Progr. Fract. Differ. Appl3, No. 1, 19-39 (2017) %N =S¥\ 19

Progress in Fractional Differentiation and Applications
An International Journal

http://dx.doi.org/10.18576/pfda/030103

Space-Fractional Diffusion with a Potential Power-Law
Coefficient: Transient Approximate Solution

Jordan Hristov

Department of Chemical Engineering, University of Cheri@hnology and Metallurgy,Sofia, Bulgaria.

Received: 11 Jul. 2016, Revised: 24 Nov. 2016, Accepted: @0 RD16
Published online: 1 Jan. 2017

Abstract: An approximate analytical solution of transient diffusiequation with space-fractional Riemann-Liouville fracgl
derivative has been developed. The integral-balance mMeihd an assumed parabolic profile with undefined exponerg begn
used. The spatial correlation the superdiffusion coefiidie potential power-law form has been discussed. The ldwseospatial and
temporal propagation of the solution are the primary isséggproximate solutions based on assumed parabolic profile w
unspecified exponent have been developed.
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1 Introduction

1.1 The superdiffusion model

Fractional differential equations (FDES) are suitableffi@delling of anomalous diffusive processes in physiggjorous
media ], plasma flow B] and turbulence4]. Analytical solutions for FDEs are not very popular in thterature p, 6,
7,8,9,10,11,12] but the methods applied avoid effective engineering aredy and therefore, numerical methods are
frequently applied13,14,15,16,17] .

This article considers 1-D non-linear space-fractionakipn of order k 8 < 2 and a potential power-law diffusion
coefficientDg [P /4]:

au(x,t) dPBu(x,t)
o Dg (X)OT’ (1)
Dg(x) = Dgo+ yx?,a < B,x>0,Dgg > 0, > 0, (2)

where the space-fractional derivativedfu(x,t)/dx? in Eq.(1)is either of Riemann-Liouville (RL)3) or Caputo type
(4) of orderp (1< B <2)[18

dPBu(x,t) « 1 d® x o ouxt
o RDp= F(Z—BW/O (x_z)ﬁfldz’ ®)
Puxt)y 1 x 1 dPu(xt
ToxP °© Dp = r2-p ./o x—2P1 dz (4)
APu(x,t)  d%u(xt
b _JUt p_o ©)

oxP X

As mentioned above numerical method8,P0,21,22,23,24,25] dominate in the literature while analytical solutions are
rare 26,27,28,29,30,31]. In the context of the solution developed in this work it isnthy to note that fundamental
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solutions of the time-space and especially the spaceidradtequation 1) has been developed ir29] using Green
functions and the similarity variablé = x/(Dt)YB. Therefore, it is a challenging task to develop analyticliions
which would allow straightforward physical analyzes an¢cshitable for engineering applications.

1.2 The superdiffusion coefficieng[x) and its physically correct spatial correlation

Before starting the formulation of the problem for the simintve have to stress the attention on the expressions pirggen
the spatial dependence Dfz(x)as an important issue related to the physical adequacy ohtiuel represented byl
and @) .The superdiffusivity coefficierg(x) = Dgox” is commonly used in numerical examples demonstrating vario
solution approaches td)[28,32]. The common approached is to prese)tgsDg(x) = I" (x)x* , a form usually chosen
to handle numerical or analytical solutior%6[27,28,29,32] ,wherel” (x) is the Euler Gamma function. However, both
sides of ¢) should have equal dimensions only when the coeffidignhas a dimension af? /s. In the case of constant
(space-independent) diffusivity the expression is cayteat with (2) the dimension oDgg should be Isin order @) to

be dimensionally homogeneous. It is obvious that the esefDgg asl™ (x) does not meet this requirement since it
is dimensionless, but actually this is not an obstacle téoper mathematical exercise2§,32]. Moreover atx = 0 we
haveDg(x = 0) = 0 and we see thatl] degenerates. Actually, if we have to calculate the flux atllbundaryx = 0

expressed ag= —Dg(0) [0Pu(0,t)/dxP] the physical inadequacy appears immediately becauseathepiort coefficient
Dg(x) cannot be zero everywhere in the medium. Since the supesdliffy cannot be zero at the boundary an alternative
form of the spatial approximation @fg(x) is suggested here as.

Dﬁ(X) = Dﬁo‘f— %(Xa = Dﬁ (X) = Dpo(1+ kxXa),o <X < oo, (6)

The dimension of is m*~% /s because the entire expressioriyf(x) should have a dimensian® /s ; respectively
the dimension okx = y/Dgg is 1/m?. It is noteworthy that the expressior®) @and ©) are common in the integer-order
models of diffusion and heat conductid@@g[34, 35,36] and termed as potential power-law diffusivity. Espegidiiie form
(6) has not been observed as a modelling approach in the pedligarature. The present study addresses both forms of
Dg(x) expressed by2) and ©).

1.3 Aim and paper organization

The work demonstrates how by application of the integréddiee approach[7,38,39,40,41] an approximate analytical
solutions of the space-fractional equation &g case of the Dirichlet problem and Riemann-Liouville spdractional
derivative can be developed.

The article is organized as follows: Section 2 develops thetion of the Dirichlet problem trough application of the
integral balance approach. Section 2.3 demonstrates howpidtial integration of the fractional derivative resigtin
the general expressions of the penetration depths can leéoged. Section 2.4 develops approximate evaluation of the
integrals of the approximate space-fractional derivaiivexpressing of the approximate profile as a truncated cgané
series. Section2.5 considers the restrictions imposedh@mxponent of the profile at the boundary of the penetration
layers and the conditions required positive values of thgressions through the truncated series to be assuredosecti
2.6 applied the least-squares method for refining the ajipaie solution and determination of the optimal exponehts o
the parabolic profile. Section 2.7 present numerical sitiaria with the developed approximate solutions and relevan
physical comments.

2 Dirichlet Problem

2.1 The Integral-balance approach

Consider eqd) with initial and boundary conditions
u(x,0) = 0,ux(x,0) = 0,u(0,t) = 1,u(co,t) = 0,t > 0. @)

The integral-balance method is based on a finite sharp @¢rtconcept thus allowing the boundary condition
U(e,t) = 0 to be red-defined as
_0u(o,t)

u(0) =1,u(d) ox

—0. (8)
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The integration over the penetration depth results in

5 du(x,t) J dPu(x,t)
/()TdX:/O Dp(x) 5 dx )

Now, applying the Leibniz rule to9] we get

d ro o L
&/x u(x,t)dx:/o D (x) ;)((;’t)dx (10)

Further, by replacement af{x,t) by an approximate function, = us(x/9d) expressed through the dimensionless space
variablen = x/9, where 0< x/J < 1 the penetration depti(t) can be defined.

2.2 Assumed profile and the spatial scale transform

An assumed parabolic profile with unspecified expongati9,40,41]is used, namely
X\ N
Ua(X) = (1— 5) . (11)

This profile satisfies the condition8)(@nd forms two zonesliy(x) > 0 forx < & andu,(x)0 for x > . The solution based
on the assumed profil& {) requiresn > 0 which should depend on the fractional orger

To be correct in the evaluation @ u,(x)/dxP we change the variable in)asn = x/3 where 0< n < 1. That is,
Ua(x) = Fa(1—n) = (1—n)" and after the scale change— n the space-fractional derivative of the assumed profile
can be presented as:

B B a8
oxP ) onk
Further, the right-hand side afXwith Dg(x) = Dgo+ yx“ can be presented as
1 9PFa(n) _p9PFa(n) _p9PFa(n)
ay_— B a o sa—f a
(Do + WX )65 anf =Dpod anP +wn“o anf (13)

2.3 Spatial integration and the penetration depth

Now, we turn on the integration of the fractional derivating9) usingua(X,t) insteadu(x,t) . Precisely, in terms of the
dimensionless variablg = x/d (changing the variable in the integrabas— n = x/d we get

%o (0 2 bt o [ PFa(m) [ 0PFa(n)
D Yax= [ Dg(x)Dgedt L2 / agitra—p ) g 14
|, P05 dx= [ Dp(x1Dpo8™# TS dn + [y to Pt (14)
Next, the integration of in left side o8] from 0 to d with the assumed profile gets
n 1 do
dt/ U t)d dt/ 1__ =G (19)

Now, we have to see how the integral-balance rela®nh{rough the assumed profilél) provides equations about
the propagation of the from(t) .

2.3.1 Penetration depth

The integral-balance relation, taking into account thevipres results (seeld) and (L5)) and replacingi(n) by Fa(n0 =

(1—n)", yields
1 dd 1 B 1+a— ﬁ/ 0 Fa(n)
niidt - / dr7+%<6 n¢ nF dn. (16)
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1 d6_ 1-B 1+a-8
idt Dpod™ P ®p(n,a,B) + %o ®1(n,a,B). 17)
L 9PFRa(n)
() = dn. 18
O(nvaaB) /0 0’7E n ( )

Equation (7) is a non-linear ODE of Bernoulli type and a direct solutitmoiugh the classical approach using
integrating factor is impossible since we try to solve it igeneral manner, not with specified valuegBodnda . We
will use two alternative approached based on precedingdisnkiof space fractional diffusion equatict?[43], namely

Approach 1 Equationl(7) can be re-arranged as

1 doP .
Bintl) dt Dgo®o(n, a,B) + 6% k®i(n,a,B). (19)

Denotingd? =y, that mean®? = y?/B we get a non-linear ODE

Yoarby,  p=2

dt B’ (20)

a=DgoB(n+1)P(n,a,pB), b=wyB(n+1)®i(n,a,p). (22)

Further we suggest thgt= 5% = At which intuitively comes from the solution with a constanpstdiffusivityDg = Dgg
[42]. The relationshi@? =y = At satisfies the initial conditiod (0) = y(0) = 0 and the factoA should be determined

through the solution. Then, with this substitution we §&t=y?/B = yP — A PtP and consequentlyl{) can be re-written
as

dy D
i a-+bARtP. (22)
The Laplace transform oR@) is
a bAP a bAP
The inverse Laplace transform &3) results in
r1+p 1
t)=at+bAPMP_= = — y(t) =at+ bAPHP_——. 24
y(t) = at+ F2+p) y(t) = at+ 1ip (24)
Therefore, explicitly the penetration depth is
bAP 5 L[ b 1 5
0= at+7tl+%) = & = (at)B 1+—)\F’7t% ) 25
(o e P | v am =

Forb = 0 we get the solution with the constant diffusion coefficigt] Now, we turn on the definition of the factor
A. Sinced is the penetration distance with a dimension of lemgthen the large term in squared bracketsofsee 25) )
should be dimensionless, that is, the r&tdd /a should have a dimensian®/B. Reasonably P should have a dimension
m? /s?/B and consequenth} gets the dimensiom? /s that matches the superdiffusion coeffici@yy. Therefore, the
substitutiony = 68 = At is equivalent todP = Dgot, which a particular solution of the linear caée = 0)[47] , as
mentioned above.
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Approach 2 Dividing both sides of EqL) by 312—# one obtain

do —a
FTi co “+d, (26)
c=(B—a)DgoPo(n,a,B),d = (B —a)Dge®s(n,a,pB). (27)

Denotingd# % = zthat meansy® = z2/(@-B) — X wherek = —a /(B — a) we may expres26) as a Bernoulli
equation

dz

Fri cZ+d. (28)
Further, we suggest that= u.t which intuitively comes from the solution with a power-lawpgrdiffusivity [43]

and corresponding to second term in the right-hand sidesoéxitended equatio8). The relationshi@f % = z= .t

satisfies the initial conditiod®—?(0) = z(0) = 0 and the factop should be determined through the solution. Then, with

this substitution we gei—@ = z-9/(B~a) — & — 1 ktk and consequently ec2§) can be re-written as

dz K
at = d+cukt®. (29)
The Laplace transform oRQ) is
28 =94 S gz = S g 30
5(5)—§+@(+):> (S)—?+m (1+K). (30)

The inverse Laplace transform &) results in

1 1
t) = dt+ oMtk — 3P~ —dt4 cu 9/ B-o-a/B-a)_____~ 31
Hence, we may express the penetration depth in a way simil@6f
1 1 o JFa
GH=(d)F@ |14k~ Ta | (32)

d” 1-a/(B—0a)

Now, we turn on the definition of the factqr in a way already used in Approach 1. Singds the penetration
distance with a dimension of length we may easy check(ttat/ (?=%) 0 (yt)Y/ (=% has dimension of length because

by definition the dimensions o is m’ ¢ /s. Therefore, the term in the squared bracket3®) €hould be dimensionless.
The producti®(c/d) = u*(Dgo, ) should have a dimensia*. Precisely, the rati®go/ ¢ * defines a time scale of the

process as it will be commented in the next section. Theeefbe substitutiod? % = z= ut is equivalent tad?—% = yt,
which is a particular solution of the case with the power-thffusivity Dg = Dgox”[43] , as mentioned above.

2.3.2 The fractional time scale and the definition of §He number

The solution aboud(t) in the form @5) allows defining the fractional quasi-Fourier number in fibidowing way. Since
A = Dgg then the raticb/a = (%(/D;BG/B)(%/%) is a scaled characteristic time of the fractional diffusfocess
defined as™/P = Dllgga/ﬁ/ys) with a dimension[s®/]. Precisely, the characteristic time tig= (DEBG/B/VS))B/“.

Therefore, the ratia®/# /t%/F = (b/a)Aa/Pta/B jty = H; is a scaled fractional quasi-Fourier number for the case of
potential power-law superdiffusivity6f. With more details, in terms of the process parameters thetidnal
quasi-Fourier numbeH; can be defined as

Y _
sHr Zt(m) Bla, (33)
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The lower prefixs meansspace In contrast, with the power-law diffusivitidg(x) = Dgox” [43] such a definition
is impossible since in the semi-infinite medium at isstigere is no physically defined characteristic length scalee
advantage of the definitio®) is its physical adequacy and the ability to present the fpatien depth ( see e®®)) as

&=l |1+si)f HE20 | (34)
_ ®i(n,a,B)
Y(a,a,B)= 7%(”7“’3). (35)
Now, witha= DgoB(n+1)®o(n,a,3) from eq.@1) we have
5, = (Dgot)? B+ D@y (n,t,B)F |14 (Hr)f L LB (36)

1+a/B

Therefore, the contribution of the second term of the suffasivity to the evolution of the penetration depth depend
on the ratiwéga/ﬁ/y@ and its growth is proportional '/ (see 25) or t¥/ (=), Since fora /B < 1 the growth in time
of the second terms o26) and (B6) is slower than that of the factof®got)Y/# and(t)* (A=) which actually dominate
the superdiffusion process.

Similarly, with Approach 2 and the final expressi@®2( we define an alternative characteristic time s¢alewhich
in terms of the process parameters is presente8@s0d @8), namely

Cc Ky Dﬁo K tk
Sk = (2B ) gk L 37
Gurs = (2 e e @)
o\ b ()
t2:< Ei) “oBam |\ g | (38)
3 Dy D)

Consequently, the ratio defined b§7f can be considered as a scaled quasi-fractional FouriebaufgHr,)< =
(t/t2)%. Therefore, we may express the penetration depth in twonaltiee forms, namely

1 1 = 1 ﬁ
= ()7 (1B~ @) u(n BT | Lt (sh)7F et (39
EPUINETS S . o (B—a)®y(n,a,B)| 7
&= (KT | (B—)u(n.a.B) s + (o) 7 DB (40

However, the above definitions eH, andsH,, raise the question: what is the difference between them amd h
to proceed further in the calculations? The answer is diti@igvard. SincesH, = t/t; andsH,, = t/t> then the ratio
sH, /sH, =t1/t2, i.e. the ratio of the time scales. From the definitiong @indt, we get

=== 5=
sHro  tg Dﬁ/a_l

Therefore, the two definitions are identical, sld., = sH, = sH . We will use further only the symbgH;.

2.3.3 The penetration front propagation and related cmmdiimposed on the exponemt

Itis clear that the values @f andf3 control the behavior of the diffusion processes and theegfds quite important to see
the mechanism through which the solution controllecibgnd3 can delineate two principle regimes of superdiffusion.
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Fast superdiffusion It is noteworthy that the res@6)(strictly defines the condition to be satisfied since the sys
dictates a growing in time penetration depth. Now, we stthesattention on the resulQ) where the effect of the
interrelation of the exponentsandp is more clear. If for fixed value @8 the exponendr will increase then the exponent
1/(B — a) will increase, that is a fast propagation in time will takeg#. Oppositely, for decreasimgthe exponent
1/(B — a) will decrease and diffusion will be performed slower. Thatthe fast subdiffusion process corresponds to
increasingx within the range < a < 1 because by definition we haved < 2.

Moreover, the speed of the penetration frond&/dt 0 (1/(8 — a))t(1+@—A/(B-a) The condition 4+ a — 3 > 0
(together withB > a) assures an increasing in time speed of the penetration fPoacisely, this means > 3 — 1.
If B =1.1, for instance, then the positive growth of the penetratlepth needs.Q < a < 1 or whenf3 = 1.5, the
condition is 05 < a < 1. Further, for specific case of = 0 (constant coefficient of super diffusivity) the speed & th
frontisdd/dt 0 (1/8)t2~P)/B and because the ratia — 8)/B is always negative, the front will propagate with a speed
decaying in time.

For the intermediate casea = [ — 1, the penetration front propagates linearly in time, i.e.
o(t) = (Kt)(n+ 1)@y (n,a,B) with a constant speed defined @8/dt = Dgg(n+1)®1(n,a,3) . Fora = 3 we get
o0 = 0 and a blow-up of the speed. However, such a situation is $sipe because the above estimates indicate that
0<a <1land 1< B < 2. The present work is restricted to situation where 8 < 1 in order to elucidate in better way
the retardation factor of the fractional order

All these cases will be discussed further in the analysishefapproximate solutions with respect to the type of
anomalous diffusion process modeled depending on theelifée(3 — a).

Slow superdiffusion The expressioddj about the penetration depdh, without lost of generality, foor < 0, but with
1< B < 2 (inorder to match the situation with the fast superdifingican be re-written as

3p(t) = (Dpot) 77 (B + a)(n+ 1) Py(n, a1, B)] Fre. (41)

If for fixed value of 3, the absolute value af increases then the exponentf + a) decreases; that is the diffusion
process will decelerate. Oppositely, if the absolute valia decreases, the penetration the time growtld afill be
faster. That is, thelow superdiffusion proces®rresponds to increasing absolute value efhena < 0. Referring to the
case witha = 0 when the spatial damping effect depends only on the valtieedfractional ordef8 we have the case of
slow spatial superdiffusiarBubsequently, witlw > 0O (fast spatial superdiffusion) the diffusant will pendégréaster into
the medium. Oppositely, far < O (slow spatial superdiffusion) the diffusion will be slowtban in the case witlr = 0.

2.3.4 Approximate profiles (solutions)

After determination of the penetration depths by the irdebalance method the approximate solutions are

g = [1- — 2 — :(1—ﬁ>n, (42)
(Dpot) PNy N

B 1 Y(n,a,p) 5
Ny = [P+ Do a pIF |1+ F BB 3)
Va2 = (1—+> : (44)
(W) PN
Ne = (8- ) ps's + ) o5 (LA (5)

These approximate solutions define in a natural way theaiityilvariables; = x/(Dpot)Y# and&, = x/(yt)Y/ (B~a).
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2.4 Evaluation of®y(n,a,B),®1(n,a,B) and¥(n,a,B)

The evaluation ofpy(n, a,8) and®;(n,a, 3) will be carried out by expansion &f(n) = (1— n)" as a convergent series
(expressed as a finite sum), namely

(o
Fa(n) = zamjr]J ,mj = ( )) O<n<1l (46)
The fractional integration of4(6) (Ref.[44]—p. 70) results in
0P Fa
= R~ 47
ons "D zOI'J—B—I—l zol'l B+1)" (“7)
Particularly, if the Caputo derivative is used, then sameration applied to46) yields

CAR: Y PUR L B B 48
P P2 P (48)

Hence, the only difference is the first term comparingd.(The series47) converges44], that can be easily checked
through the ratio test. Further, integrating the serdé from 0 to 1 we get the approximation @i (n, a, 3), that is

. i Pdn s M
o(n, . B) / Z)r J—B+1) an= ZO/- 2+J‘B) w
Further, using the resul#f) we calculate
- aaﬁFa(n) _ B~ m; I=P+a
p1=n W_RLDXNZWQJ +a (50)
Then, 1 K mj
o) = [ B = 3 e g )
Now, we get 1
B K m; K m; )
W(n,a,B)—j;)(j_ﬁ+a+1)l'(j—ﬁ+1) <J F(2+J—B)> : (52)

2.5 Restrictions on the exponent of the profile and rangeariditons
2.5.1 Behavior of the exponeniat the boundaries and restrictions thereof

The integral-balance method define the form of the approvérsalution (1) by definition of the functional relationship
of (t) as function of the exponent However, the boundary conditions imposed by the integethiod are not sufficient

to be define®) [41,45]. Hence, a refining method with already defined function (apimate solution) has to be applied.
At this point we apply the least-squares method where théuakfunction of @) is

au(x,t) dPu(x,t)
R(Ua(x.1)) = =5 ~ Dp(x) = 5. (53)
The functionR(ua(x t))should be equal to zerouf is the exact solution but with approximate profile we shoatkifor
a minimum thus defining the exponentith u; = (1—x/4)" = Fa(n)we have
1 n-1ndd B 0PFa(n) . sa-B 0PFa(n)
R(Us(x1)) = (L= )" 5 G0~ Dpod A =2857 — o™ P25 (54)

At the boundaryx = 0 = n = 0) we haveR(ua(X,t)) = 0 for anyn and therefore additional constraints cannot be
defined.

Further, at the vicinity of the front, that is far— & we will use for the analysis the definition of the Caputo ohalnxe
(4): with the assumed profilel () the function inside the fractional integrald8ua(x,t) /dx* = [n(n—1)(1 — x/5)]
The Goodman boundary conditior3) forx — 6 can be satisfied ifi3(J,t) = limy__,5(1—x/d)" < that impose the
requiremenh > 2.
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2.5.2 Evaluation of the truncated series expansiorgoh, o, 8 , ®1(n,a,B) and¥(n,a,B): additional constraint on
the exponent

The penetration depth contains the term&gfn, o, ) , @1(n,a,B)and¥(n, a, B) and therefore the reasonable questions
are :What the minimum value of(at givena and3) is in order to assure the conditio®s(n,a, 3 > 0) and®;(n, a, 3) >

0. Answering to this question we have to take into account#ta, a, ) > 0 because the value @ is physically defined
and positive by natureAnswers are given by Fig. 1a,b in casep®o(a = 0,n, 3) referring to the results reported 47

for Dgg = const where it established that 9 terms of the truncated serieareskpn are enough (the same was established
in [43] whenDg = Dgo = x7) . The plots reveal that the variation @b(n,a,3 > 0) in a large interval of variation af
decreases g5 increases. Now, the next step is to find the minimal valuesassuring®y(n, a, 3 > 0) using the already

defined ranges of variatiomgn, < N < Nmax (See Fig.1a,b).

1.0 | 3 terms 1.0  3terms P—
=11
Mmin B=15
s 4 05
EI e Nnin 9 terms ‘_E:
(==} Mmax janl
=- o / f 0 [ ] [ ] [ | 1
= 10\12 14 16 18 20 D 2 46 8 10 12 14 16 18
=] S
n(-)
-0.5 05
a
! e tar:ns B 6 terms
s 1.0k )

Fig. 1: Effect of the value of the exponenton the variations ofby(n, a, 3) and the number of terms of the truncated expansions of the
assumed profile. Case for and two distinct values of theifmaat order af =1;b)3 =15

The numerical experiments presented in Fig. 2 clearly at@ithat within the range of variation 0fnmin < N < Nmay)
forvariousO< a < 1land 1< 8 <2, we get®;(n,a, 3) > 0. It is noteworthy that within the same range of variatiohs o
the positive branch d¥(n, a, 8) is narrower (see Fig. 3), bounded by vertical asymptotesipgsough the boundaries of
the range of variations of. Besides, these branches of the cdti(@, a, ) exhibit minima with almost flat bottoms.These
estimates allow to define approximately the range where phienal values of the exponentassuring minima of the

residual functions should searched for.

2.5.3 Order of magnitudes @fg and

Here we meet serious obstacles since the dominating peldligsults28,32] are not related to real problems but mainly
stress the attention on calculations. To avoid this probdert demonstrate feasibility of the developed approximate
solutions we refer to some integer-order problems withiajpatvarying diffusivity. Referring to the works of Hamrde
and Lebedeff46] ,Voller[47] an others 48,49,50,51] we stress attention that in most cases it is assubygg~ 1 and

0 < a < 1 (which matches the preceding estimates in this work) .eSirtlr plays the role of the fractional Fourier
number it is better to represent the approximate solutiorterims of the similarity variableg, = x/(Dgot)Y/*~%) (or
épp= x/(DBot)l/ﬁ) andsHr . If we assumé g, = 1 for simplicity andt = 1, thensHr = y . Further in this article we
will use this simplified case to demonstrate how the optimepbaent of the approximate solution dependsxcandf3.
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2.6 Mean squared error of approximation and optimal expasen

The Langford criterion$2] for the integral-balance method can be defined as

o
EL(n,a,B,t):/o (R(Ua(x,t))2dX — min, (55)

In terms of the dimensionless variabjethe integral in $5) can be expressed as

1 ndoé 0PFa(n) dPFa(n) .
_pyn-1ndo % Fa\N) | sa-p Falll)
/O (n(l )" s g~ Dpod 3P ) 3np dn — min. (56)

Let us, for example, see what the expressioigf(, a,3) in the case of power-law diffusivity. From3%) we have
thatdd /dt = (n+1)8X9~Bdy (n, a, B). Hence, withd "d&/dt = (n+1)69—Pdy(n, a, B) we can express eG) as

EL(n,a,B,t) = (Dpod® F)2ep(n,a, B) — min, (57)
1 B
@p(na.p) = [+ (nap)a-n) -7 =M an 8)

Taking into account thad®—# = tDgo(B — a)(n+1)®1(n,a, B) the way to ensure minimum error of approximation
is to minimize with respect ta the second term o&(7) , i.e.e p(n,a, 3).

The error measures{) can be presented & (n,a,3) = e_(n,a,B)t~4, because the nominator gets in each term
some of these productd: 26 = (1/t%), 6% = (t2) andd~ +P)§ = (t~2) , while the denominator is proportional to
5P = (t?). The estimation of the optimal, minimizing e, (n, a, ) was carried out in accordance with the following
practically oriented scheme:

1.First, for given values ofr and 8 ,starting from an integer-order value ofwithin the rangenmin < N < Nmax
(see Fig.1 and Fig.2), not too close to the vertical asynegtbounding’(n, o, 3) and 9 terms of the series expansions of
®(n,a,B) and®;(n,a,B) calculate the integral irb@) (by using Maple, for instance). The results will allow tdazdate
e.(n,a,p).

2.Collecting all the date (n, a, 8) is it possible to create the functional relationsiipn, a, 8) againsi.Interpolation
by as much as possible high-order polynomial will allow téimkethe minimum and therefore the optinmaThe optimal
exponents defined in this way are presented in Table 1.

The values of optimal exponents reveal that they are indig@rof and but decrease with increase in, as itis illusdrate
in Fig. 4b (the same behavior was observedg] vith Dg(X) = Dgoxe). The result could be attributed to the low impact
of the second term (in the squared brackets) in the expres&o and which is proportional to and which in the range of
variations of and have negligible effects on the penetnatigpth. In this context, the dependence of from is pradyical
linear as it demonstrated in Fig.4c .

3 Numerical Experiments and Analyzes

3.1 Two-dimensional profiles and classification of the tporsregimes

Approximate solutions as profiles expressed through théasity variable {; are shown in Fig.5 and Fig.6. In general,
they demonstrate that the increasenimesults is larger values af that can be easily detected by the points where the
profiles cross the abscissas.

The mean square displacement can be generalizé&sB#=1]

<x2>=/6x2u( X, t)dx 0 taw (59)
[eu(x .

For dy = 2 one classifies the diffusion process as follows, $4,55,56]: diffusion on fractal structuraés defined
with dy, > 2, that is the transport is dispersive with reduced diffnsiorresponding to the subdiffusion process because

2
(x?) =Otw and 2d,, < 1; for dy, = 2 we have the Fickian diffusion.The cagg < 2 indicatesenhanced diffusiowith
the following sub-cases: for4 dy < 2 the transport regime intermediatefor d,, = 1 there is dallistic transportand for
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Fig. 4: Exponents determined by a minimization of the residual fionc a) Residual functions around the minima for variousiea
of the fractional ordef. Demonstrative case for amd= 0.1 andsH; = 1.0. b) Three-dimensional scattered diagnasp; = f(a,) .
Case forsH; = 1.0. ¢) Data correlationgpt = f(8) by a linear relationship. Case af= 0.25 andsH; = 0.1 . Due to the invariance of
the values ofippt with respect to the exponeatandsH this correlation is valid for the entire ranges of the vaoias of the parameters
studied in this articleNote :For the sake of simplicity the fractional Fourier numbldf is denoted hereafter in the figures simplyHas

dw < 1 aturbulent transportakes place. The means squared displacement of the praéssssand with the approximate
profile (8) is

g X\ N 202
<x2>:/0 @ (1-3) = DT (60)

2
With the assumed profile used in this work (see the expresdiontd, for example) we getx?) = 62 Ot B~ (see
the expression abodb for example), that is differendg8 — a) controls the process (see al€3] for similar results). It
is worthy to stress the attention that irrespective of th@ession aboud; or &, the penetration depth is one and the same
since it is physically defined quantity, thatds = &, = é . Since 1< 8 < 2 in the case 0512 0tY/# we have regimes
of subdiffusion transports. This case confirms the res@telbped in42 for a = 0, therefore fonk = 0 andDg(x) =
DB0 = const Moreover, when the special diffusivity is represented bynapge power-law as43] Dg(x) = Dgox” we

haved? 0 t1/(B~2), Both cases where developed here in solution focusing opéhetration depth. Since the special
diffusivity at issue is an additive function of this two sifeprases it would be expected that their characteristiufeat
will appear in the distribution of the approximate solus@iong the abscissa (against the similarity varighleT he plots
in Fig. 5 and Fig. 6 clearly demonstrate the effecpah the arrangement of the curves from left to right but theeff
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Table 1: Optimal exponents for various valuesf 3 andsHy
B 1.1 12 1.3 14 15 1.6 1.7 1.8 1.9 1.99
Nopt Nopt Nopt Nopt Nopt Nopt Nopt Nopt Nopt Nopt
sH a=0 6.823 | 6.490 | 6.082 | 5.691 | 5.381 | 5.076 | 4.708 | 4.411 | 4.003 | 3.780
0.001| a=0.1 | 6.780| 6.329 | 6.084 | 5.728 | 5.380 | 5.039 | 4.707 | 4.381 | 4.064 | 3.784
001 | a=01 | 6.780 | 6.447 | 6.084 | 5.728 | 5.380 | 5.039| 4.706 | 4.381 | 4.064 | 3.785
1.0 a=01 | 6.780 | 6.447 | 6.090 | 5.729 | 5.380 | 5.039 | 4.706 | 4.381 | 4.064 | 3.785
10 a=01 | 6.780 | 6.447 | 6.084 | 5728 | 5.380 | 5.040 | 4.708 | 4.386 | 4.064 | 3.785
B—a 1.0 11 12 1.3 14 1.5 1.6 1.7 1.8 1.88
0.001| o =025 | 6.818| 6.570 | 6.084 | 5.728 | 5.380 | 5.039 | 4.707 | 4.381 | 4.064 | 3.784
0.01 | a=0.25| 6.818 | 6.447 | 6.084 | 5.727 | 5.380 | 5.039 | 4.710 | 4.381 | 4.070 | 3.785
10 | a=025]| 6.780 | 6.447 | 6.090 | 5.729 | 5.380 | 5.039 | 4.707 | 4.381 | 4.064 | 3.785
10 a=025]| 6.780| 6.447 | 6.084 | 5.728 | 5.380 | 5.040 | 4.708 | 4.386 | 4.064 | 3.785
B—a 085 | 095 | 1.05 | 1.15 | 1.25 | 1.35 | 1.45 1.55 165 | 1.74
0.001| a=05 | 6.818| 6.447 | 6.084 | 5.728 | 5.345| 5.039 | 4.707 | 4.381 | 4.064 | 3.785
001 | a=05 | 6.818| 6.447 | 6.084 | 5.728 | 5.351 | 5.039 | 4.707 | 4.381 | 4.064 | 3.785
1.0 a=05 | 6.818| 6.447 | 6.084 | 5.728 | 5.376 | 5.039 | 4.707 | 4.381 | 4.064 | 3.785
10 a=05 | 6.818 | 6.447 | 6.084 | 5.728 | 5.346 | 5.039 | 4.707 | 4.381 | 4.064 | 3.785
B—a 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 14 1.49
0.001| o =075 | 6.818| 6.447 | 6.084 | 5.728 | 5.380 | 5.039 | 4.707 | 4.381 | 4.064 | 3.784
0.01 | a=0.75| 6.818 | 6.447 | 6.084 | 5.728 | 5.380 | 5.039 | 4.707 | 4.381 | 4.064 | 3.785
10 | a=0.75]| 6.818 | 6.449 | 6.084 | 5.728 | 5.380 | 5.100 | 4.707 | 4.381 | 4.063 | 3.784
10 a=075]| 6.818| 6.449 | 6.084 | 5.728 | 5.380 | 5.039 | 4.707 | 4.3821| 4.063 | 3.785
B—a 035 | 045 | 055 | 0.65 | 0.75 | 0.85 | 0.95 1.05 | 1.015| 1.24
0.001| a=10 | 6.818| 6.447 | 6.084 | 5.728 | 5.380 | 5.039 | 4.707 | 4.390 | 4.063 | 3.785
001 | a=10 | 6.818| 6.449| 6.084 | 5.728 | 5.380 | 5.039 | 4.707 | 4.381 | 4.063 | 3.785
1.0 a=10 | 6.818| 6.447 | 6.084 | 5728 | 5.380 | 5.039 | 4.707 | 4.381 | 4.064 | 3.790
10 a=10 | 6.818| 6.447 | 6.084 | 5.728 | 5.380 | 5.039 | 4.707 | 4.390 | 4.063 | 3.785
B—a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

of a is not obvious and therefore we have the answer the questionthe order of arrangements the profiles changes in
both sides of the poinft — a = 1 ? To answer this question it is better to use the alternatised, 0 t%/(6-)

ForB —a < 2, which encompass all cases studied here we have enhaiffosibdi with the following sub-case§3$,
54,55,56], namely: for ¥—a) < 2 the transport regime iatermediatefor (8 — o) = 1 there is aallistic transportand
for (B — a) < 1 aturbulent transportakes place. Now, the data summarized in Table 1 allowsifgerg that:

Fora =0 anda = 0.1 we have & (3 — a) < 2 and all profiles are propagating faster with increase irfréetional
orderf thus corresponding to thietermediate transpontegime .

Fora =1 inall cases & (8 — a) < 1 the profiles correspond to therbulent transportregime.

Intermediate values af there is a change in the transport mechanism depending ealine of 3 , namely
a=02513<B<1l9=1<(B—-0a)<2
a=0515<pB<19=—=15<(B—-a)<2
a=07518<B<18=1<(B—-0a)<2

Using these estimations we state that with increasing the process shifts from thatermediateto theturbulent
regime, andrice versaln the present study there are two cases correspondifffytar) =1 ,i.e. @ =0.1and =1.1)
and @ = 0.5andB = 1.5). As commented earlier, in these cases the fronts propagét constant speeds.
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Fig. 5. Approximate two-dimensional profiles. Situations whendhder of arrangement of the profiles along the abscissaxsltbe
decrease in the fractional ord@rcorresponding to the range<Oa < 0.5. The case corresponds to intermediate and turbulenipians
regimes (see the comments in the text). Cas¢lpt=1.0.a)a =0;b)a=0.1;c)a =0.25;d)a =05

A good example is the solutions for= 0.5 , where the transport mechanism ok 1.5 is different from that for
B > 1.5 although the arrangement of the curves follows the samer @slthat exhibited by the solution for cases with
B—a <1, precisely the cases for=0.75 anda = 1 correspond to thiurbulent transport

All these transients from one transport mechanism to ansthengly depends on the differenBe- a and affect the
arrangement of the approximate profiles along the abs@ssagmmented above. More clear explanations come up from
the three-dimensional presentation of the approximatgisol commented in the next section.

3.2 Three-dimensional profiles and evolutiordgf) with respect tg3 and (B — a)

Three-dimensional presentations of the approximateisalir the formua= f (&, 3, a = const,sH" = const) are shown
in Figs. 7, 8, 9 and 10. The optimal exponeg: was approximated as a function of the fractional orfeas nopt =
10— 3.43 (see Fig. 4c.) since it is practically independent of theoermta .

It is noteworthy that fixed value of the dimensionless numibér means a fixed moment of time scaled by the
characteristic timefy ort, ).Hence, when similarity variable is used as available gthie axisé ,in fact, this is a scaled
axis of the coordinate at fixed moment of time. Now, after these preliminary exptenmalet us see the solution at
different times and the effect of the differenge- a .
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Fig. 6: Approximate two-dimensional profiles. Situations when dnéer of arrangement of the profiles along the abscissa do not
follow exactly the decrease in the fractional orgercorresponding to the range7® < a < 1.0, that is almost linear dependence
Dgo(x) = f(x) (see the comments in the text). Casglef = 1.0 . a)a =0.75; b)a = 1.0

3.2.1 Small, moderate and large time solutions

The three-dimensional representations of the approxiswditions in Fig. 7 and Fig. 8, represents cases of sgiQ.1

) and moderateH,=1) times. The envelop&(t) shows the front propagation and its variation alongdfeis. In general,

for a < 0.5 the short time solutions correspondde< 4¢ and we have an envelop&)t , concave in shape with respect
to the 3 axis. The increase in the area between the ditt¢ and thef axis corresponding to the cases where < 1
makes the envelope more concave. To clarify this statertetrsige the large time solutions represented by the case when
sHr = 5 (see Fig.9) andH, = 10 (see Fig.10) but foor < 0.5 as in these shown in Fig. 7 and Fig. 8. The increase in
time makes the envelopg¥t) convex in shape (with respect to teaxis. It is easy to detect differencesdft) whenf
varies from 1 to 2 and the effect of the differen@e- a . Looking at the meaning of the fractional ordéithe slowest
case wher = 2 corresponds to the classical diffusion equation and theeshpenetration depti(t) , respectively. The
reduction in the values @ transforms the governing equation to a model corresportdifaster transport regimes with
alimit whenf = 1 with the largesd(t) . Therefore, the solutions and they behaviours when theaiting fraction order

B varies are physically adequate.

3.2.2 Almost linear and linear relationsHi ()

It is interesting to see the solution behaviour wiigg(x) = Dgo + X" approaches the linear relationship. Two cases
for a = 0.75 anda = 1 are presented in Fig.11 and Fig. 12 respectively. In thasescthe increase in time (from the
top of the column of sub-figures to the bottom) indicates ewrd(t) profiles with respect to thg axis. For the linear
case @ = 1) we can clearly see the retardation (forcing) effectrcdince in all these cas€8.1 <sH, < 10) we have

B — a < 1 except the limiting situation witf} = 2 and consequently the front propagation i§(@st/(B — a) where
1/(B—a) > 1/2, that completely corresponds to superdiffusive trartshdfB — a)]? > 1 . The solutions with the lower
value ofa = 0.75in Fig. 11 encompass cases With- a < 1 andB —a > 1 (8 > 1.75) and the simultaneous effect of
the fractional ordef8 and the exponert .

4 Conclusions
This paper reported approximate analytical solution ofigient space-fractional diffusion (Dirichlet problem) hy

synergistic combination of the integral-balance methobictv in fact allows solving the problem by the two-point
method, and the least-squares approach allowing definm@pltimal exponent of the assumed profile. Precisely, the
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Fig. 7: Three-dimensional approximate profiles (solutiong)ig. 8: Three-dimensional approximate profiles (solutions)
for small times ¢H; = 0.1) as a function of the exponentfor moderate timesst; = 1.0) as a function of the exponent
a and the fractional ordgB demonstrating the effect of the and the fractional ordeB demonstrating the effect of the
difference(B — a) on the shape of the advancing frant) (  difference(8 —a) on the shape of the advancing frat) (

the red line in the web version) within the rangee@ < 0.5 the red line in the web version) within the range@ < 0.5

. Note: the line is hand-made drawn demonstrating only théNote: the line is hand-made drawn demonstrating only the
tendency in variation of the fror(t) . tendency in variation of the frord(t) .

(@© 2017 NSP
Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl3, No. 1, 19-39 (2017) www.naturalspublishing.com/Journals.asp %N;é"p) 35

b)

Fig. 9: Three-dimensional approximate profiles (solutiong)ig. 10: Three-dimensional approximate profiles (solutions)
for large times {Hr = 5) as a function of the exponent for |arge times ¢H, = 10) as a function of the exponent
and the fractional ordeB demonstrating the effect of theand the fractional ordep demonstrating the effect of the
difference(8 — o) on the shape of the advancing fra¥t) (  difference(8 — a) on the shape of the advancing frat) (

the red line in the web version) within the range:@ < 0.5  the red line in the web version) within the range:@ < 0.5

- Note: the line is hand-made drawn demonstrating only the\ote: the line is hand-made drawn demonstrating only the
tendency in variation of the from(t) . tendency in variation of the frord(t) .
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Fig. 11: Three-dimensional approximate profiles (solutionsig, 12: Three-dimensional approximate profiles (solutions)
for almost linear functional relationshIpB(x) = f(x) (0 = for almost linear functional relationshipg(x) = f(x) (a =

0.75) as a function of the exponemtand the fractional order 1.0 ) as a function of the exponeatand the fractional order

B demonstrating the effect of the differen¢@ — a) on the 8 demonstrating the effect of the differeng®— a) on the
shape of the advancing frodi(t) ( the red line in the web shape of the advancing frodit) ( the red line in the web
version) within the range & a < 0.75 . From top to the version) within the range & o < 0.75 . From top to the
bottom of the column the time increases (increased valuesygttom of the column the time increases (increased values of
sHr ) Note: the line is hand-made drawn demonstrating only, ) Note: the line is hand-made drawn demonstrating only
the tendency in variation of the frodtt) the tendency in variation of the frodi(t)
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front functional relationship, termed hers as penetratiepth is developed by the single-integration approach ef th

integral-balance method. The refining of the approximaligtiem that is the determination of the optimal exponentsuse

the least-squares approach by minimization of the resifiuadtion of the governing equation. Further, the assumed
parabolic profile expansion as a convergent power-law seakows easily applying either integer-order or

fractional-order differentiation and integrations.

The solution reveals that the front propagation dependserinverse of the difference of the fractional offlemd
spatial exponent of the diffusion coefficieatthus allowing transitions from subdiffusive to superdsffte transport
regime.

The optimal exponent of the approximate profile is pradicmldependent of the spatial exponent of the diffusion
coefficient but it is strongly affected by the fractional erg3 demonstrating almost linear relationship; the optimal
exponent decreases with increase in the fractional g8ddihe three-dimensional presentation of the results pertit
demonstrate the effect of the difference of the fractiomdeof and spatial exponent of the diffusion coefficient
Moreover, the potential power-law spatial relationshiptieé diffusion coefficient conceived in this article resuilts
definition of the fractional Fourier number controlling tipeocess. This allowed demonstrating the effect of the
fractional Fourier number on the development of the appnaxé solution at short, moderate and large times.
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