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Abstract: Based on the extracted contours of objects from images, one point tb(P&iR) method is proposed for shape matching
and image retrieval. Taking contour of one object as reference, wonfaanother object is transformed to reach their best match,
during which the similarity is evaluated by comparison of two corresponsig of contour points. Translation, scaling and rotation
are all considered in transformation, thus the algorithm is robust to ohjétttslifferent position, size and posture. The experimental
results are presented and compared with those from two popular sasge techniques, Hu invariant moments and Zernike moments.
Performance of our new approach has proved its efficiency in botbhing accuracy and computational expense, and it can be used
in related applications together with the other kinds of shape featuresmcelar features, texture features, etc.
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1 Introduction etc. The texture based methodsd,9] employ texture
features including the gray level co-occurrence matrix,
The image retrieval system is a computer system forwavelet transform, Markov random field, local binary
browsing, searching and retrieving images from a largepattern, etc. The shape based techniq8glfl, 12] adopt
database of digital images. Most traditional and commonshape features including boundary chain code, Fourier
methods of image retrieval utilize some approaches ofdescriptor, shape moments, etc. For the shape moments
adding the metadata such as captioning, keywords, ofelated methods, both Hu invariant moments and Zernike
descriptions to images so that retrieval can be performednoments are used very popularly.
over the annotation words. Avoiding the use of textual  According to the geometric invariant theory, seven
descriptions, another different approach of content-dbase classical moment invariants are constructed by 1,14,
image retrieval (CBIR) applies kinds of computer vision 15], and they are computed from the central moments
techniques to image retrieval, aims at retrieving imageshrough order three, while independent to image scale,
based on the similarities in their contents (colors, shapedranslation and rotation. The advantage of Hu invariant
textures, or any other information that can be derivedmoments is that the computation speed is very high, but
from the image itself) to a user-supplied query image orthe disadvantage is that the classification accuracy is low,
user-specified image features. mainly due to it considers only moments with low order,
CBIR has been studied since the early 1990s, withthus details of the objects in image are not well described.
which images are retrieved by the contents, e.g. pixels, The Zernike moments proposed by Khotanzad and
features or semanticd,2,3]. Until now most research Hong [16,17,18] is based on the Zernike polynomials
works focus on the features of image, e.g. color, shapeprthogonal function, which forms a complete orthogonal
texture, and so on. The color based approach¢s, §] basis set defined on the unit disc df+y? <= 1. The
utilize color features including color histogram, colot,se feature vector of the low-order moments describes overall
color moment, color coherence vector, color correlogram,shape of the target in image, while the feature vector of
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higher-order moments describes the details of the object. FE
Zernike moments are a set of orthogonal moments with ’ ' ’
rotation invariant features, and the moments can also be
constructed with arbitrarily high orders. Therefore they

have the ability to represent more image information and w m{‘ T
thus can obtain the higher matching accuracy. Of course, s G e 5

more expensive computational cost is the accompanying

problem of Zernike method. %
Considering that for some applications of shape based 77 7
image retrieval, contours of the objects are easy to be fég

extracted, no matter directly from the images or from the
already segmented regions with other methods. In this
paper, one point-to-point (P2P) algorithm is proposed
based on the sampled points from object contour, and is
used to compare the similarity of different objects by
contours. The novel approach can be applied for shape
based matching and then for image retrieval, by itself or
together with the other kinds of shape features, or even
with color features, texture features, etc.

The rest of our paper is organized as follows: the
pre-processing techniques for contour extraction are Fig. 2: Contour represented by different numbers of points
presented in Section 2, details of the P2P method are
proposed in Section 3, some experimental results are
displayed and analyzed in Section 4, and finally the
conclusion is given in Section 5. and computational expense, a set of sample points are

obtained from the object contour. As shown in Fig.2,
different numbers of 2D points evenly distributed along
2 Contour Points Extraction the boundary of an object are determined and used to
represent the extracted contour. From the left to the right,
Before contour points based shape matching, the image ithey are region of object, 30, 60 and 90 points sampled
pre-processed to extract the object contour in it. Since oufrom the extracted contour. Obviously, the contour can be
method is based on the obtained object contour and thugepresented in details with more points.
contour extraction is not the focus point of our work, we  Suppose the set & points evenly sampled along the
did not pay attention to those state-of-the-arts while veryextracted contour is defined & the ith point of P is
complex algorithms19,20,21,22] of contour extraction, represented aBJi], its coordinate vector i$; yi]", and
such as active contour model, level set method, interactiveéhey will be used in the description of our algorithm.
image segmenting, etc. Instead, a simple algorithm has
been developed to extract contours from image with the
help of some rela_ted functions from OpenCV, and the3 Details of P2P Algorithm
procedure is described as follows.

First, the cvSmooth() function is adopted to smooth
the input image, then the cvThreshold() function is
employed to convert the image into its binary format,
from which the targets can be distinguished from the
background. Second, we search for the object contour
from image with the cvFindContours() function, and then

utilize the cvDrawContours() function to fill the region rotation are all considered to make sure that the algorithm

surrounded by the contours. Finally, cvDilate() function . X . . .
and chrode(); function are subse)c/wently us%d to helpcan deal with or independent with the objects of different

eliminate the noise and refine the results. As shown inP°S!tioNs, sizes and postures.

Fig.1, the contour of target can be extracted from image:

the 1st column is the original input image, the 2nd . .

column is the corresponding binary image, the 3rd3.1 Position Translation

column is the filled region of object, and the 4th column

is the extracted contour. For one object, its position can be represented with the
The extracted contours will be further processed withcenter of its shape, while the center point can be

our proposed P2P algorithm for shape based comparisooomputed from the sample points of contour. Based on set

and matching. Considering both operational convenience>, the centeC of one object is calculated as the averaged

Fig. 1: The extracted contours from images

.....

The basic idea of our point-to-point algorithm is: taking
the contour of one object as reference, transform the
contour of another target object to reach their best match
%ssed on similarity evaluation through the comparison of
o corresponding sets of their sampled points. During
transformation, the operations of translation, scaling an
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east (SE), south west (SW), north west (NW). Xf
coordinates ol coordinates of 2 neighboring pixels are
identical, they belong to the group with distance 1 (N, E,
S, W); if neitherx coordinates nory coordinates of 2
—= neighboring pixels are identical, they belong to the group
with distance/2 (NE, SE, SW, NW). Suppose there are
g/ll andM2 pairs of neighboring pixels belonging to these

two different groups respectively, si&i.e. the perimeter
of one object is calculated as:

The relationships between two neighboring pixels are
described as 8 kinds of neighborhoods including north
—= (N), east (E), south (S), west (W), north east (NE), south

Fig. 3: Size scales based on area (the 1st row) and perimeter (th
2nd row)

S=M1x1+M2x/2 (4)

value of allx coordinates and alf coordinates from the . . .
points ofP respectively, by: Suppose the reference objectriawith size &, the

target object to be comparedtisvith sizeS, target object

SN (%) t can be normalized using the ratio betwe&nand .
CX:PT (1)  Through the processing of each pixel in dRt size
normalization of object is achieved by:
DI\ S
Cy==50" ) Xt= g *xi-t ®)

Then the center of object is translated to the position
of (0, 0), i.e. the origin of the virtual 2D world coordinate . S ; 6
system. Since the object is represented through its contour yit= g *Yi- (6)

points, the translation is implemented with Beas: where §;_t, y;_t) is the coordinates of thiéh contour pixel

/1 DT T of objectt, while (X_t, y/_t) is the transformed results of
PIi] =Pl - [CxCy] 3 the pixel. With si;‘e scal1ling, reference and target objects
whereP'[i] is the transformed result &fi]. With position ~have the similar scales, thus P2P algorithm is independent
translation, the centers of different objects can becomd® objects with different sizes.
identical, and the P2P algorithm is thus independent to
the objects with different locations.
3.3 Posture Rotation

3.2 Sze Scaling After the aforementioned position translation and size
scaling, the similarity of two different objects can be
Since objects with the same shape may have differentneasured. Taking reference objeand target objedt as
sizes, sizes of objects should be measured and normalizegkamples, the difference between them is calculated with
before comparison. Area and perimeter are often used téheir contour points as:
represent the size of one object, and the related scaling
results with them are shown in Fig.3. For area based size D— N \/(x- =X 12+ (Vi t—yi_r)2 @
scaling, the number of black pixels (the 1st row of Fig.3) - i; A Yirt=¥i-
within the region of object is calculated. After scaling
relative to the referenced full moon, size of the crescent  However, the comparison is just between reference
moon is increased to have the same area. For perimeteind one posture of targetTo reach the best match among
based size scaling, the sum of distances between evemyiem, target has to be rotated around its center, and all
two neighbor pixels of contour (the 2nd row of Fig.3) is postures ot are compared with referencerespectively
computed. After scaling relative to the full moon, size of by Formula (7). From the results the minimum difference
the crescent moon is adjusted to have the same perimetefalue is obtained, and thus the posture efith the best
Considering that our P2P algorithm works on the sampledmatch can be determined. Suppose targetrotated with
points of contour, the perimeter based size scaling is thusingled (e.g. 1, 2; - -, 360 degrees, based on the step value
adopted since it makes the contours to be compared havgf 1.0 degree), contour points bére transformed through

the same length. point setP by:

To speed up the operation of size scaling, computation
of all distances between every two neighbor pixels of the X_t| [cos® —sinB | [x_t 8
contour is replaced with the following method. y_t| | sinB cosf | |yi_t ®)
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b -~ Fig. 5: The retrieved results of shoe pictures

Fig. 4: Matched results of two objects from P2P algorithm + + ' * -r [ .

With posture rotation and comparison, the best match 4‘ ‘*‘ * 4‘ * 4*

between reference object and target object is achieved,
which makes the P2P algorithm independent to objects * + + * ‘f 4\
with different postures.

As illustrated in Fig.4, two objects (shoe images in the
1st row) with different positions, sizes and postures are
processed with P2P algorithm. After translation, scaling
and rotation, the best matched result (contours of two
shoes in the 2nd row) is obtained, and the difference value
of them is computed with Formula (7).

Of course, the difference value corresponding to the
best match can be taken as the similarity between two
objects. Through comparing an object with a group of
candidates by the similarities, shape based matching and
image retrieval can be implemented.

Fig. 6: The retrieved results of toy pictures

4 Experimental Results Fig. 7: The retrieved results of food pictures

The contour based points to points (P2P) algorithm is first

tested on a set of pictures with shoe. To evaluate the

performance of being invariant to image translation, scaleare shown in the 1st, 2nd, 3rd rows respectively. All the
and rotation, the shoe picture to be matched, its scaleéxperimental results prove that the proposed P2P method
image, and its rotated image are all taken as candidatelsas the best performance for shape matching and image
and put into the set of 35 shoe pictures. retrieval, while in most cases method of Zernike moments

As shown in Fig.5, the first picture in each row is the performs better than that of Hu invariant moments.
object to be retrieved, and the other pictures in the same To test the computing complexity of our P2P based
row are 5 of matched results sorted by their similaritiesalgorithm, the computational costs of Hu method, Zernike
with the object, i.e. ordered from the highest similarity to method and P2P method on 35 shoe pictures are shown in
the lower similarity. Results of the 1st row are from Hu Fig.8. The horizontal axis represents the number of each
invariant moments, results of the 2nd row are from Zernikepicture, while the vertical axis represents the time (unit:
moments, while results of the 3rd row are from our P2Pms) spent on both contour points extraction and P2P
algorithm. From the experimental results it can be foundmatching of the related picture. From the comparison, it
that our approach obtains the best retrieval performance;zan be found that computational expense of the proposed
even for the candidates with similar shapes but differentP2P method is less than that of Zernike method while
locations, sizes and postures. more than that of Hu method.

Then the P2P algorithm is tested on 50 toy pictures  With the help of P2P method, other new algorithms
(Fig.6) and 20 food pictures (Fig.7) consequently. Similarcan be implemented through combination of different
with the experiment on shoe pictures, the object to beapproaches. For example, Hu method and the proposed
matched and the ordered retrieval results are shown ifP2P method can be combined as: (1) the candidate
each row from left to right, while the results from Hu pictures are matched and retrieved by Hu method, (2) the
invariant moments, Zernike moments and P2P algorithmpictures with lower similarities are ignored, (3) only the
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. Of course, applications of P2P algorithm are limited
250 { due to the fact that the contours of shapes should be
- W‘M determined firstly and properly through applying object
et segmenting or edge extraction in image. Until now the
R [ e ppre—"— L ve—— o, ll=damilie accurate detections of interesting regions are still very
100 | kPP hard to be implemented automatically, and in many cases

s 4 human interventions are required to instruct the related
WM algorithms or refine the obtained results.
1 3 5 7 9 1113 15 17 19 21 23 25 27 29 31 33 35

Fig. 8: Computing costs of different methods on shoe pictures Acknowledgement
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