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Abstract: In this paper, we introduce the concept of (γ ,η)-convex function by the inequality

f
(

γx,y(t)
)

≤ η f (x), f (y)(t),

in which γ and η are two geodesic arcs. Then, we will find some refinements of Hadamard integral inequality for (γ ,η)-convex

functions in the case of Lebesgue and Sugeno integral.
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1 Introduction

In optimization theory, the concept of geodesic convex
functions on Riemannian manifolds was introduced in
1980’s instead of ordinary convex functions on a linear
vector space, to establish the local-global property of a
smooth nonlinear optimization problem with equality
constraints, see [1,2]. In fact, in the definition of
convexity, if the line segment is replaced by a geodesic
arc, the concept of geodesic convexity is introduced.

The first characterization of geodesic convex
functions with respect to the Riemannian metrics was
elaborated in the case of a sub-manifold of Rn by using
the tools of immersion. In this case, in order to check the
geodesic convexity of a function on the feasible region, it
is necessary and sufficient to state the positive
semi-definiteness of the geodesic Hessian matrix in this
domain.

Due to the importance of recognition the geometric
structure in optimization problems, this concept may has
extensive use and applications, see [3]. The class of
geodesic convex functions with respect to the Riemannian
metrics plays an important role in nonlinear optimization,
e.g., in necessary and sufficient optimality criteria and in
the connectedness of the solution set in linear and
nonlinear complementarity systems [1,2].

In connection with the concept of geodesic convexity,
Iqbal et al. [4] introduced the class of geodesic semi
E-convex functions and discussed some of their
properties. Kiliçman and Saleh [5] introduced the class of
geodesic semi strongly E-convex functions and
generalized geodesic semi strongly E-convex functions.

Sugeno integral in a kind of nonlinear integrals
introduced by Sugeno [6] in order to represent and
include the interactions between criteria of different
phenomena. Sugeno integral is an idempotent, continuous
and monotone operator. Most well-known integral
inequalities have been proved for Sugeno integral, see [7,
8,9,10,11,12].

The Hadamard inequality is a classical integral
inequality providing an upper bound for the mean value
of a convex function f : [a,b]−→ R,

∫ 1

0
f
(

(1− t)a+ tb
)

dt ≤
f (a)+ f (b)

2
. (1)

The above inequality should be reversed if f is concave.
The purpose of this paper is to obtain a refinement of the
inequality (1) for geodesic convex functions, upon the
definition of Sugeno integral.

The paper is organized as follows. The definition of
Sugeno integral and its properties and also the definitions
of a geodesic path and geodesic convexity are presented
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in Section 2. In Section 3, a refinement of Hadamard
inequality for geodesic convex functions in the case of
Sugeno integral is considered. In Section 4, some
applications regarding the obtained new results are given.
A conclusion is given in Section 5.

2 Preliminaries

At the first, let us give the definitions of a geodesic path
and geodesic convexity as follow.

Definition 1. ([2]). A geodesic is a C∞ smooth path γ
whose tangent is parallel along the path γ . Let M be a
complete n-dimensional Riemannian manifold. For all
x,y ∈ M, the mapping γx,y : [0,1] → M is a geodesic
joining the points x and y if γx,y(0) = y and γx,y(1) = x.

Definition 2. ([13]). Let M be a complete n-dimensional
Riemannian manifold. A subset A of M is said to be
totally convex if A contains every geodesic γx,y of M

whose endpoints x and y are in A. A real valued function
f : A → R is said to be geodesic convex if for all geodesic
arcs γx,y from x to y, we have

f
(

γx,y(t)
)

≤ (1− t) f (y)+ t f (x),

for all x,y ∈ A and t ∈ [0,1].

In what follows, let X be a non-empty set and Σ be a
σ -algebra of subsets of X .

Definition 3.[14] Let µ : Σ −→ [0,∞) be a set function.

We say that µ is a Sugeno measure if it satisfies

1.µ( /0) = 0.

2.E,F ∈ Σ and E ⊂ F imply µ(E)≤ µ(F).
3.En ∈ Σ (n ∈N), E1 ⊂ E2 ⊂ . . . , imply

limn→∞ µ(En) = µ(
⋃∞

n=1 En) (continuity from below).

4.En ∈ Σ (n ∈N), E1 ⊃ E2 ⊃ . . . , µ(E1)< ∞, imply

limn→∞ µ(En) = µ(
⋂∞

n=1 En) (continuity from above).

The triple (X ,Σ ,µ) is called a sugeno measure space.
Let (X ,Σ ,µ) be a fuzzy measure space. By Fµ(X) we

denote the set

Fµ(X) = { f : X −→ [0,∞) : f is measurable w.r.t. Σ} .

For f ∈ Fµ(X) and α > 0, we denote by Fα and Fα̃

the following sets

Fα = {x ∈ X : f (x) ≥ α} and Fα̃ = {x ∈ X : f (x) > α}.

Note that if α ≤ β , then Fβ ⊂ Fα and Fβ̃ ⊂ Fα̃ .

Definition 4. [6,15,16] Let (X ,Σ ,µ) be a fuzzy measure

space, f ∈ Fµ(X) and A ∈ Σ , then the Sugeno integral of

f on A with respect to the fuzzy measure µ is defined by

∫

A
f dµ =

∨

α≥0

(

α ∧µ(A∩Fα)
)

,

where ∧ is just the prototypical t-norm minimum and ∨ the

prototypical t-conorm maximum. If A = X, then

∫

A
f dµ =

∨

α≥0

(

α ∧µ(Fα)
)

.

The following properties of Sugeno integral are well
known and can be found in [15,16].

Theorem 1. Let (X ,Σ ,µ) be a fuzzy measure space,
A,B ∈ Σ and f ,g ∈ Fµ(X) then

(F1)
∫

A f dµ ≤ µ(A).
(F2)

∫

A kdµ = k∧µ(A), k non-negative constant.
(F3)If f ≤ g on A then

∫

A f dµ ≤
∫

A gdµ .
(F4)If A ⊂ B then

∫

A f dµ ≤
∫

B f dµ .

3 The main results

In this section, let (X ,Σ ,µ) be a fuzzy measure space. For
a given f ∈ F µ(X) and A ∈ Σ , we set

Γ =
{

α | α ≥ 0,µ(A∩Fα)> µ(A∩Fβ ) for any β > α
}

.

It is easy to see that

∫

A
f dµ =

∨

α∈Γ

(

α ∧µ(A∩Fα

)

.

If X = R the set of real numbers, Σ is the Borel field and
µ is the Lebesgue measure, it is easy to see that (X ,Σ ,µ)
is a fuzzy measure space; but it should be noted that the
Sugeno integral is not an extension of the Lebesgue
integral.

The concept of (γ,η)-convexity is introduced as
follows.

Definition 5. Let I and J be two closed subintervals of

[0,+∞]. Let γx,y : [0,1] → I be a geodesic arc joining the

points x,y ∈ I and ηu,v : [0,1] → J be a geodesic arc

joining the points u,v ∈ J. A real valued function

f : I → J is said to be (γ,η)-convex if

f
(

γx,y(t)
)

≤ η f (x), f (y)(t)

for all x,y ∈ I and t ∈ [0,1].

Remark. How do we distinguish different cases of (γ,η)-
convex functions from each other? The answer is using the
following inequality:
For a (γ,η)-convex function f : [a,b]→ [c,d], we have

f (x) = f
(

γa,b

(

γ−1
a,b (x)

)

)

≤ η f (a), f (b)

(

γ−1
a,b (x)

)

(2)

for all x ∈ [a,b]. So, it is easy to show that for all x ∈ [a,b],
the inequality is sharp.

In the following theorem, some generalizations of
Hadamard inequality for different geodesic convex
functions are given.
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Theorem 2. Let I,J ⊆R, a,b ∈ Io with a < b and c,d ∈ Jo

with c < d. For the particular geodesic arcs γ : [0,1]→ I

and η : [0,1] → J defined by γx,y(t) = (1− t)x+ ty and

ηu,v(t) = u1−tvt , the following inequalities hold:

1.If f : I → I is a (γ,γ)-convex function, then

1

b− a

∫ b

a
f (x)dx ≤

f (a)+ f (b)

2
.

2.If f : I → J ⊆ (0,∞) is a (γ,η)-convex function with

f (a) 6= f (b), then

1

b− a

∫ b

a
f (x)dx ≤

f (a)

ln
(

f (b)
f (a)

)

(

f (b)

f (a)
− 1

)

.

3.If f : J ⊆ (0,∞)→ I is a (η ,γ)-convex function, then

1

c−d

∫ d

c
f (x)dx ≤ f (c)+

f (d)− f (c)

ln
(

d
c

)





d ln
(

d
c

)

d−c
−1



 .

4.If f : J ⊆ (0,∞) → J ⊆ (0,∞) is a (η ,η)-convex

function with f (c) 6= f (d), then

1

c− d

∫ d

c
f (x)dx ≤

c f (c)

d− c









(

d
c

)

(

log d
c

(

f (d)
f (c)

)

+1

)

− 1

log d
c

(

f (d)
f (c)

)

+ 1









.

Proof.The first inequality is the well-known classical
Hadamard inequality. By using the inequality (2) for the
assumed particular geodesic arcs, we have the following
inequalities:

–The function f : [a,b]→ [a,b] is (γ,γ)-convex iff

f (x)≤ f (a)+
x− a

b− a

(

f (b)− f (a)
)

for all x ∈ [a,b].
–The function f : [a,b]→ [c,d] is (γ,η)-convex iff

f (x) ≤ f (a)

(

f (b)

f (a)

) x−a
b−a

for all x ∈ [a,b].
–The function f : [c,d]→ [a,b] is (η ,γ)-convex iff

f (x)≤ f (c)+ log d
c

x

f (c)

(

f (d)− f (c)
)

for all x ∈ [c,d].
–The function f : [c,d]→ [c,d] is (η ,η)-convex iff

f (x)≤ f (c)

(

f (d)

f (c)

)log d
c

x
f (c)

for all x ∈ [c,d].

It is enough to integrate from the both sides of the above
four inequalities over [a,b] or [c,d] to obtain the assertion
of theorem.

Theorem 3. Consider the fuzzy measure space (R,Σ ,µ).
Let γ : [0,1] → [a,b] and η : [0,1] → [c,d] be two
invertible geodesic arcs. If f : [a,b] → [c,d] is a
(γ,η)-convex function, then

∫ b

a
f dµ ≤































∨

α∈
[

f (a), f (b)
)

(

α ∧µ
([

γa,b

(

η−1
f (a), f (b)

(α)
)

,b
]))

,

γ ,η are comonotone,

∨

α∈
[

f (b), f (a)
)

(

α ∧µ
([

a,γa,b

(

η−1
f (a), f (b)

(α)
)]))

,

γ ,η are countermonotone.

Proof. By the (γ,η)-convexity of f and the property (F3)
of fuzzy measures, we have

∫ b

a
f (x)dµ =

∫ b
a f
(

γa,b

(

γ−1
a,b (x)

)

)

dµ (3)

≤
∫ b

a η f (a), f (b)

(

γ−1
a,b (x)

)

dµ . (4)

If γ and η are comonotone, then η ◦ γ−1 is an
increasing function. So, by Definition 4 we have

∫ b

a
η f (a), f (b)

(

γ−1
a,b (x)

)

dµ

=
∨

α≥0

(

α ∧µ
(

[a,b]∩η f (a), f (b)

(

γ−1
a,b (x)

)

≥ α
))

=
∨

α≥0

(

α ∧µ
({

x ≥ γa,b

(

η−1
f (a), f (b)

(α)
)}))

=
∨

α≥0

(

α ∧µ
([

γa,b

(

η−1
f (a), f (b)

(α)
)

,b
]))

.

(5)

Since η ◦ γ−1 is increasing, we have

a ≤ γa,b

(

η−1
f (a), f (b)(α)

)

< b

⇒ η f (a), f (b)

(

γ−1
a,b (a)

)

≤ α < η f (a), f (b)

(

γ−1
a,b (b)

)

⇒ η f (a), f (b)(0)≤ α < η f (a), f (b)(1)

⇒ f (a)≤ α < f (b).

(6)

Thus, Γ =
[

f (a), f (b)
)

and we only need to consider α ∈
[

f (a), f (b)
)

. It follows from (3), (5) and (6) that

∫ b

a
η f (a), f (b)

(

γ−1
a,b (x)

)

dµ

≤
∨

α∈
[

f (a), f (b)
)

(

α ∧µ
([

γa,b

(

η−1
f (a), f (b)(α)

)

,b
]))

.
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If γ and η are countermonotone, then η ◦ γ−1 is a
decreasing function. So, by Definition 4 we have

∫ b

a
η f (a), f (b)

(

γ−1
a,b (x)

)

dµ

=
∨

α≥0

(

α ∧µ
(

[a,b]∩η f (a), f (b)

(

γ−1
a,b (x)

)

≥ α
))

=
∨

α≥0

(

α ∧µ
({

x ≤ γa,b

(

η−1
f (a), f (b)

(α)
)}))

=
∨

α≥0

(

α ∧µ
([

a,γa,b

(

η−1
f (a), f (b)

(α)
)]))

.

(7)

Since η ◦ γ−1 is decreasing, we have

a ≤ γa,b

(

η−1
f (a), f (b)(α)

)

< b

⇒ η f (a), f (b)

(

γ−1
a,b (b)

)

≤ α < η f (a), f (b)

(

γ−1
a,b (a)

)

⇒ η f (a), f (b)(0)≤ α < η f (a), f (b)(1)

⇒ f (b)≤ α < f (a).

(8)

Thus, Γ =
[

f (b), f (a)
)

and we only need to consider α ∈
[

f (b), f (a)
)

. It follows from (3), (7) and (8) that

∫ b

a
η f (a), f (b)

(

γ−1
a,b (x)

)

dµ

≤
∨

α∈
[

f (b), f (a)
)

(

α ∧µ
([

a,γa,b

(

η−1
f (a), f (b)

(α)
)]))

.

Remark. Let f : [a,b]→ [c,d] be a (γ,η)-convex function,
Σ be the Borel field and µ be the Lebesgue measure on R.
Then

∫ b

a
f dµ ≤































∨

α∈
[

f (a), f (b)
)

(

α ∧
(

b− γa,b

(

η−1
f (a), f (b)

(α)
)))

,

γ ,η are comonotone,

∨

α∈
[

f (b), f (a)
)

(

α ∧
(

γa,b

(

η−1
f (a), f (b)

(α)
)

−a
))

,

γ ,η are countermonotone.

In particular, we investigate the results of Theorem 3
for the geodesic arcs γ : [0,1]→ I and η : [0,1]→ J defined
by γx,y(t) = (1− t)x+ ty and ηu,v(t) = u1−tvt .

Corollary 1. Consider the fuzzy measure space (R,Σ ,µ).
Let f : [a,b]→ [a,b] be a (γ,γ)-convex function. Then

∫ b

a
f dµ

≤















































∨

α∈
[

f (a), f (b)
)

(

α ∧µ
([

a+(b−a)
α− f (a)

f (b)− f (a) ,b
]))

,

f (a)< f (b),

f (a)∧µ
(

[a,b]
)

, f (a) = f (b),

∨

α∈
[

f (b), f (a)
)

(

α ∧µ
([

a,a+(b−a) α− f (a)
f (b)− f (a)

]))

,

f (a)> f (b).

Proof. It is easy to see that

γa,b

(

γ−1
f (a), f (b)

(α)
)

= a+(b− a)
α − f (a)

f (b)− f (a)

and the assertion of the corollary comes from the assertion
of Theorem 3 with particular geodesic arcs.

Remark. The case of Corollary 1 is ordinary convexity. If
we assume that Σ is the Borel field and µ is the Lebesgue
measure on R, then

∫ b

a
f dµ ≤



























(b−a) f (b)
b−a+ f (b)− f (a) , f (a)< f (b),

f (a)∧ (b− a), f (a) = f (b),

(b−a) f (a)
b−a+ f (a)− f (b) , f (a)> f (b).

This particular case has been investigated in Theorem 3 of
[17].

Corollary 2. Consider the fuzzy measure space (R,Σ ,µ).
Let f : [a,b]→ [c,d] be a (γ,η)-convex function. Then

∫ b

a
f dµ

≤























































∨

α∈
[

f (a), f (b)
)

(

α ∧µ

([

a+(b−a) log f (b)
f (a)

α
f (a)

,b

]))

,

f (a)< f (b),

f (a)∧µ
(

[a,b]
)

, f (a) = f (b),

∨

α∈
[

f (b), f (a)
)

(

α ∧µ

([

a,a+(b−a) log f (b)
f (a)

α
f (a)

]))

,

f (a)> f (b).

Proof. One can easily see that

γa,b

(

η−1
f (a), f (b)(α)

)

= a+(b− a) log f (b)
f (a)

α

f (a)

and the assertion of the corollary comes from the assertion
of Theorem 3 with particular geodesic arcs.

Remark. The case of Corollary 2 is log-convexity. If we
assume that Σ is the Borel field and µ is the Lebesgue
measure on R, then

∫ b

a
f dµ ≤



















































∨

α∈
[

f (a), f (b)
)

(

α ∧ (b− a) log f (b)
f (a)

f (b)
α

)

,

f (b)> f (a),

f (a)∧ (b− a), f (a) = f (b),

∨

α∈
[

f (b), f (a)
)

(

α ∧ (b− a) log f (a)
f (b)

f (a)
α

)

,

f (b)< f (a).

This particular case has been investigated in Theorem 3.8
of [10].
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Corollary 3. Consider the fuzzy measure space (R,Σ ,µ).
Let f : [c,d]→ [a,b] be an (η ,γ)-convex function. Then

∫ b

a
f dµ ≤































































∨

α∈
[

f (a), f (b)
)

(

α ∧µ

([

a
(

b
a

)
α− f (a)

f (b)− f (a)
,b

]))

,

f (a)< f (b),

f (a)∧µ
(

[a,b]
)

, f (a) = f (b),

∨

α∈
[

f (b), f (a)
)

(

α ∧µ

([

a,a
(

b
a

)
α− f (a)

f (b)− f (a)

]))

,

f (a)> f (b).

Proof. Obviously,

ηa,b

(

γ−1
f (a), f (b)(α)

)

= a

(

b

a

)

α− f (a)
f (b)− f (a)

and the assertion of the corollary concluded by the
assertion of Theorem 3 with particular geodesic arcs.

Corollary 4. Consider the fuzzy measure space (R,Σ ,µ).
Let f : [c,d]→ [c,d] be an (η ,η)-convex function. Then

∫ b

a
f dµ ≤































































∨

α∈
[

f (a), f (b)
)

(

α ∧µ

([

a
(

b
a

)log f (b)
f (a)

α
f (a)

,b

]))

,

f (a)< f (b),

f (a)∧µ
(

[a,b]
)

, f (a) = f (b),

∨

α∈
[

f (b), f (a)
)

(

α ∧µ

([

a,a
(

b
a

)log f (b)
f (a)

α
f (a)

]))

,

f (a)> f (b).

Proof. Clearly,

ηa,b

(

η−1
f (a), f (b)(α)

)

= a

(

b

a

)log f (b)
f (a)

α
f (a)

and the assertion of the corollary concluded by the
assertion of Theorem 3 with particular geodesic arcs.

Example 1. It is assumed that the geodesic arcs
γ : [0,1] → I and η : [0,1] → J are defined by
γx,y(t) = (1− t)x+ ty and ηu,v(t) = u1−tvt . If we denote
the right hand side functions of the inequality (2) by g(x),
then for the assumed particular geodesic arcs, we give the
following examples:

–The function f : [1,3] → [0,+∞] defined by

f (x) = 1

ln2(x2+1)
is (γ,γ)-convex and satisfies the

assertion of Corollary 1, see Figure 1 up.
–The function f : [1,2]→ [0,+∞] defined by f (x) = xx

is (γ,η)-convex and satisfies the assertion of Corollary
2, see Figure 1 down.

–The function f :
[

π
4
,

π
2

]

→ [0,+∞] defined by f (x) =

xsin2(x) is (η ,γ)-convex and satisfies the assertion of
Corollary 3, see Figure 2 up.

–The function f : [1,2] → [0,+∞] defined by

f (x) = 4
√

cosh(2x) is (η ,η)-convex and satisfies the
assertion of Corollary 4, see Figure 2 down.
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Fig. 1: A (γ,γ)-convex function (up) and a (γ,η)-convex
function (down) dominated by their corresponding g(x).

4 Applications

In this section, we are going to investigate some
applications of the previous results for new definitions of
geodesic convex functions.

Case 1. For the particular geodesic arcs γ : [0,1]→ I and
η : [0,1] → J defined by γx,y(t) = x + (y − x)t and

ηu,v(t) = u
(

v
u

)sin π
2 t

, the following class of geodesic
convex functions f : I → J is introduced:

f
(

a+(b− a)t
)

≤

(

f (a)

f (b)

)sin π
2 t

,

where a,b ∈ Io with a < b.

Consider the fuzzy measure space (R,Σ ,µ). If f : I →
J is a (γ,η)-convex function, then Theorem 3 gives us the
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Fig. 2: A (η ,γ)-convex function (up) and a (η ,η)-convex
function (down) dominated by their corresponding g(x).

following result:

∫ b

a
f dµ

≤















































∨

α

(

α ∧µ

([

a+
2(b−a)

π
arcsin

(

log f (b)
f (a)

α
f (a)

)

,b

]))

,

α ∈
[

f (a), f (b)
)

, f (b)> f (a),

∨

α

(

α ∧µ

([

a,a+
2(b−a)

π
arcsin

(

log f (b)
f (a)

α
f (a)

)]))

,

α ∈
[

f (b), f (a)
)

, f (a)> f (b).

Case 2. For the particular geodesic arcs γ : [0,1]→ I and

η : [0,1] → J defined by γx,y(t) = x
(

y
x

)sin π
2 t

and
ηu,v(t) = u + (v − u)t, the following class of geodesic

convex functions f : I → J is introduced:

f

(

a

(

b

a

)sin π
2 t
)

≤ f (a)
(

f (b)− f (a)
)

t,

where a,b ∈ Io with a < b.
Consider the fuzzy measure space (R,Σ ,µ). If f : I →

J is a (γ,η)-convex function, then Theorem 3 gives us the
following result:

∫ b

a
f dµ

≤































































∨

α



α ∧µ







a

(

b

a

)sin
(

α− f (a)
f (b)− f (a)

π
2

)

,b











 ,

α ∈
[

f (a), f (b)
)

, f (b)> f (a),

∨

α



α ∧µ







a,a

(

b

a

)sin
(

α− f (a)
f (b)− f (a)

π
2

)









 ,

α ∈
[

f (b), f (a)
)

, f (a)> f (b).

Case 3. For the particular geodesic arcs γ : [0,1]→ I and

η : [0,1] → J defined by γx,y(t) = x
(

y
x

)t
and

ηu,v(t) = u
(

v
u

)sin π
2 t

, the following class of geodesic
convex functions f : I → J is introduced:

f

(

a

(

b

a

)

t

)

≤ f (a)

(

f (b)

f (a)

)sin π
2 t

,

where a,b ∈ Io with a < b.
Considering the fuzzy measure space (R,Σ ,µ), for

(γ,η)-convex function f : I → J according to Theorem 3
we have the following result:

∫ b

a
f dµ

≤







































































∨

α






α ∧µ












a

(

b

a

) 2
π arcsin

(

log f (b)
f (a)

α
f (a)

)

,b


















,

α ∈
[

f (a), f (b)
)

, f (b)> f (a),

∨

α






α ∧µ












a,a

(

b

a

) 2
π arcsin

(

log f (b)
f (a)

α
f (a)

)


















,

α ∈
[

f (b), f (a)
)

, f (a)> f (b).

Case 4. For the particular geodesic arcs γ : [0,1]→ I and

η : [0,1]→ J defined by γx,y(t) = x
(

y
x

)sin π
2 t

and ηu,v(t) =

u
(

v
u

)t
, the following class of geodesic convex functions

f : I → J is introduced:

f

(

a

(

b

a

)sin π
2 t
)

≤ f (a)u

(

f (b)

f (a)

)

t,
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where a,b ∈ Io with a < b.
Considering the fuzzy measure space (R,Σ ,µ), for

(γ,η)-convex function f : I → J according to Theorem 3
we have the following result:

∫ b

a
f dµ

≤







































































∨

α






α ∧µ












a

(

b

a

)sin

(

π
2

log f (b)
f (a)

α
f (a)

)

,b


















,

α ∈
[

f (a), f (b)
)

, f (b)> f (a),

∨

α






α ∧µ












a,a

(

b

a

)sin

(

π
2

log f (b)
f (a)

α
f (a)

)


















,

α ∈
[

f (b), f (a)
)

, f (a)> f (b).

5 Conclusion

The concept of geodesic convexity with respect to the
Riemannian metrics plays an important role in nonlinear
optimization, e.g., in necessary and sufficient optimality
criteria and in the connectedness of the solution set in
linear and nonlinear complementarity systems. In this
paper, a refinement of Hadamard inequality for geodesic
convex functions is considered, and was generalized to
the definition of Sugeno integral. This is the first paper of
this kind which deals with Hadamard integral inequality
for geodesic convexity, and extend this notion to
nonlinear integrals. In addition, after introducing the
concept of (γ,η)-convexity, an upper bound is found for
each (γ,η)-convex, which is not necessarily linear.
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