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Abstract: A fractional PID PI*DH ) controller is an extension of the classical PID controlemploying five tuning parameters
rather than just three. General guidelines are availablthéeffect of classical controller parameters on the tioraain specification.
However, no guidelines are available for fractional PIDtcolters, particularly for the order of differentiatiop) and integrationA).
To assist with fine tuning, the effect of the order of diffefation and integration parameters on the time domain fipations for
various plants are investigated. The relationship withtitlne domain specification serves as general guideline forualetuning, and
the effect of parameters will also assist with auto-tuningthis paper, five plants covering integer order as well asinteger order
are simulated. The relationship between time domain spatidins is plotted by varying the order of differentiatiamdantegration
between 0 and 2. Simulation results have revealed an atsadigtween the order of differentiatiop) and the maximum overshoot
(Mp) for all plants. No other particular behavior was observétth wther time domain specifications. However, some remarkme
domains specifications are made from the simulation res8itsulation results were validated using an experimergalup of the
quadruple tank system.

Keywords: Fractional PID controller,fractional calculus, effectpaframeters, fractional order controller, auto tuning aéfional PID
controller.

1 Introduction

The prospects of fractional calculus continue to get baghthe applications of fractional calculus in control syss
include the designing of fractional PID controllers and thedeling of plants using fractional differentiation eqaas.
Fractional PID controllers concern an area of researchhti@been receiving growing attentidn?, 3,4, 5, 6]. A fractional
PID controller is an extension of the classical PID con&nadind encompasses two additional parameters, namelydae or
of differentiation (1) and integrationX), which are not found in the classical PID controllers. Thgo extra parameters
enable the fractional PID controller to improve the perfanoe of the system.

A fractional PID controller is recognized to provide robpstformanceT,8,9,10,11]; secures five different types of
objectives; and offers better results for fractional aridger-order plantsif3]. Many real systems can be modelled more
accurately using fractional order systems , for instaneetgtal circuits, electro-analytical chemical analyaisd nuclear
reactors 12], as well as many physical phenomedd]|

The current work sought to study the relationship betwe#arént parameters of a fractional PID controller and the
specifications related to the time domain for the order dédéntiation and integration. Knowledge of such relatfops
will facilitate in tuning a fractional-order PID controidoth manually and automatically. The relationships betwe
different parameters based on tuning parameters in theofdlke classical PID controller are shown in Tatlgl4,15],
which serves as a general guideline for fine tuning and wortswost plants.

Tuning of any controller is always a challenging ta$g][ Although many auto-tune algorithms are currently avzéa
for designing classical and fractional PID controllelg|[ yetit is necessary to fine-tune a controller. In practice tuning
of any controller needs to be followed by fine tuning. Eveninadel-based control design, the performance of the system
depends on the accuracy of the model; if it is not accurateigmdiine tuning is necessary. For fine-tuning a classical
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Table 1: Effects of increasing a parameter independently.

Parameter Rise Time Overshoot Settling Steady Stability
Tr Mp Time T State
Error Ess
Kp Decrease Increase Small Decrease Degrade
change
K Decrease Increase Increase Eliminate Degrade
Kp Minor Decrease Decrease No effect innmprove if
change theory Kp is small

PID controller, general guideline regrading the effect afgmeters is available (Tahlg but for fine-tuning a fractional
PID controller, no such guidelines are available, althoogny heuristic methods for tuning have been developed for
that purpose. The summary of different tuning methods factfonal PID controller was presented by D. Valerio and J.
Costa in 201018]. The current work was designed to find out the effect of foatl-order parameters on time-domain
specifications in the case of a fractional PID controller.

The effect on the order of differentiatiop) and integrationX) (from O to 2) was ascertained experimentally as well
as by using a simulation. The simulation studied five diffiémant order systems, namely first order, second ordenghig
order, fractional order and first order delay time, covediffigrent dynamics of various plants. Initially, thesemgawere
tuned based on the Nelder Mean optimization approach. ThieNElean optimization method is based on the concept of
simplex approach (sort, reflection, expansion, contracshrink). Afterwards, the order of differentiation anteigration
was raised in steps of 0.1 and the results were plotted fthalfive plants.

To validate the results of the simulation, the effect of trecfional-order parameters was analyzed experimentally
using a quadruple tank system. This set-up was connectedId.MB/Simulink by the Open Platform Communication
(OPC) protocol. Only one controlled variable was considetésing FOMCON, dractional order modeling and control
tool, a fractional PID controller was implemented in real time.

The simulation results reveal the specific relationshipveen maximum overshoot and the order of differentiation
(u). There exists no straightforward relationship with othiere domain specifications. However, following points are
observed in this study:

—There exists a particular relationship betwgeand maximum overshooip).

—By changing the values df andu, the time domain specifications can be further improved iwli@advantage of the
fractional PID controller.

—For a fractional order model, the influence is almost samédifterent values oA on time domain specifications.

—The settling time goes worst asapproaches 2 for integer order system.

Maximum overshoot is an important characteristic of a airdystem. For many critical systems such as pressure,
even a small overshoot can be dangerous. However, as shdladarrent paper, this maximum overshoot can be varied
using the order of differentiation of a fractional PID caiker. For optimization of the controller, maximum oversho
can be used as a measure of performance.

This paper is organized as follows. In Section 2, basics aétional calculus and fractional order controller are
covered at the elementary level. The different types ofrtgmhethods are also listed out in this section. In Section 3,
design for simulation work is specified. This simulation Wi validated using experimental set up by the quadruple tan
system. Results and discussions are presented in Sectio®dction 5, conclusions are presented for this work. Binal
references are given at the end.

2 Basics of Fractional Calculus and Fractional PID Controler

2.1 Fractional calculus

Fractional calculus, although it predates classical ¢afchy more than 300 years, is rarely appreciated in res¢aggh
However, over the last few decades, many researchers hal@ed the applications of fractional calculus in differen
areas including control systems, speech signal procegsiogess modeling, chaos, and fract&ld p, 20].
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In fractional calculus;D, the differentiation integration operator, is defined d®fes [21]:

da
s a>0
aDf =4 1 a=0 1)

ffdn?a<0

wherea is the order of the operator armd< R. The theory of fractional calculus is dogged by some comtrey, as a
consequence of which fractional calculus is defined in maffigrdnt ways. The relevant definitions are briefly desatibe
below.

2.1.1 Caputo definition

The Caputo definition is extensively used in engineerihg%,23], as the definition offers a straightforward association
between the type of initial conditions and fractional operaA derivative of the constant is bounded in the case of the
Caputo definition, which is given by

a_ 1 t (1)
2D = I'(n—a)/a (=it @)

wheren is an integer number, which satisfies the condifior 1) < o < n, a is a real number, analandt are the limits
of integration. For example, if is 0.8, then n would be 1 because®.8 < 1.

2.1.2 Riemann-Liouville definition

The Riemann Liouville (RL) fractional definition is given liye following equation

a _ phyn—a _ 1 d\" t f('l')
D¢ = D"J f(t)_m<a> /amdr @3)

wheren is an integer number, which satisfies the condifior 1) < a < n, a is a real numbei] is the integral operator,
anda andt are the limits of integration.

2.1.3 Grunwald-Letnikov definition

The Grunwald Letnikovs (GL) fractional definition is definasl

DY — fim [FTa]( (M) ft—rh) 4)
&=t T hloha rZO r

wheren is an integer number, which satisfies the conditior- 1) < a < n, aandt are the limits of differentiation, h is

the step size for differentiatioff:2] is integer part and) is the binomial coefficient.

2.2 Fractional PID controller

The fractional-order controller was introduced by |. Pdutiy for fractional-order systemsl3,24,25]. I. Podlubny
demonstrated that a fractional-order controller had aebetesponse than an integer-order controller for a
fractional-order plant. The beauty of well tuned fractibRED controller is that it is less sensitive to changes in the
variables of the controlled system and the controllel].[ This type of controller makes it possible to adjust greate
number of system dynamics. Many researchers confirm thatidrel-order controllers outperform classical PID
controllers in many applicationd §,26,27).
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A fractional PID controller has five parameters for tuning shown in Eq.%). Fig. 1 shows a block diagram of the
fractional PID controller, which has the following struc#j28,27]:

C(S)Z%ZKP+g+KDS‘J;(O<)\aIJ<2) (5)

whereC(s) is the controller transfer functiokl (s) is the Laplace of control signdk(s) is the Laplace of error signal,
Kp is the proportional constant gai, is the integration constant gailip is the derivative constant gaih,is the order
of integration andu is the order of differentiator. A fractional PID controlleecomes a PID controller ¥ = y =1 as
shown in the Fig2.

P> Kp

Error Signal E(s)
> K » s’
> Ko > s*

Fig. 1: Block diagram of fractional PID controller.

¥=1,3=0 (PD) = 17 D)

=0, 1= () / )

= ¢y A=

Fig. 2: The fractional PID controller plane.
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A fractional PID controller is also implemented in real-&rapplications using analog as well as digital approxinmatio
methods. In most cases, the orders of the fractional PIDralbertlie between 0 and 2. Many variations of the fractienal
order controller have been investigated, includiRb)?, non-liner fractional PID controller, TID (tilted propéshal and
integral), and CRONE controller (Commande Robuste d’ONbye Entier, meaning non-integer order robust control).

Tuning a fractional PID controller2f)] is harder than that of a classical PID controller, becawsstha former offers
more parameters. Tuning methods can be numerical, arelyticrule based. Tuning methods based on optimization,
such as genetic algorithm, adaptive genetic algorithmaeoéd particle swarm optimization, aMk (peak value of
sensitivity function) constrained integral optimizatigvil GO) fall under the category of numerical methods. In gtiehl
methods, the parameters of a controller are obtained bingodguations, which are calculated with the help of therdesi
specifications. In rule-based methods, a modified versidheoZiegler Nichols technique has been developed for tuning
a fractional PID controller. Apart from the above methodsginal model based (IMC) and auto-tuning methods are also
used for tuning a fractional-order controllér7. The review of different tools associated to fractiondtodus and control
can be found in30,31].

3 Simulation and Experiment Work

3.1 Simulation work

Five different systems were simulated to study the relatigrs between the order of fractional parameters and thee tim
domain specifications by varying the order of fractionagpmaeters in the fractional PID controller. As mentionediegtr|
the plants were of first order, second order, higher ordactifvnal order systems, and first order system with delag tim
system (FOPDT). The higher-order plant was described byaHagopoulos in 20023p], whereas the fractional-order
plant was described by I. Podlubny in 1994]. The general structure of the first order delay time and searder
systems was considered for the simulations.

P9 = gy ©
P9~ T TTT ™
R ®)
RS = Gaezy c1).550~9 +1 ®)
() = gy ® (10)

Time-domain specifications can be divided into two categmrnamely transient performance and steady-state
performance. Both were covered in the simulation. Rise tipgak time, settling time, and maximum overshoot were
perceived as performance parameters for evaluating thertsffof the fractional-order parameters. Time-domain
specifications are relevant parameters in designing dosystems, and are are frequently considered as performance
indices even for the optimization of controlleds].

The optimization approach used for tuning the plants is shiwFig. 3. The Nelder Mead method was used for
the simulation 3] for optimizing the parameters of the fractional PID cotieo This method finds out minimum of a
function from more than one independent variables withsirtgiderivatives. A simplex has+ 1 points inn dimensional
space, which represents the number of independent vasidtdetuning of fractional PID controller, the integratediare
error (ISE) was chosen as the performance index. This medsunore useful because the range of error was large in
most cases and was thus more appropriate for designing titier. . The integrated square error is defined as follJows

t
ISE = / (t) dt (11)
0
wheree(t) is the error signal, and it is given for unity feedback systemsidering unit step input,

1 Gp (S) Gc (S) )

51+ Gp(s)Gc(s) (12)

e(t):l—Ll(
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Note:L~*{F(s)} represents the inverse Laplace transforrf (d). In this case, the number of independent varialis (
is five. Firstly, initial simplex is generated for six poinkow, the cost function (ISE) is calculated for all pointseh, all
the points are sorted based on cost function. In this sphedirst point is considered best solution and last point as th
worst solution. Finally, the algorithm iteratively updatie worst point by four possible actions: reflection, exgjiam
contraction, and multiple contraction. The optimal sauatcould be found by iterating the above steps.

Y
Bound Constrains of tuning parameters and
select performance index (cost functiin)

Y

Generate a new simplex vector and calculate
the cost function

A

Y

Sort the simplex vector

Y

Reflection or expansion or contraction

No

Any sufficient
improvement?,

J

Yes

Substitute one point

Shrink i

< Optimal Results

No

Y

Yes

Fig. 3: Optimization approach for design of fractional PID contol

Calculation of the time-domain specifications for a fractiborder system is a little tricky as ttsepinfo function
is valid only for integer systems. Here, the time-domairc#ffimtions for the fractional PID controller were calceldt
using FOMCON toolbox as follows.

—Define a plant transfer function in a fractional transferdiimn object G(s)).

G(s) = fotf(BPOLY, APOLY)
For plant 4G(s) = fotf(‘1,'0.8s*2 + 0.58> + 1)
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—Based on the parameters of the fractional PID controlleater a fractional-transfer function of the control@(g)).

C(s) = fracpid Kp,Ki, A, Ko, k);
—Find out the closed-loop fractional-order transfer funicti
Closed loop transfer functioBcl (s) = %

—Obtain an integer-order approximation of the fractionaley system using Oustaloups method (refer equdtin

sysint = oustapp(Gcl, wb, wh, N)

wherewb andwh indicate the range of frequency for approximation, &hid the order of the approximation.
—Get the specifications of the time domain usinggtepinfo function of MATLAB.

S = stepinfo(sysnt)

The fractional-order system can be approximated by manfioadstB4,35,36], out of which the Oustaloup recursive
approximation is the most populdg, 37,38], and the best approximation ord@t)(can be found by formula given by F.
Merrikh-Bayat B9):

N 1+s/ax
I 1+s/
For the above steps, the FOMCON toolbox was used for crettimfractional-order system. The toolbox, which is

based on a fractional-order calculus, is used for desigoamgrol systems as well as modeling fractional-order syste
[40,41,42).

&~ K (13)

3.2 Experiment validation using a quadruple tank system

A quadruple tank system is a non-linear as well as multitdeiaontrol system and contains four tanks and two pumps.
Only one control variable, namely the level of lower tdnkwas considered in the current experiment. This variabke wa
controlled by adjusting the speed of the purop)( Pump 1 feeds tanks 1 and 4, and pump 2 feeds tanks 2 and 3)Fig.
Fig. 5 exhibits a photograph of the plant. Different specificagiofthe quadruple tank system are shown in T&ble

Table 2: Constants for experimental set-up.

Constant Description Value
A Cross section area of tank i 1867
a Cross section area of the outlet hole(for tank i) Och#
g Acceleration due to gravity 98in/s?
ki Pump flow constants 38m/sv

The quadruple tank system is connected to the OPC protobd.protocol allows real-time plant data to be shared
between control devices from different manufacturers ogpgmmable logic controllers (PLC). Using the OPC protpcol
data can be read and written in milliseconds. In Simulink Q& C client can be configured with a local or a remote
host, depending on the location of the OPC server. For rgaatid writing operations, the OPC read-and-write block of
Simulink is used with an appropriate tag as configured in tRE®erver. The schematic block diagram of the experimental
setup is shown in Fi§. The speed of moton) is driven by output of the variable frequency drive (VFDheToutput
of level sensor is given to PLC, which is logged into OPC searal fetched to Simulink. Similarly, the output of the
fractional PID controller is sent to PLC through OPC servet & given to manipulated variable VFD.

@© 2017 NSP

Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

148 NS e P. Shah & S Agashe: Experimental analysis of fractional PID.

Tank3 Tank4

O
[\
Tank2
@ Pump2

Water Reservoir

Fig. 4: A schematic diagram of the quadruple tank.

Three Way ValveJ;

!

Fig. 5: Experiment set up quadruple tank plant.

4 Results and Discussions
4.1 Results of simulation

Initially, the plants were tuned using the Nelder Mean optation method for fractional PID controller (the resulte a
summarized in Tabl&). The FOMCON toolbox was used for designing and tuning oftfemal PID controller 43].
For each plant, the effect df and u for time-domain specifications are plotted as bar plots teceiee the particular
relationship with various time domain specifications. Tblofving constraints were considered for the optimization

0<A,u <2and 0< Kp,K;,Kp < 1000 (14)

The maximum overshoot was associated to the order of diffextéon in all the plants as shown Figs. (d)&f10,
12, 14 and16. As the order of differentiation increases, the value of imaxn overshoot decreases initially but starts
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Variable
MATLAB/Simulink r Ert_equ?/r;%y ;
(OPC Client) Ehive il =
PC Quadruple |
mh=rt) Tank System |

Programmable
OPC Server «—» LogicController &—— Sensor
(PLC)

Fig. 6: Schematic block diagram of the experimental setup.

to increase after a certain point. If the objective of thetoalter is to minimize the overshoot, such a result will heip
tuning fractional PID controllers.

Table 3: Fractional PID controller tuning parameters.

Fractional order parameters
Plant

Kp K A Kp M

)  703.3 984.68 0.78455 84.544 0.11691
P(s) 987.87 43.702 0.18499 999.92 1.0637

) 3.4415 0.1 1.0763 6.6299 1.7424

) 92.141 549.14 0.84797 392.21 1.1767
Ps(s) 1000 1000 0.5273 1000 1.1279

Also, the settling time of a system approaching order 2 ofdifierentiation (1) was longer for an integer order
system, as shown in Figs. (c) 8f10, 12 and16. For a fractional order system, the effect on time domairci§pations
by changing the order of integratioA) is almost the same (refer Fi@3). The effect on time domain specifications by
varying the order of integratiorA( is shown in Figs7, 9, 11, 13and15. There exists no particular relationship between
order of integration and time domain specifications. Howelg changing the values of and i, the time domain
specifications can be further improved, which is advantdigiesofractional PID controller.

4.2 Results of quadruple tank system

The effect of the order of differentiation on the quadrugek system is shown in Fid.7, and the step response for
different values ofu is shown in Fig18for set point of level 35 cm. The range pfin the experimental set-up was from
0.1 to 1.2. The tuning parameters are shown in Tdblghich is obtained by process model of the experimentalipet-
and is fine tunned for better responses. From Efyit is evident that the maximum overshoot is minimum for Ordey
of differentiation.

The quadruple tank system also showed the same relatiobhshigeen the order of differentiation and maximum

overshoot as that obtained by the simulation. This resualbeauseful for automatic and manual tuning of fractionakord
controllers.
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Fig. 7: Effect of A on different specifications (Plant 1).
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Fig. 8: Effect of u on different specifications (Plant 1).
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Fig. 9: Effect of A on different specifications (Plant 2).
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Fig. 10: Effect of u on different specifications (Plant 2).
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4 B @_30:
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Fig. 15: Effect of A on different specifications (Plant 5).
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Fig. 16: Effect of u on different specifications (Plant 5).
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Fig. 17: Experimental results for effect of fractional order parseng

Table 4: Fractional PID controller tuning parameters for experitakset-up.

Parameter | Kp Ky A Kb u

Value 3.85| 3.99| 048 | 16.25| 0.4
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Fig. 18: Step response of the quadruple tank system for differenegadf ofpi.

5 Conclusion

In this paper, the effect of differentiatioru) and integrator X) order are investigated on various time domain
specifications. Maximum overshoot has a particular charatic of the order of differentiation from 0 to 2. Other
specifications (rise, peak, and settling times) showed miicpéar pattern that matched the increase in the value ®f th
parameters independently. However, following points dreeoved:

—There exists a particular relationship betwgeand maximum overshooMp).

—By changing the values df andy, the time domain specifications can be further improvedchvig advantage of the
fractional PID controller.

—For a fractional order model, the influence is almost samdifterent values ofA on time domain specifications.

—The settling time goes worst asapproaches 2 for integer order system.

The finding will facilitate in the tuning of fractional PID otrollers, an especially useful feature for the plug-afaisp
type of controllers. The effect on the fractional-ordergmaeters may be estimated for a given system, such as a fiiest-or
system or a second-order system.
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