(8),i,] = 1,2,3 can be approximated By (6), wherel;j () = —LLgg[s_3
From @9)-(21), the second partial derivatives of the log likelihood ftioe are found to be

. n (1— e (Bx) In (Bxi)
) (e 27} [n(1- 547)
LL“"'_—?_ZMHA); [1+,\ —2A(l—e*(BXi)2)ar ’ (22)

Xize—(BXi)Z [|n (_’]_7 e—(ﬁxi)z) _ e (x)?

Hhes = _BZ 2 +26(a=1) .; [1-e (%72 @3)
n 1—2(1_e7(ﬁxi>2)" ?
= _i; 1+A—2) (1-e—<ﬁm2)“ ’ 24
-1
e . x2e (BK)? (1_e—<ﬁxi>2)°’ A
LLgp =28 Z T T 4)\[3; [1+A —2)\ (1_67(&”2)(,]2, (25)
where
A= {(1+A)[aln (l—e*(ﬁmz) +1]-2A (1—6*(3’“)2)},
LLgy = zi (E ewX)Z)(a n(1- ez(;:;) , (26)
=1 14X —2A(1—e(BxX)
and

0 e (B (1o (07) "
LLyg = 74013;1 [1+A—2A (1—e*(ﬁxi)2>“}2'

Approximate 1001 — a)% two sided confidence intervals far, 3 andA are, respectively, given by
a+2421/ |1_11(é)7f" +27q)24/ 15 (0),

A200/153(9),

wherez, is the uppen —th percentiles of the standard normal distribution. UsingeRcan easily compute the Hessian
matrix and its inverse and hence the values of the standerdasrd asymptotic confidence intervals.

We can compute the maximized unrestricted and restrictgd likelihoods to construct the likelihood ratio (LR)
statistics for testing some transmuted Rayleigh sub-nsod@r example, we can use LR statistics to check whether the
fitted transmuted Rayleigh distribution for a given dataisetatistically "superior” to the fitted Rayleigh distrifian. In
any case, hypothesis tests of the tyfig © = Oy versusHp : © # Oy can be performed using LR statistics. In this case,
the LR statistic for testinglp versusHs is w = 2(L(@) — L(&y)), where® and@; are the MLEs undeH; andHo. The
statisticw is asymptotically( a; — o) distributed as(f, wherek is the dimension of the subséX of interest. The LR
test rejectsHg if w > &, whereé, denotes the upper 1% point of thexlf distribution.

(27)

and

© 2014 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

16 NS 2 F. Merovci: Transmuted Generalized Rayleigh Distribution

5 Reliability Analysis

The reliability functionR(t), which is the probability of an item not failing prior to somene t, is defined byR(t) =
1—F(t). The reliability function of a transmuted generalized Raghedistribution is given by

Rt =1-(1- e*wt)z)a 142 -2 (1- e*wt)z)a] (28)

The other characteristic of interest of a random variabthéshazard rate function defined by

which is an important quantity characterizing life phenomr It can be loosely interpreted as the conditional pridithab
of failure, given it has survived to tinte The hazard rate function for a transmuted generalized Rgytandom variable
is given by

 2apre 0 (1-e ) [144 -2 (1-e )]
- 1-(1- e%ﬁt)z)a 142 -A(1-e?) a}

h(t) (29)

Figure 3 illustrates the reliability function of a transradtgeneralized Rayleigh distribution for different congtions
of parametersr andA, wheref3 = 2.
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Fig. 3: The reliability function of a transmuted generalized Rayleigh distribution.

© 2014 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro3, No. 1, 9-20 (2014) ywww.naturalspublishing.com/Journals.asp NS 2 17

6 Order Statistics

In statistics, the" order statistic of a statistical sample is equal tokifssmallest value. Together with rank statistics,
order statistics are among the most fundamental tools irpasametric statistics and inference. For a sample ofrsize
then'™™ order statistic (or largest order statistic) is the maximtimat is,

Xy = max{ Xy, Xz, ..., Xn}.
The sample range is the difference between the maximum amichonin. It is clearly a function of the order statistics:
Range{Xl,Xg, oo ,Xn} = X(n) — X(l)

We know that ifX;) < X2) <... < X(n) denotes the order statistics of a random sampl&, ..., X, from a continuous
population with cdfFx (x) and pdffx (x) then the pdf o, is given by

n! f
(G-Din—pr ™
for j =1,2,...,n. The pdf of thej" order statistic for transmuted generalized Rayleighithistions is given by

Zaﬁzxei(ﬁx)zn! 7([3 )2 Gj—l 7(3 )2 a
fx(j)(x):m(l—e X ) [1+A—2A(1—e X ) } (31)

x [1+/\ A (1_e*<BX>2)a] o

) [1_ (1-e ") 142 -2 <1_e_(BX)Z)aH

) (x) = () [Fx ()] 1= Fx ()], (30)

n—j

Therefore, the pdf of the largest order statis{ig; is given by
an—1 a
fx g (X) = 2nor[32xe‘(’3X>2 (17 e‘(Bx)z) [1+)\ —2A (17 e‘(ﬁx)z) } (32)
ajn-1
x [1+/\ ) (1fe-<l3x>2) } ,

and the pdf of the smallest order statistig) is given by
_ 2 - 2 a-1 B 2\
iy (X) = 2na e P (1—e (Bx) ) {1—&-/\ —2\ (1—e (Bx) ) } (33)

. [1_ (1) 12 (1_e<ﬁx>2)“}]

7 Application

In this section, we use a real data set to show that the traesingeneralized Rayleigh distribution can be a better model
than the generalized Rayleigh, Rayleigh and transmuteteRgndistribution.

We work with nicotine measurements made in several brancigafettes in 1998. The data have been collected by the
Federal Trade Commission which is an independent agentyedd$ government, whose main mission is the promotion
of consumer protection.

The report entitled tar, nicotine, and carbon monoxide efdmoke of 1206 varieties of domestic cigarettes for the
year of 1998 at

http://www.ftc.gov/reports/tobacco and consists of théadsets and some information about the source of the data,
smokers behaviour and beliefs about nicotine, tar and carmnoxide contents in cigarettes. The free form data set can
be found at http://pw1.netcom.com/ rdavis2/ smoke.html.

The site http://home.att.net/ rdavis2/cigra.html camai = 384 observations. We analysed data about nicotine,
measured in milligrams per cigarette, from several cigafetands. Some summary statistics for the nicotine datasare
follows: mean =0.852, median = 0.9, minimum = 0.1 and maxinzu?n
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Fig. 4: Empirical, fitted generalized Rayleigh and transmuted generalized Ragidi@i nicotine measurements data.
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Fig. 5: Estimated densities of the models for nicotine measurements data.

The variance covariance matrix of transmuted generakesteigh(d = 1.173[3 = 1.317,;\ = —0.681) is computed

as
0.199x 1071 0.313x 1072 0.121x 101

1(6) = | 0.313x 1072 0.155x 1072 0.389x 103
0.121x 1071 0.389x 1073 0.145x 101

Thus, thle variances of the MLE of, 8 andA becomeVar (@) = 0.199x 101, Var(B) = 0.155x 102 andVar (A ) =
0.145x 10 -.
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Table 1: Estimated Parameters of the Rayleigh, transmuted Rayleigh, GR and ateds@R distribution for nicotine measurements
data

Model Parameter Estimates 98% -LL
Transmuted a=1173 [0.8971 1.451] 112.443
Generalized B=1317 [1.239,1.394
Rayleigh A =-0681 [~0.917,—0.445

Generalized a=1579 [1.346,1.811 119.457
Rayleigh B =1.250 [1.326,1.175

Transmuted G =0555 [0.528 0.582 121.224
Rayleigh A =-07718095  [-0.914—0.629
Rayleigh 6=0.6475387 [0.618 0.687 142.3572

Table 2: Criteria for Comparison.
Model K-S -2LL AIC AICC BIC
GR 0.281 238.914 242914 242.949 250.606
TGR 0.122 224.886 230.886 230.956 242.425

The LR statistics to test the hypothes#és: A = 0 versusH; : A £0: w=14.028> 3.841= Xlz(a = 0.05), so we
reject the null hypothesis.

In order to compare the distributions, we consider somerothigerion like K — § Kolmogorow Smirnow),
—2log(L),AIC (Akaike Information Criterion), AICC(Akaike Informtaon Criterion Corrected) and BIC(Bayesian
information criterion)for the real data set. The best dstion corresponds to lowdt — S —2log(L), AIC, AICC and
BIC values:
2k(k+1)

AIC =2k—2log(L), AICC=Al _—
C og(L), cC C+ ko1

and
BIC = klog(n) — 2logL.

wherek is the number of parameters in the statistical modehe sample size and is the maximized value of the
likelihood function for the estimated model. Also, here ¢atculating the values d€ — Swe use the sample estimates of
A andg. Table 1 shows parameter MLEs to each one of the two fittedilolisions, table 2 shows the valueskf- S
—2log(L), AIC, AICC and BIC values. The values in table 2 indicate thattransmuted generalized Rayleigh distribution
leads to a better fit than the generalized Rayleigh disichut

8 Conclusion

In this article, we propose a new model: the so-called thestraited generalized Rayleigh distribution which extends
the generalized Rayleigh distribution in the analysis dfdaith real support. An obvious reason for generalizing a
standard distribution is because the generalized fornaistprovides greater flexibility in modeling real data. Warigde
expansions for the expectation, variance, moments and ¢ineemt generating function. The estimation of parameters is
approached by the method of maximum likelihood, also thermétion matrix is derived. We consider the likelihoodati
statistic to compare the model with its baseline model. Apliagtion of the transmuted generalized Rayleigh distidu

to real data show that the new distribution can be used dffiéet®ely to provide better fits than the generalized Rigfie
distribution.
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