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Departamento de Matemática, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito, Ecuador

Received: 3 Jan. 2014, Revised: 8 Mar. 2014, Accepted: 13 Mar. 2014
Published online: 1 Jul. 2014

Abstract: The Gompertz constant appears in the evaluation of several improper integrals and infinite series. In the present paper we
give a new series representation of this constant.
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1 Introduction

Our goal is to prove the following identity:

G=
∞

∑
n=0

ln(n+1)
n!

−
∞

∑
n=0

Cn+1{e·n!}−
1
2
.

Here G = 0.596347362323194. . . is the Gompertz
constant, Cn is the sequence of theGregory coefficients,
and{x} denotes thefractional partof x.

2 Preliminaries

The Gompertz constant [5] appears as a value of several
improper integrals, like

G=

∫ ∞

0
ln(1+ x)e−xdx=

∫ ∞

0

e−x

1+ x
dx, (1)

and as a product of the Napier constante and the
exponential integralEi(x) at x = −1. More precisely,
Ei(x) is defined as

Ei(x) =−
∫ ∞

−x

e−t

t
dt,

and thenG=−eEi(−1), that is,G also equals to

e
∫ ∞

1

e−t

t
dt (2)

(which is just a slight modification of the integral on the
far right side of (1)). A series representation ofG is also
known:

G= e
∞

∑
n=1

(−1)n+1

n!n
−eγ.

Hereγ = 0.577215664901533. . . is theEuler constant[4]
(sometimes called asEuler-Mascheroni constant).

We also note thatG can be expressed by theincomplete
gamma function

Γ (a,x) =
∫ ∞

x
ta−1e−tdt :

G = e · Γ (0,1), which follows from (2). This latter
representation helps to find a continued fraction
representation forG. Namely, it is known [13] that

Γ (0,x) =
e−x

x+1−
1

x+3−
4

x+5−
9

x+7−
. . .

,

from which the next expression comes:

G=
1

2−
1

4−
4

6−
9

8−
. . .

.
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(The nominators are the squares of the positive integers.)
In the present paper we would like to increase the

number of the existing representations of the Gompertz
constant with the new identity in the Introduction. To
reach this aim, we need to introduce the Gregory
coefficients. These are the Taylor series coefficients of the
function x

ln(1−x) :

x
ln(1− x)

=
∞

∑
n=0

Cnxn (|x|< 1). (3)

(If x = 0 we can use the convention 00 = 1 to match the
right hand side with the limit on the left.)

The coefficientsCn were first studied by James
Gregory, who calculated the first several terms in 1670.
This sequence is important in the theory of numerical
integration (via Gregory’s formula, see [1,10]). A table of
the first terms of the sequenceCn is presented here:

n 0 1 2 3 4 5 6 7
Cn −1 1

2
1
12

1
24

19
720

3
160

863
60480

275
24192

For these coefficients an integral formula is known:

Cn =
1
n!

∣

∣

∣

∣

∫ 1

0
t(t −1) · · ·(t −n+1)dt

∣

∣

∣

∣

(n= 1,2, . . .).

There are various names of the sequenceCn and of its
variants. For example, the Gregory coefficients are also
called the logarithmic numbers – because of the
generating function (3). Moreover, the numbersCn ·n! are
called thenon-alternating Cauchy numbers[2] and the
numbers(−1)n+1Cn · n! are theBernoulli numbers of the
second kindor Cauchy numbers (of the first kind)[11, p.
114]. For the Gregory coefficients some interesting
identities are known. For example [2],

γ =
∞

∑
n=1

Cn

n
.

See also [9] for some additional identities.
Finally, we remark that the Gregory coefficients are

strongly related to Nørlund polynomials [3]. These
polynomials are defined by the exponential generating
function

∞

∑
n=0

B(a)
n

xn

n!
=

(

x
ex−1

)a

.

Since the diagonal generating function ofB(n)
n reads as

∞

∑
n=0

B(n)
n

xn

n!
=

x
(x+1) ln(x+1)

,

it immediately comes that

Cn = (−1)n+1

(

B(n−1)
n−1

(n−1)!
+

B(n)
n

n!

)

(n≥ 1).

(The above generating function ofB(n)
n comes from a result

of H. W. Gould [6, Section 3.]

3 The proof

The formula we begin with is an integral representation of
thedigamma function[7]

ψ(x) =−γ +
∞

∑
n=0

(

1
n+1

−
1

n+ x

)

,

wherex∈ R\ {0,−1,−2, . . .}. Namely, forn= 1,2, . . .

ψ(n)− lnn=

∫ ∞

0

(

1
1−ex +

1
x
−1

)

e−nxdx. (4)

At positive integers the digamma function can be
represented as a simple finite sum [7]:

ψ(n) =−γ +1+
1
2
+

1
3
+ · · ·+

1
n−1

.

The sum excluding the term−γ is the(n−1)-th harmonic
numberdenoted byHn−1:

Hn−1 = 1+
1
2
+

1
3
+ · · ·+

1
n−1

.

With this we can rewrite (4) as

Hn

n!
−

γ
n!

−
ln(n+1)

n!
=

∫ ∞

0

(

1
(1−ex)ex +

1
xex −

1
ex

)

e−nx

n!
dx.

Summing overn= 0,1,2, . . . we have

∞

∑
n=0

Hn

n!
−eγ −

∞

∑
n=0

ln(n+1)
n!

=

∫ ∞

0

(

1
(1−ex)ex +

1
xex −

1
ex

)

ee−x
dx.

The first sum on the left is well known and due to R. W.
Gosper [8]:

∞

∑
n=0

Hn

n!
= eγ −eEi(−1) = eγ +G.

For the second sum we could not find a simple closed
form expression neither in the literature nor by ourselves.
However, as the reviewer kindly noted to us, this sum was
discussed on a private math forum. According to this
forum – as Wm. Cordwell noted –, this constant,
multiplied by an integern and divided by log(2), is the
expected information loss from a random map on the set
{1, . . . ,n}.

We continue with the evaluation of the integral on the
right.

The most simple case is the term

−

∫ ∞

0

ee−x

ex dx.
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which equals to 1− e (since the primitive function of
ee−x

/ex is−ee−x
). Hence, at this point we have

G=
∞

∑
n=0

ln(n+1)
n!

+1−e+
∫ ∞

0

(

1
(1−ex)ex +

1
xex

)

ee−x
dx.

(5)
Now, we deal with the remaining improper integral.

The substitutionsx 7→ −x and thenx 7→ lnx leads to the
equality

∫ ∞

0

(

1
(1−ex)ex +

1
xex

)

ee−x
dx=−

∫ 1

0
ex
(

1
lnx

+
x

1− x

)

dx.

The two terms cannot be separated, becaue they are
divergent. The reason of the divergence of the integrals

∫ 1

0
ex 1

lnx
and

∫ 1

0
ex x

1− x
dx

can be seen if we consider the Laurent series of1
lnx around

x= 1. Namely, by using (3):

1
lnx

=
1

x−1
+

∞

∑
n=0

Cn+1(−1)n(x−1)n,

which holds in the intervalx∈ ]0,2[. On this open interval
the series on the right is absolutely convergent, so
integration term by term is possible. The only one
problem arises when we try to integrate 1/(x−1), but this
singularity is cancelled by the other termx/(1 − x),
because of the trivial equality 1/(x−1)+x/(1−x)=−1.
Therefore the next simplification is possible:

−
∫ 1

0
ex
(

1
lnx

+
x

1− x

)

dx=

e−1−
∞

∑
n=0

Cn+1(−1)n
∫ 1

0
ex(x−1)n.

At the same time, employing (5), we obtain an
intermediate formula forG:

G=
∞

∑
n=0

ln(n+1)
n!

−
∞

∑
n=0

Cn+1(−1)n
∫ 1

0
ex(x−1)n. (6)

Now we use the binomial theorem to determine the
integral. Easy induction shows that

∫ 1

0
ex(x−1)n =

∫ 1

0

n

∑
k=0

(

n
k

)

(−1)n−kexxk =

n

∑
k=0

(

n
k

)

(−1)n−k
(

(−1)k+1k! +(−1)k ·e·Dk

)

,

whereDk is thekth derangement numberwhich is equal to

Dk =
k

∑
l=0

(

k
l

)

(−1)k−l l !.

See [12, p. 199] for other properties of these significant
combinatorial numbers. What is important for us is that

n

∑
k=0

(

n
k

)

Dk = n! (n≥ 0)

(see (2.9) and (2.10) of [12, p. 198] for the general
formulas on binomial transformation.) Hence

n

∑
k=0

(

n
k

)

(−1)n−k
(

(−1)k+1k! +(−1)k ·e·Dk

)

=

(−1)n+1
n

∑
k=0

(

n
k

)

k! +(−1)n ·e·n!,

Moreover, we utilize the simple fact that
n

∑
k=0

(

n
k

)

k! = ⌊e·n!⌋ (n≥ 1).

By using these, we have for alln≥ 1 that
∫ 1

0
ex(x−1)n = (−1)n (e·n! −⌊e·n!⌋)= (−1)n{e·n!}.

If n= 0, however, we have that
∫ 1

0 exdx= e−1, andC1 =
1
2. SinceC1(e−1) is half more thanC1{e·0!}, we have to
add 1

2 to match this case to the general termCn+1{e· n!}
of the sum.

Our main formula has been proved after a
straightforward substitution of the value of the integral.
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