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Abstract: The Belousov-Zhabotinsky reaction model represents chemical oscillators that exhibit periodic vibrations as a result of

complex physic-chemical phenomena. The non-linear behaviour exhibited by Belousov-Zhabotinsky model is the cause of Turing

patterns, birth of spiral waves, rise of limit cycle attractors, and deterministic chaos in many chemical reaction processes. Due to these

noteworthy characteristics, in this paper, we have analyzed mathematical Belousov-Zhabotinsky model by a novel numerical approach

q-Homotopy analysis transformation method. To interpret new observations, we have incorporated Caputo fractional derivative in the

model. The numerical result are presented graphically and concerning the absolute error of solutions. With the help of the homotopy

parameter curve, we have projected the convergence region with reference to diverse values of fractional derivative. This work

establishes that the projected numerical algorithm is a well-organized tool to analyze the multifaceted coupled partial differential

equation representing Belousov-Zhabotinsky type reactions.

Keywords: : Laplace transform; Caputo derivative; Belousov-Zhabotinsky system; q-Homotopy analysis method.

1 Introduction

When L’Hopital approached Leibniz somewhere in the year 1695 about the potential that n could be something other

than an integer in
dn f
dtn , the idea of fractional calculus was born. It sparked a debate on the matter that included notable

mathematicians like Euler and Fourier. In 1730, a generalized law for calculating the derivative of a power function was
introduced by Euler. Since then, many distinguished mathematicians have contributed to this field, including G. W.
Leibniz, P. S. Laplace, J. Fourier, J. Liouville, B. Riemann, N. H. Abel, O. Heaviside, J. Hadamard , A. K. Grunwald, G.
H. Hardy, H. J. Holmgren, A. V. Letnikov, M. Caputo, and others. As a result, many fractional derivatives, namely
Grunwald-Letnikov, Riemann-Liouville, Caputo, Hadamard and other types have been introduced in the literature of
fractional calculus [1–4]. However, for more than 200 years, fractional Calculus has been rarely taught as part of
curricular, owing to the contradiction of several proposed definitions for fractional derivatives and the lack of practical
applications. As a result, most scientists and engineers are unaware of the subject, while others are sceptical. Since past
45 years, the premise eventuated to change from pure mathematical analysis to applications in a variety of fields, as
several applied scientists identified and demonstrated that integer-order differential operators are not adequate to
symbolize physical properties such as long-range, random walk, non-Markovian processes, anomalous diffusion, and,
most essentially, diversified behaviour. In order to precisely recreate the above-mentioned natural processes, the notion
of non-local differential operators and local differential operators, in conjunction with the power-law setting was
proposed. Oldham and Spanier [1], Miller and Ross [2], Kiryakova [3], Carpinteri and Mainardi [4], Podlubny [5], and
Hilfer [6] Samko, Kilbas, and Srivastava [7], have all written books and monographs that have helped to introduce the
field to the engineering, science, economics, and finance communities. As a result of continuous progress in this field,
fractional calculus has made a reflective impression in the areas such as viscoelasticity and rheology [8], biology [9]
signal and image processing [10], biophysics and bioengineering [11], physics [12], mechanics [13], earthquake [14, 15],
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Finance [16], trafic model [17] and many others [18–20]. Even though fractional derivatives like Riemann-Liouville,
Caputo have dominated this field for many decades, Caputo-Fabrizio [21, 22] and Atagnana- Baleanu [23–25] fractional
derivatives in the presence of the non-singular kernel in them, have gained popularity in recent years.

Near the beginning of 1950s, Boris Belousov noticed that a solution of potassium bromate, citric acid, and
cerium(IV) sulfate in dilute sulfuric acid did not react to equilibrium directly, instead it went colorless for a long time
before returning to yellow. Since 1951, he had been trying to publish his work in peer-reviewed publications, but his
findings had been denied because the reviewers believed that they violated the principle of thermodynamic equilibrium.
Chemical oscillations were compared to a physical pendulum that defied the Second Law of Thermodynamics by
swinging through equilibrium numerous times. Eight years later, in 1959, in a conference proceeding Belousov’s work
was ultimately published [26]. Anatol Zhabotinsky, a doctoral student working under Professor Schnoll’s supervision,
examined the reaction in depth in 1961 and was able to publish his findings [27]. Belousov-Zhabotinsky (BZ) reaction is
the name of this temporally oscillating chemical reaction and this is amongst the most intriguing and well-documented
chemical oscillators. Based on the method which Field et al. [28] had projected concerning the Belousov reaction, Field
and Noyes proposed a five-step model:

a+R → S + p

R +S → p

b+S → 2R+ Z

2R → q

Z → fS

(1)

where R, S and Z represent the concentration of the intermediaries bromous acid, bromate ion, and cerium IV
respectively, p and q are products, and a and b are reactants. The model’s product and reactant concentrations are kept
constant, resulting in a functionally open system. By applying the law of mass action to reaction (1), the following
differential equations characterizing the model’s dynamics are produced :

dR

dτ
= β1aS −β2RS +β3bR− 2β4R

2
,

dS

dτ
=−β1aS −β2RS + f β3Z,

dZ

dτ
= β3bR−β5Z.

(2)

The forward rate constants for reaction (1) are denoted by βi(i = 1,2,3,4,5) in Eq. (2). If in the model (2), it is
assumed that the intermediaries R,S ,Z can be diffused with constant diffusion coefficients say k1,k2,k3, and then they
are to be the functions of the spatial variables x,y,z and time variable t. Then model (2) takes the following form:

dR

dτ
= β1aS −β2RS +β3bR− 2β4R

2 +κ1
∂ 2R

∂κ2
,

dS

dτ
=−β 1aS −β2RS + f β3Z +κ2

∂ 2S

∂κ2
,

dZ

dτ
= β3bR−β5Z +κ3

∂ 2Z

∂κ2
.

(3)

Field and Noyes [29] noted that the concentration of cerium IV is zero in the foremost boundary of a wavefront of chemical
activity and hence set Z = 0 in (3) to suggest the following model:

dR

dτ
= β1aS −β2RS +β3bR− 2β4R

2 +κ1

∂ 2R

∂κ
,

dS

dτ
=−β1aS −β2RS +κ2

∂ 2S

∂κ2
.

(4)

Considering the multifaceted behaviour of the fractional differential equations (FDEs), many classical numerical
techniques are modified to make them compatible for handling FDEs. They include Adomian decomposition
method [30], He’s variational iteration method [31], homotopy perturbation method [32], homotopy analysis method
(HAM) [33], differential transform method [34], predictor-corrector approach [35], artificial neural network
approach [36] and many others [37–39]. Because HAM [40] is used to solve nonlinear problems without transformation,
linearization, and discretization, it needs large CPU time and computer memory. But combining HAM with
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well-established transform resolves this issue. In order to reduce the large computation and computer memory, in this
paper, we have considerd a modified version of HAM incorporating Laplace transform in it, named as q-homotopy
analysis transform method (q-HATM) [41]. The considered algorithm is used to study numerous well-known nonlinear
models because to its effectiveness and consistency, and the results show that the nature of the captured behaviour is
exceptional [42, 43]. The proposed method is useful since it includes a convergence-control parameter that allows us to
easily alter and have power over the region of convergence and speed of convergence of the approximation series. Due to
this advantage, q-HATM is advanced in contrast to other analytic methods and perturbation techniques present in the
literature. The BZ reaction model with a convenient form is presented as

∂R (κ,τ)

∂τ
= κ1

∂ 2R

dκ2
+ δαS +R(1−R)−αRS ,

∂S (κ,τ)

∂τ
= κ2

∂ 2S

dκ2
+ γS −βRS .

(5)

Here, κ1 and κ2 are the diffusion constants for the concentration R and S respectively. Moreover, δ , γ are
constants and α, β 6= 1 are positive parameters. To extract more information about the model, we have considered the
equation (5) in the frame of Caputo fractional derivative and applied q-HATM to solve it. The fractional BZ equation is
presented as:

D
µ
t R (κ,τ) = κ1

∂ 2R

dκ2
+ δαS +R(1−R)−αRS ,

D
µ
t S (κ,τ) = κ2

∂ 2S

dκ2
+ γS −βRS .

(6)

This work is structured as follows: Section 2 contains the preliminary definitions corresponding to Caputo fractional
derivative. The solution procedure of q-HATM is presented in Section 3. Then, the solutions for considered coupled
system (6) under the influence of two different initial conditions are demonstrated using q-HATM method and presented
their analysis graphically and error analysis in Section 4. Finally, we have produced the results and discussion in Section
5, followed by conclusion in Section 6.

2 Preliminaries

The basic definitions related to fractional calculus and LT are presented in this segment.

Definition 1(5). The fractional Riemann-Liouville integral of a function f (t) ∈Cδ (δ ≥−1)(α > 0) is defined as

Jµ f (t) =
1

Γ (µ)

∫ t

0
(t −ϑ)µ−1

f (ϑ)dϑ ,

J0 f (t) = f (t).

(7)

Definition 2(5). The Caputo fractional derivative for f ∈ H1 (a, b) is presented as

D
µ
t f (t) =

{

dn f (t)
dtn , µ = n ∈N ,

1
Γ (n−µ)

∫ t
0 (t −ϑ)n−µ−1

f (n) (ϑ)dϑ , n− 1 < µ < n ,n ∈ N.
(8)

Definition 3(5). The LT of fractional Caputo derivative of f (t) is

L
[

D
µ
t f (t)

]

= sµ F (s)−
n−1

∑
r=0

sα−r−1 f (r)
(

0+
)

, (n− 1 < µ ≤ n) , (9)

where F (s) is LT of f (t).

3 Solution Procedure of q-HATM

In this section, we hired the FDE to present the basic algorithm of the q-HATM scheme with initial conditions

D
µ
t v(x, t)+R v(x, t)+N v(x, t) = f (x, t) , 0 < µ ≤ 1, (10)
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and
v(x,0) = g(x) . (11)

By employing LT on Eq. (10), then one can get

L [v(x, t)]−
g(x)

s
+

1

sµ
{L [Rv(x, t)]+L [N v(x, t)]−L [ f (x, t)]}= 0. (12)

For ϕ(x, t;q), N is contracted as follows

N [ϕ (x, t;q)] = L [ϕ (x, t;q)]−
g(x)

s
+

1

sµ
{L [N ϕ (x, t;q)+L [R ϕ (x, t;q)]]−L [ f (x, t)]} , (13)

where q ∈
[

0, 1
n

]

. Now, the homotopy is presented as

(1− nq)L [ϕ (x, t;q)− v0 (x, t)] = ℏqN [ϕ (x, t;q)] , (14)

then we have

ϕ (x, t;0) = v0 (x, t) , ϕ

(

x, t;
1

n

)

= v(x, t) . (15)

Clearly, ϕ(x, t;q)changes from v0 (x, t) to v(x, t) when intensifying q from 0 to 1
n
. By using the Taylor theorem, we get

ϕ (x, t;q) = v0 (x, t)+
∞

∑
m=1

vm (x, t)qm
, (16)

where

vm (x, t) =
1

m!

∂ mϕ(x, t;q)

∂qm
|q=0. (17)

For the appropriate value of v0 (x, t), Eq. (17) converges at q = 1
n
, n and ℏ. Then

v(x, t) = v0 (x, t)+
∞

∑
m=1

vm (x, t)

(

1

n

)m

. (18)

After differentiating Eq. (14) m-times with q and multiplying by 1
m!

and substituting q = 0, we have

L [vm (x, t)− kmvm−1 (x, t)] = ℏRm (−→v m−1) (19)

where
−→v m = {v0 (x, t) ,v1 (x, t) , . . . ,vm (x, t)} . (20)

Eq. (19) simplifies after hiring inverse LT to

vm (x, t) = kmvm−1 (x, t)+ℏL
−1 [Rm (−→v m−1)] . (21)

Here

Rm (−→v m−1) = L [vm−1 (x, t)]−

(

1−
km

n

)(

g(x)

s
+

1

sµ
L [ f (x, t)]

)

+
1

sµ
L [Rvm−1 +Hm−1] , (22)

and

km =

{

0, m ≤ 1,

n, m > 1.
(23)

In Eq. (22), Hm is homotopy polynomial and which is defined as

Hm =
1

m!

[

∂ mϕ(x, t;q)

∂qm

]

q=0

and ϕ(x, t;q) = ϕ0 + qϕ1 + q2ϕ2 + . . . . (24)

By using Eqs. (21) and (22), we have

vm (x, t) = (km +ℏ)vm−1 (x, t)−

(

1−
km

n

)

L
−1

(

g(x)

s
+

1

sµ
L [ f (x, t)]

)

+ℏL
−1

{

1

sµ
L [Rvm−1 +Hm−1]

}

. (25)

By the help of q-HATM, the series solution is

v(x, t) = v0 (x, t)+
∞

∑
m=1

vm (x, t). (26)
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4 Solution for the Considered Coupled System

In this section, we have considered Eq. (6) subject to different initial conditions and solved them with the help of q-HATM.
The obtained results are projected graphically and in tabular form.

Example 1.

D
µ
t R (κ,τ)−

∂ 2
R

dκ2
−αS −R+R

2 +αRS = 0,

D
µ
t S (κ,τ)−

∂ 2S

dκ2
−βS +βRS = 0, (27)

with initial conditions

R (κ,0) =
1

(

e

√

β
6
κ + 1

)2
, S (κ,0) =

β − 1

α

(

e

√

β
6
κ + 1

)2
. (28)

Taking LT on Eq. (27) and then using the Eq. (28), we get

L [R (κ,τ)]−
1

s











1
(

e

√

β
6
κ + 1

)2











−
1

sµ
L

{

∂ 2R

dκ2
+αS +R−R

2 −αRS

}

= 0,

L [S (κ,τ)]−
1

s











β − 1

α

(

e

√

β
6
κ + 1

)2











−
1

sµ
L

{

∂ 2S

dκ2
+βS −βRS

}

= 0. (29)

The non-linear operator N is presented with the help of future algorithm as below

N1 [ϕ1 (κ,τ;q) , ϕ2 (κ,τ;q)] = L [ϕ1 (κ,τ;q)]−
1

s











1
(

e

√

β
6 κ + 1

)2











−
1

sµ
L[

∂ 2ϕ1 (κ,τ;q)

dκ2
+αϕ2 (κ,τ;q)+ϕ1 (κ,τ;q)− ϕ2

1 (κ,τ;q)

−αϕ1 (κ,τ;q)ϕ2 (κ,τ;q)],

N2 [ϕ1 (κ,τ;q) , ϕ2 (κ,τ;q)] = L [ϕ2 (κ,τ;q)]−
1

s











β − 1

α

(

e

√

β
6
κ + 1

)2











(30)

−
1

sµ
L

[

∂ 2ϕ2 (κ,τ;q)

dκ2
+β ϕ2 (κ,τ;q)−β ϕ1 (κ,τ;q)ϕ2 (κ,τ;q)

]

.

The deformation equation of m order by the help of q-HATM at H (κ,τ) = 1, is given as follows

L [Rm (κ,τ)− kmRm−1 (κ,τ)] = ℏR1,m

[−→
Rm−1,

−→
S m−1

]

,

L [Sm (κ,τ)− kmvm−1 (κ,τ)] = ℏR2,m

[−→
Rm−1,

−→
S m−1

]

, (31)
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where

R1,m

[−→
Rm−1,

−→
S m−1

]

= L [Rm−1 (κ,τ)]−

(

1−
km

n

)

1

s

1
(

e

√

β
6 κ + 1

)2

−
1

sµ
L

[

∂ 2Rm−1

dκ2
+αSm−1 +Rm−1 −

m−1

∑
i=0

RiRm−1−i−α
m−1

∑
i=0

RiSm−1−i

]

,

R2,m

[−→
Rm−1,

−→
S m−1

]

= L [Sm−1 (κ,τ)]−

(

1−
km

n

)

1

s

β − 1

α

(

e

√

β
6 κ + 1

)2

+
1

sµ
L

[

∂ 2Sm−1

dκ2
+βSm−1 −β

m−1

∑
i=0

RiSm−1−i

]

. (32)

On applying inverse LT on Eq. (31), it reduces to

Rm (κ,τ) = kmRm−1 (κ,τ)+ℏL−1
[

R1,m

[−→
Rm−1,

−→
S m−1

]]

,

Sm (κ,τ) = kmSm−1 (κ,τ)+ℏL−1
[

R2,m

[−→
Rm−1,

−→
S m−1

]]

. (33)

On simplifying the above equation systematically by using R0 (κ,τ) =
1



e

√

β
6
κ

+1





2 andS0 (κ,τ) =
β−1

α



e

√

β
6
κ

+1





2 we

obtained the terms of the series solution

R (κ,τ) = R0 (κ,τ)+
∞

∑
m=1

Rm (κ,τ)

(

1

n

)m

,

S (κ,τ) = S0 (κ,τ)+
∞

∑
m=1

Sm (κ,τ)

(

1

n

)m

. (34)

The corresponding exact solution for Eq. (27) is R (κ,τ) = e
5β
2

τ



e

√

β
6
κ

+e
5β
2

τ





2 and S (κ,τ) = (β−1)e
5β
2

τ

α



e

√

β
6
κ

+e
5β
2

τ





2 .

Example 2.

D
µ
t R (κ,τ)−

∂ 2R

dκ2
−R+R

2 +αRS = 0,

D
µ
t S (κ,τ)−

∂ 2
S

dκ2
+βRS = 0, (35)

with initial conditions

R (κ,0) =
1

(

e

√

β
6 κ + 1

)2
, S (κ,0) =

(1−β )e

√

β
6
κ

(

e

√

β
6
κ + 2

)

α

(

e

√

β
6 κ + 1

)2
. (36)
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Taking LT on Eq. (35) and then using the Eq. (36), we get

L [R (κ,τ)]−
1

s











1
(

e

√

β
6
κ + 1

)2











−
1

sµ
L

[

∂ 2R

dκ2
+R−R

2 −αRS

]

= 0,

L [S (κ,τ)]−
1

s











(1−β )e

√

β
6 κ

(

e

√

β
6 κ + 2

)

α

(

e

√

β
6 κ + 1

)2











−
1

sµ
L

[

∂ 2S

dκ2
−βRS

]

= 0. (37)

The non-linear operator N is presented with the help of future algorithm as below

N1 [ϕ1 (κ,τ;q) , ϕ2 (κ,τ;q)] = L [ϕ1 (κ,τ;q)]−
1

s











1
(

e

√

β
6
κ + 1

)2











−
1

sµ
L

[

∂ 2ϕ1 (κ,τ;q)

dκ2
+ϕ1 (κ,τ;q)− ϕ2

1 (κ,τ;q)−αϕ1 (κ,τ;q)ϕ2 (κ,τ;q)

]

N2 [ϕ1 (κ,τ;q) , ϕ2 (κ,τ;q)] = L [ϕ2 (κ,τ;q)]−
1

s











(1−β )e

√

β
6 κ

(

e

√

β
6 κ + 2

)

α

(

e

√

β
6 κ + 1

)2











−
1

sµ
L

[

∂ 2ϕ2 (κ,τ;q)

dκ2
−β ϕ1 (κ,τ;q)ϕ2 (κ,τ;q)

]

. (38)

Then, we have by Eq. (27)

R1,m

[−→
Rm−1,

−→
S m−1

]

= L [Rm−1 (κ,τ)]−

(

1−
km

n

)

1

s



















1
(

e

√

β
6 κ + 1

)2



















−
1

sµ
L

[

∂ 2Rm−1

dκ2
+αSm−1 +Rm−1 −

m−1

∑
i=0

RiRm−1−i −α
m−1

∑
i=0

RiSm−1−i

]

R2,m

[−→
Rm−1,

−→
S m−1

]

= L [Sm−1 (κ,τ)]−

(

1−
km

n

)

1

s



















(1−β )e

√

β
6 κ

(

e

√

β
6 κ + 2

)

α

(

e

√

β
6 κ + 1

)2



















+
1

sµ
L

[

∂ 2Sm−1

dκ2
+βSm−1 −β

m−1

∑
i=0

RiSm−1−i

]

. (39)

On simplifying the above equation systematically by using

R0 (κ,τ) =
1

(

e

√

β
6 κ + 1

)2
and S0 (κ,τ) =

(1−β )e

√

β
6
κ

(

e

√

β
6
κ + 2

)

α

(

e

√

β
6 κ + 1

)2
, (40)
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we obtained the terms of the series solution. The corresponding exact solution for Eq. (35) is

R (κ,τ) =
e

5β
3 τ

(

e

√

β
6 κ + e

5β
3 τ

)2

and

S (κ,τ) =

(1−β )e

√

β
6 κ

(

e

√

β
6 κ + 2e

5β
3 τ

)

α

(

e

√

β
6 κ + e

5β
3 τ

)2

.

5 Numerical Results and Discussion

This section presents an analysis of the numerical results obtained in Section 4 for the solution of the BZ model within
the framework of Caputo fractional derivative using q-HATM. Graphical representations of solution curves of
concentration R (κ,τ) and S (κ,τ) in spatio-temporal context give very interesting observations. Fig. 1 and Fig. 4 give
the 3D representation of the comparison of q-HATM solutions with exact solutions for µ = 1 corresponding to Example
1 and Example 2 respectively. These profiles agree with the 2D profile projected in Fig. 2 and Fig. 5 for µ = 1. In Fig.
2(a), when τ = 0.1, for different values of µ , it is observed that the distribution of the concentrations R (κ,τ)and
S (κ,τ) continue to decrease monotonically in the region to the right of the expanding pulse of κ. In Fig. 2(b), even
though for µ = 1 and µ = 0.75, concentration distribution is monotonic, but for µ = 0.5 we observe the formulation of a
new front. In Fig. 2(c), the monotonicity of concentration distributions are lost even for µ = 0.75, and two new fronts
appear distinctively. In Fig. 2(d) and 2(e), the monotonic decreasing behaviour of the concentration distribution is
completely disappeared and we can observe prominent development of new fronts with decreasing fractional-order µ
and increasing temporal variable τ. A similar type of development from monotonically decreasing profile to oscillatory
behaviour can be noticed in the graphical representation of solutions of Example 2 in Fig. 5. This observation clearly
indicates that µ and τ prompt the oscillation of concentration distributions. To find the convergence region of the
homotopy parameter ℏ for different values of κ,τ and n, we have sketched Fig. 3 and Fig. 6 for Example 1 and Example
2, respectively. In these figures, the interval in which the values of R (κ,τ)and S (κ,τ) remain constant at particular
values of κ, τ and n are depicted. We decide a valid region as the region where the graphs of R (κ,τ)and S (κ,τ) are
parallel to the horizontal–axis (ℏ), since it allows us to easily change and regulate the speed of convergence of the series
solution. From these figures, we notice that for the various values of κ,τ and n, the valid intersection region of ℏ

becomes larger for n = 1. In Fig. 3(a), when n = 1, we observe that convergence region is −1.5 < ℏ < −1.6 for µ = 1,
−1.1 < ℏ < −0.5 for µ = 0.75, and −0.7 < ℏ < −0.6. Whereas, in Fig. 3(b), when n = 2, the convergence region
becomes smaller and commonly we notice that for different values of µ , ℏ=−1 can give better convergence to the
solution. Similar behaviour of the variation of convergence region can be observed in Figure 6 corresponding to solutions
of Example 2. The absolute errors presented in Tables 1 and 2 for the solutions of Example 1 and in Tables 3 for the
solutions of Example 2 respectively, reveal that accuracy is higher with increasing κ.

6 Conclusion

In this paper, the BZ equation describing chemical oscillators that exhibit periodic vibrations is considered incorporating
Caputo fractional derivative. The approximate solution of the fractional BZ model is computed by means of the q-HATM
method. The projected approach combines two efficient and classical techniques, HAM and LT, to overcome the
limitations of most series solution methods in terms of convergence, as it does not necessitate discretization,
perturbations, the formulation of a base function, or the conversion of the partial to ordinary differential equations.
Because the present technique allows for the selection of homotopy parameters, we can produce results that quickly
converge to the analytical solution when the homotopy parameter is selected correctly. In addition, the fractional operator
under consideration aids in the capturing of more intriguing implications connected with hereditary and non-local
features. Numerical simulation of the BZ model demonstrates the converges of q-HATM solution to the exact solution as
the fractional order approaches the classical order. The findings show that the fractional operator under investigation and
the strategy are pretty systematic and may be used to analyze the wide range of real-world models.
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(a) (b)

(c) (d)

(e)

Fig. 1: Surfaces of (a)Rq−HATM , (b)RExact (c)Sq−HATM ,(d)SExact ,(e) coupled surface at α = 2,β = 3, ℏ =−1, n = 1 and µ = 1

for Example 1.
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Fig. 2: Nature of the obtained solution for Example 1 at (a)τ = 0.1, (b)τ = 0.5, (c)τ = 1, (d)τ = 1.5 and (e)τ = 2 with distinct µ
with α = 2, ℏ=−1, n = 1 and β = 3 for R(κ,τ) and S (κ,τ).
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Fig. 3: ℏ-curves for (a)R(κ,τ), (b)S (κ,τ) of Example 1 with distinct µ at α = 2, β = 3, κ = 1 and τ = 0.01 with n = 1 and 2.

c© 2024 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 10, No. 2, 295-311 (2024) / www.naturalspublishing.com/Journals.asp 309

(a) (b)

(c) (d)

(e)

Fig. 4: Surfaces of (a)Rq−HATM ,(b)RExact ,(c)Sq−HATM ,(d)SExact ,(e) coupled surface at α = 2,β = 3, ℏ=−1, n = 1 and µ = 1

for Example 2.
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Fig. 5: Nature of the obtained solution for Example 2 at (a)τ = 0.1, (b)τ = 0.5, (c)τ = 1, (d)τ = 1.5 and (e)τ = 2 with distinct µ
with α = 2, ℏ=−1, n = 1 and β = 3 for R(κ,τ) and S (κ,τ).
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Fig. 6: ℏ-curves for (a)R(κ,τ), (b)S (κ,τ) of Example 2 with distinct µ at α = 2, β = 3, κ = 1 and τ = 0.01 with n = 1 and 2.
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