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Abstract: In this article, we generalize the generalized Rayleigh distribution using the quadratic rank transmutation map studied by
Shaw et al. [9] to develop a transmuted generalized Rayleigh distribution. We provide a comprehensive description of the
mathematical properties of the subject distribution along with its reliability behavior. The usefulness of the transmuted generalized
Rayleigh distribution for modeling data is illustrated using real data.
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1 Introduction

In many applied sciences such as medicine, engineering and finance, amongst others, modeling and analyzing lifetime data
are crucial. Several lifetime distributions have been usedto model such kinds of data. The quality of the procedures used
in a statistical analysis depends heavily on the assumed probability model or distributions. Because of this, considerable
effort has been expended in the development of large classesof standard probability distributions along with relevant
statistical methodologies. However, there still remain many important problems where the real data does not follow any
of the classical or standard probability models.

Burr [3] introduced twelve different forms of cumulative distribution functions for modeling lifetime data. Among
those twelve distribution functions, Burr-TypeX and Burr-TypeXII received the maximum attention. For more detail
about those two distributions see [5]. Recently,Surles and Padgett [10] introduced two-parameter Burr Type X distribution
and correctly named as the generalized Rayleigh distribution. In this paper, we also prefer to call the two-parameter Burr
Type X distribution as the generalized Rayleigh (GR) distribution. Forα > 0 andβ > 0, the two-parameter GR distribution
has the cumulative distribution function(cdf):

F(x,α,β ) =
(

1− e−(βx)2
)α

, x > 0, (1)

and the respective probability density function(pdf) is:

f (x,α,β ) = 2αβ 2xe−(βx)2
(

1− e−(βx)2
)α−1

, x > 0. (2)

In this article we present a new generalization of the generalized Rayleigh distribution called the transmuted
generalized Rayleigh distribution.

Definition 1(Shaw et al.(2009)).A random variable X is said to have transmuted distribution if its cumulative distribution
function(cdf) is given by

G(x) = (1+λ )F(x)−λF2(x), |λ | ≤ 1. (3)

where F(x) is the cdf of the base distribution.

Observe that atλ = 0 we have the distribution of the base random variable. Aryalet al. [1] studied the transmuted Gumbel
distribution and it has been observed that transmuted Gumbel distribution can be used to model climate data. In the present
study we will provide mathematical formulations of the transmuted generalized Rayleigh distribution and also some of its
properties.
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Fig. 1: The pdf’s of various transmuted generalized Rayleigh distributions(β = 2).

2 Transmuted generalized Rayleigh Distribution

Definition 2.The pdf of transmuted generalized Rayleigh distribution is:

g(x;α,β ,λ ) = 2αβ 2xe−(βx)2
(

1− e−(βx)2
)α−1[

1+λ −2λ
(

1− e−(βx)2
)α]

(4)

and the respective cdf is:

G(x;α,β ,λ ) =
(

1− e−(βx)2
)α[

1+λ −λ
(

1− e−(βx)2
)α]

(5)

Note that the transmuted generalized Rayleigh distribution is an extended model to analyze more complex data. The
generalized Rayleigh distribution is clearly a special case for λ = 0. Figure 1 illustrates some of the possible shapes of
the pdf of a transmuted generalized Rayleigh distribution for selected values of the parametersλ , α andβ .
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Fig. 2: The cdf’s of various transmuted generalized Rayleigh distributions(β = 2).

3 Moments

Theorem 1.The rth moment E(X r) of a transmuted generalized Rayleigh distributed random variable X is given as

E(X r) = αβ−rrΓ
( r

2

)

∞

∑
j=0

(−1) j( j+1)−
r+2

2

j!

[ (1+λ )Γ (α)

2Γ (α − j)
− λΓ (2α)

Γ (2α − j)

]

. (6)

Especially we have

E(X) = αβ−1√π
∞

∑
j=0

(−1) j( j+1)−
3
2

j!

[ (1+λ )Γ (α)

2Γ (α − j)
− λΓ (2α)

Γ (2α − j)

]

, (7)

var(X) =αβ−2
∞

∑
j=0

(−1) j( j+1)−2

j!

[ (1+λ )Γ (α)

2Γ (α − j)
− λΓ (2α)

Γ (2α − j)

]

(8)

×
{

1+απ( j+1)−1
[ (1+λ )Γ (α)

2Γ (α − j)
− λΓ (2α)

Γ (2α − j)

]

}

.
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Proof.

E(X r) =

∞
∫

0

xr f (x)dx

= 2αβ 2

∞
∫

0

xr+1e−(βx)2
(

1− e−(βx)2
)α−1[

1+λ −2λ
(

1− e−(βx)2
)α]

dx

= 2αβ 2(1+λ )
∞
∫

0

xr+1e−(βx)2
(

1− e−(βx)2
)α−1

dx

−4αβ 2λ
∞
∫

0

xr+1e−(βx)2
(

1− e−(βx)2
)2α−1

dx

= 2αβ 2(1+λ )
∞

∑
j=0

(−1) jΓ (α)

Γ (α − j) j!

∞
∫

0

xr+1e−( j+1)(βx)2dx

−4αβ 2λ
∞

∑
j=0

(−1) jΓ (2α)

Γ (2α − j) j!

∞
∫

0

xr+1e−( j+1)(βx)2dx

= αβ 2(1+λ )
r
2

Γ
( r

2

)

∞

∑
j=0

(−1) j[( j+1)β 2]−
r+2

2 Γ (α)

Γ (α − j) j!

− rαβ 2λΓ
( r

2

)

∞

∑
j=0

(−1) j[( j+1)β 2]−
r+2

2 Γ (2α)

Γ (2α − j) j!

= αβ−rrΓ
( r

2

)

∞

∑
j=0

(−1) j( j+1)−
r+2

2

j!

[ (1+λ )Γ (α)

2Γ (α − j)
− λΓ (2α)

Γ (2α − j)

]

Here, we used
∞
∫

0

xν−1e−µxp
dx =

1
p

µ−ν/pΓ
(ν

p

)

, (9)

for p,ν ,µ > 0 (see Gradshtein and Ryzhnik(2000), Sec. 3.478), and for|z|< 1

(1− z)b−1 =
∞

∑
j=0

(−1) jΓ (b)
Γ (b− j) j!

z j. (10)

By puttingr = 1, we have:

E(X) = αβ−1√π
∞

∑
j=0

(−1) j( j+1)−
3
2

j!

[ (1+λ )Γ (α)

2Γ (α − j)
− λΓ (2α)

Γ (2α − j)

]

. (11)

The second moment is

E(X2) = 2αβ−2
∞

∑
j=0

(−1) j( j+1)−2

j!

[ (1+λ )Γ (α)

2Γ (α − j)
− λΓ (2α)

Γ (2α − j)

]

. (12)

and the variance is

var(X) = E(X2)− [E(X)]2

= αβ−2
∞

∑
j=0

(−1) j( j+1)−2

j!

[ (1+λ )Γ (α)

2Γ (α − j)
− λΓ (2α)

Γ (2α − j)

]

×
{

2+απ( j+1)−1
[ (1+λ )Γ (α)

2Γ (α − j)
− λΓ (2α)

Γ (2α − j)

]

}

.
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The skewness and kurtosis measures are:

Skewness =
E(X3)−3E(X2)µ +2µ3

σ3 =

1
σ3 ·

{

3αβ−2
∞

∑
j=0

(−1) j( j+1)−2

j!

[ (1+λ )Γ (α)

2Γ (α − j)
− λΓ (2α)

Γ (2α − j)

][

0.5
√

πβ−1( j+1)−0.5−2µ
]

+2µ3

}

,

Kurtosis =
E(X4)−4E(X3)µ +6E(X2)µ2−3µ4

σ4

=
1

σ4 ·
{

4αβ−2
∞

∑
j=0

(−1) j( j+1)−2

j!

[ (1+λ )Γ (α)

2Γ (α − j)
− λΓ (2α)

Γ (2α − j)

]

×
[

β−2( j+1)−1−1.5
√

πβ−1( j+1)−0.5+3µ2
]

+3µ4

}

.

Theorem 2.Let X have a transmuted generalized Rayleigh distribution. Then the moment generating function of X , say
MX (t), is

MX (t) =1+α
∞

∑
i=1

t i

i!
(13)

×
{

β−iiΓ
( i

2

)

∞

∑
j=1

(−1) j( j+1)−
i+2
2

j!

[ (1+λ )Γ (α)

2Γ (α − j)
− λΓ (2α)

Γ (2α − j)

]

}

.

Proof.

MX (t) = E(etx) =
∫ ∞

0
etx f (x)dx

=

∫ ∞

0

(

1+ tx+
t2x2

2!
+ · · ·+ tnxn

n!
+ · · ·

)

f (x)dx

= 1+
∞

∑
i=1

t iE(X i)

i!

= 1+α
∞

∑
i=1

t i

i!

×
{

β−iiΓ
( i

2

)

∞

∑
j=0

(−1) j( j+1)−
i+2
2

j!

[ (1+λ )Γ (α)

2Γ (α − j)
− λΓ (2α)

Γ (2α − j)

]

}

.

Theqth quantilexq of the transmuted generalized Rayleigh distribution can beobtained from (5) as

xu =
1
β







− ln



1− α

√

1+λ −
√

(1+λ )2−4λu
2λ











1
2

. (14)

In particular, the distribution median is

x0.5 =
1
β







− ln



1− α

√

1+λ −
√

1+λ 2

2λ











1
2

. (15)
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4 Random Number Generation and Parameters Estimation

Using the method of inversion we can generate random numbersfrom the transmuted generalized Rayleigh distribution
as

(

1− e−(βx)2
)α[

1+λ −λ
(

1− e−(βx)2
)α]

= u,

whereu ∼U(0,1). After simple calculation this yields

x =
1
β

√

√

√

√

√− ln



1− α

√

1+λ −
√

(1+λ )2−4λu
2λ



. (16)

One can use equation (16) to generate random numbers when the parametersα,β andλ are known.
Let X1,X2, · · · ,Xn be a sample of sizen from a transmuted generalized Rayleigh distribution. Thenthe likelihood

function is given by

L = (2αβ 2)ne
−β 2

n
∑

i=1
x2

i
n

∏
i=1

xi

(

1− e−(βxi)
2
)α−1[

1+λ −2λ
(

1− e−(βxi)
2
)α]

(17)

so, the log-likelihood function is:

LL = lnL = n(ln2+ lnα +2lnβ )−β 2
n

∑
i=1

x2
i (18)

+
n

∑
i=1

ln(xi)+(α −1)
n

∑
i=1

ln
(

1− e−(βxi)
2)

+
n

∑
i=1

ln
[

1+λ −2λ
(

1− e−(βxi)
2
)α]

For ease of notation, we will denote, for any functionf (x;y), the first partial derivatives byfx, fy, and the second partial
derivatives byfxx, fyy, fxy, fyx.

Now setting
LLα = 0, LLβ = 0 and LLλ = 0,

we have

n
α
+

n

∑
i=1

ln
(

1− e−(βxi)
2)−2λ

n

∑
i=1

(

1− e−(βxi)
2
)α

ln
(

1− e−(βxi)
2
)

[

1+λ −2λ
(

1− e−(βxi)2
)α] = 0, (19)

2n
β

−2β
n

∑
i=1

x2
i − (α −1)

n

∑
i=1

e−(βxi)
2
ln
(

1− e−(βxi)
2)

1− e−(βxi)2
(20)

−4αβλ
n

∑
i=1

x2
i e−(βxi)

2
(

1− e−(βxi)
2
)α−1

[

1+λ −2λ
(

1− e−(βxi)2
)α]2 = 0

and

n

∑
i=1

1−2
(

1− e−(βxi)
2
)α

1+λ −2λ
(

1− e−(βxi)2
)α = 0. (21)

The maximum likelihood estimator̂θ = (α̂, β̂ , λ̂ )′ of θ = (α,β ,λ )′ is obtained by solving this nonlinear system of
equations. It is usually more convenient to use nonlinear optimization algorithms such as the quasi-Newton algorithm
to numerically maximize the log-likelihood function givenin (17). Applying the usual large sample approximation, the

c© 2014 NSP
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maximum likelihood estimators ofθ can be treated as being approximately trivariate normal with meanθ and variance-
covariance matrix equal to the inverse of the expected information matrix. That is,

√
n(θ̂ −θ)→ N3(0, I

−1(θ̂)
)

whereI−1
(

θ̂) is the variance-covariance matrix of the unknown parameters θ = (α,β ,λ ). The elements of the 3× 3
matrix I−1, Ii j

(

θ̂), i, j = 1,2,3 can be approximated byIi j
(

θ̂), whereIi j
(

θ̂) =−LLθiθ j θ=θ̂ .
From (19)-(21), the second partial derivatives of the log likelihood function are found to be

LLαα =− n
α2 −2λ (1+λ )

n

∑
i=1

(

1− e−(βxi)
2
)α[

ln
(

1− e−(βxi)
2
)]2

[

1+λ −2λ
(

1− e−(βxi)2
)α]2 , (22)

LLββ =− 2n
β 2 +2β (α −1)

n

∑
i=1

x2
i e−(βxi)

2[
ln
(

1− e−(βxi)
2)− e−(bxi)

2

[

1− e−(βxi)2
]2 (23)

LLλλ =−
n

∑
i=1







1−2
(

1− e−(βxi)
2
)α

1+λ −2λ
(

1− e−(βxi)2
)α







2

, (24)

LLαβ = 2β
n

∑
i=1

x2
i e−(βxi)

2

1− e−(βxi)2
−4λβ

n

∑
i=1

x2
i e−(βxi)

2
(

1− e−(βxi)
2
)α−1

·A
[

1+λ −2λ
(

1− e−(βxi)2
)α]2 , (25)

where

A =
[

(1+λ )
[

α ln
(

1− e−(βxi)
2
)

+1
]

−2λ
(

1− e−(βxi)
2
)]

,

LLαλ =−2
n

∑
i=1

(

1− e−(βxi)
2
)α

ln
(

1− e−(βxi)
2
)

[

1+λ −2λ
(

1− e−(βxi)2
)α]2 , (26)

and

LLλβ =−4αβ
n

∑
i=1

x2
i e−(βxi)

2
(

1− e−(βxi)
2
)α−1

[

1+λ −2λ
(

1− e−(βxi)2
)α

]2
. (27)

Approximate 100(1−α)% two sided confidence intervals forα,β andλ are, respectively, given by

α̂ ± zα/2

√

I−1
11

(

θ̂), β̂ ± zα/2

√

I−1
22

(

θ̂),

and

λ̂ ± zα/2

√

I−1
33

(

θ̂),

wherezα is the upperα−th percentiles of the standard normal distribution. Using Rwe can easily compute the Hessian
matrix and its inverse and hence the values of the standard error and asymptotic confidence intervals.

We can compute the maximized unrestricted and restricted log - likelihoods to construct the likelihood ratio (LR)
statistics for testing some transmuted Rayleigh sub-models. For example, we can use LR statistics to check whether the
fitted transmuted Rayleigh distribution for a given data setis statistically ”superior” to the fitted Rayleigh distribution. In
any case, hypothesis tests of the typeH0 : Θ =Θ0 versusH0 : Θ 6=Θ0 can be performed using LR statistics. In this case,
the LR statistic for testingH0 versusH1 is ω = 2(L(Θ̂)−L(Θ̂0)), whereΘ̂ andΘ̂0 are the MLEs underH1 andH0. The
statisticω is asymptotically( asn → ∞) distributed asχ2

k , wherek is the dimension of the subsetΩ of interest. The LR
test rejectsH0 if ω > ξγ , whereξγ denotes the upper 100γ% point of theχ2

k distribution.
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5 Reliability Analysis

The reliability functionR(t), which is the probability of an item not failing prior to some time t, is defined byR(t) =
1−F(t). The reliability function of a transmuted generalized Rayleigh distribution is given by

R(t) = 1−
(

1− e−(β t)2
)α[

1+λ −λ
(

1− e−(β t)2
)α]

. (28)

The other characteristic of interest of a random variable isthe hazard rate function defined by

h(t) =
f (t)

1−F(t)
,

which is an important quantity characterizing life phenomenon. It can be loosely interpreted as the conditional probability
of failure, given it has survived to timet. The hazard rate function for a transmuted generalized Rayleigh random variable
is given by

h(t) =
2αβ 2te−(β t)2

(

1− e−(β t)2
)α−1[

1+λ −2λ
(

1− e−(β t)2
)α]

1−
(

1− e−(β t)2
)α[

1+λ −λ
(

1− e−(β t)2
)α] . (29)

Figure 3 illustrates the reliability function of a transmuted generalized Rayleigh distribution for different combinations
of parametersα andλ , whereβ = 2.
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Fig. 3: The reliability function of a transmuted generalized Rayleigh distribution.
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6 Order Statistics

In statistics, thekth order statistic of a statistical sample is equal to itskth-smallest value. Together with rank statistics,
order statistics are among the most fundamental tools in non-parametric statistics and inference. For a sample of sizen,
thenth order statistic (or largest order statistic) is the maximum, that is,

X(n) = max{X1,X2, . . . ,Xn}.

The sample range is the difference between the maximum and minimum. It is clearly a function of the order statistics:

Range{X1,X2, . . . ,Xn}= X(n)−X(1).

We know that ifX(1) ≤ X(2) ≤ . . .≤ X(n) denotes the order statistics of a random sampleX1,X2, . . . ,Xn from a continuous
population with cdfFX (x) and pdf fX (x) then the pdf ofX( j) is given by

fX( j)
(x) =

n!
( j−1)!(n− j)!

fX (x)[FX (x)]
j−1[1−FX (x)]

n− j, (30)

for j = 1,2, . . . ,n. The pdf of thejth order statistic for transmuted generalized Rayleigh distributions is given by

fX( j)
(x) =

2αβ 2xe−(βx)2n!
( j−1)!(n− j)!

(

1− e−(βx)2
)α j−1[

1+λ −2λ
(

1− e−(βx)2
)α]

(31)

×
[

1+λ −λ
(

1− e−(βx)2
)α] j−1

×
[

1−
(

1− e−(βx)2
)α[

1+λ −λ
(

1− e−(βx)2
)α]

]n− j

.

Therefore, the pdf of the largest order statisticX(n) is given by

fX(n)
(x) = 2nαβ 2xe−(βx)2

(

1− e−(βx)2
)αn−1[

1+λ −2λ
(

1− e−(βx)2
)α]

(32)

×
[

1+λ −λ
(

1− e−(βx)2
)α]n−1

,

and the pdf of the smallest order statisticX(1) is given by

fX(1)
(x) = 2nαβ 2xe−(βx)2

(

1− e−(βx)2
)α−1[

1+λ −2λ
(

1− e−(βx)2
)α]

(33)

×
[

1−
(

1− e−(βx)2
)α[

1+λ −λ
(

1− e−(βx)2
)α]

]n−1

.

7 Application

In this section, we use a real data set to show that the transmuted generalized Rayleigh distribution can be a better model
than the generalized Rayleigh, Rayleigh and transmuted Rayleigh distribution.

We work with nicotine measurements made in several brands ofcigarettes in 1998. The data have been collected by the
Federal Trade Commission which is an independent agency of the US government, whose main mission is the promotion
of consumer protection.

The report entitled tar, nicotine, and carbon monoxide of the smoke of 1206 varieties of domestic cigarettes for the
year of 1998 at

http://www.ftc.gov/reports/tobacco and consists of the data sets and some information about the source of the data,
smokers behaviour and beliefs about nicotine, tar and carbon monoxide contents in cigarettes. The free form data set can
be found at http://pw1.netcom.com/ rdavis2/ smoke.html.

The site http://home.att.net/ rdavis2/cigra.html contains n = 384 observations. We analysed data about nicotine,
measured in milligrams per cigarette, from several cigarette brands. Some summary statistics for the nicotine data areas
follows: mean =0.852, median = 0.9, minimum = 0.1 and maximum= 2.
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Fig. 4: Empirical, fitted generalized Rayleigh and transmuted generalized Rayleighcdf of nicotine measurements data.
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Fig. 5: Estimated densities of the models for nicotine measurements data.

The variance covariance matrix of transmuted generalizedRayleigh(α̂ = 1.173, β̂ = 1.317, λ̂ =−0.681) is computed
as

I(θ̂)−1 =





0.199×10−1 0.313×10−2 0.121×10−1

0.313×10−2 0.155×10−2 0.389×10−3

0.121×10−1 0.389×10−3 0.145×10−1





Thus, the variances of the MLE ofα,β andλ becomeVar(α̂) = 0.199×10−1,Var(β̂ ) = 0.155×10−2 andVar(λ̂ ) =
0.145×10−1.
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Table 1: Estimated Parameters of the Rayleigh, transmuted Rayleigh, GR and transmuted GR distribution for nicotine measurements
data

Model Parameter Estimates 95%C.I -LL
Transmuted α̂ = 1.173 [0.8971,1.451] 112.443
Generalized β̂ = 1.317 [1.239,1.394]

Rayleigh λ̂ =−0.681 [−0.917,−0.445]
Generalized α̂ = 1.579 [1.346,1.811] 119.457

Rayleigh β̂ = 1.250 [1.326,1.175]
Transmuted σ̂ = 0.555 [0.528,0.582] 121.224

Rayleigh λ̂ =−0.7718095 [−0.914,−0.629]
Rayleigh σ̂=0.6475387 [0.618,0.687] 142.3572

Table 2: Criteria for Comparison.
Model K-S -2LL AIC AICC BIC

GR 0.281 238.914 242.914 242.949 250.606
TGR 0.122 224.886 230.886 230.956 242.425

The LR statistics to test the hypothesesH0 : λ = 0 versusH1 : λ 6= 0 : ω = 14.028> 3.841= χ2
1(α = 0.05), so we

reject the null hypothesis.
In order to compare the distributions, we consider some other criterion like K − S( Kolmogorow Smirnow),

−2log(L),AIC (Akaike Information Criterion), AICC(Akaike Information Criterion Corrected) and BIC(Bayesian
information criterion)for the real data set. The best distribution corresponds to lowerK − S, −2log(L), AIC, AICC and
BIC values:

AIC = 2k−2log(L), AICC = AIC+
2k(k+1)
n− k−1

,

and
BIC = k log(n)−2logL.

wherek is the number of parameters in the statistical model,n the sample size andL is the maximized value of the
likelihood function for the estimated model. Also, here forcalculating the values ofK −S we use the sample estimates of
λ andσ . Table 1 shows parameter MLEs to each one of the two fitted distributions, table 2 shows the values ofK − S,
−2log(L), AIC, AICC and BIC values. The values in table 2 indicate thatthe transmuted generalized Rayleigh distribution
leads to a better fit than the generalized Rayleigh distribution.

8 Conclusion

In this article, we propose a new model: the so-called the transmuted generalized Rayleigh distribution which extends
the generalized Rayleigh distribution in the analysis of data with real support. An obvious reason for generalizing a
standard distribution is because the generalized form is that it provides greater flexibility in modeling real data. We derive
expansions for the expectation, variance, moments and the moment generating function. The estimation of parameters is
approached by the method of maximum likelihood, also the information matrix is derived. We consider the likelihood ratio
statistic to compare the model with its baseline model. An application of the transmuted generalized Rayleigh distribution
to real data show that the new distribution can be used quite effectively to provide better fits than the generalized Rayleigh
distribution.
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