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Abstract: In this paper, we propose a new algorithm to solve the 7 parameters transformation problem. Using Gröbner bases techniques
and solving polynomial systems, we find, in a direct manner and without the need of a linearization, the values of the translation, rotation
and a scale factor. Then, with the aid of simulated data, we will confront thealgorithm to all sorts of configurations. Finally, we show
the application of this algorithm in photogrammetry.

Keywords: Direct resolution, Photogrammetry, 7 parameters transformation, Gröbner bases, Solving polynomial systems.

1. Introduction

In this paper, we consider the acquisition of some images,
already oriented and localized by couple, and look for
how one can assemble many couples together. For this
purpose, we perform an approached setting up, in order to
perform a bundle adjustment that relies entirely on the
co-linearity equations. However these equations are not
linear and therefore require initial values, to be linearized.
More precisely, it permits the setting in geometry of a set
of N images in the same referential.

One can say that today the external orientation is a
problem (the pose problem) whose resolution is quite
classical. In theory it requires only 3 known points, but in
practice at least an extra fourth or even a fifth point are
required in order to find an unique solution, to say
nothing even of the unreliability of a calculation based on
the minimal number of points in case of an outlier. The
aim of this paper is to present a new alternative.

For a large set of images, the external orientation
allows the setting in reference of a couple of image in
relation to a 3D model of points, and the goal is to put
progressively all the successive 3D models obtained from
neighbouring couples in the same reference frame. To be
more precise, let us suppose that we have 3D points from
the couple of the images 1 and 2 (the reference of the
system is the optical center of the image 1). If the relative

orientation is obtained between the images 2 and 3, we
will also have the 3D points that will be in the reference
of the image 2. In order to be able to put the image 3 in
the first reference, we will put the 3D points taken from
the couple 2 and 3 in the reference frame of the model
taken from the couple of images 1 and 2. To illustrate this
point, these steps are presented in Figure1.

Figure 1: Setting in reference a model in relation to another

This problem is the equivalent of the passage from a
reference frame to another one; it is therefore a similitude
in the 3D space. The equations of the 3D similitude are
those used for the absolute orientation. Otherwise it is
possible to perform a compensation by model, instead of
a bundle compensation, under the technical denomination
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of photogrammetric aerotriangulation : bundle
compensation by independent models.

The 7 parameters transformation is very classical in
geodesy [2], because it allows the passage of a reference
frame to another. It transforms a set of points from a
system to another one using a rotation, a translation and a
scale factor. In geodesy [7], the angles of rotation being
very small, an approximation is made for the rotation
matrix. It leads to what is called a Helmert
transformation. In a context of photogrammetry,
unfortunately we cannot make this simplification for the
rotation, because these angles may be large, and we use
this transformation to connect the different models
obtained for each couple. The result will be a set of
images all in the same reference. It is also the case in the
laser scanner surveys, in order to put in the same
reference the clouds of points taken from different
stations. In that case, the scale factor is in general very
close to 1, see Figure2.

(a) Cloud of points acquired from the first station

(b) Cloud of points acquired from the second station

(c) Setting in reference of the second station (yellow)
in relation to the first one

Figure 2: Example of setting in reference of the different laser
clouds presented above, while using the algorithm presented
below (Le Monastier). Credit: ENSG

In this paper, a new algorithm of resolution of the 7
parameters transformation is described. With the help of
Gröbner bases and polynomial resolution [4], we find, in
a direct manner and without the need of a linearization

(and thus of approached values), the values of the
translation, rotation and a scale factor. In the continuation,
with simulated data, we will test the algorithm in many
different configurations. To conclude, we will show the
application of this algorithm in photogrammetry.

2. The method of the 7 parameters: Direct
calculation of the 3D similitude

Algebraic modeling. The 7 parameters transformation
contains, as its name indicates, 7 unknowns; i.e. the scale
factor λ , the rotationR and the translationTx,Ty,Tz. As
one can see in Figure3, once these 7 parameters are
obtained, we are able to link the whole system 2 to the
system 1.
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Figure 3: Illustration of a 7 parameters Helmert transform
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whereR(ω,φ ,κ) is the rotation matrix (see Figure 3).
If one uses the Cayley representation for the rotation
matrix, we will have the following system in whichA is
an antisymmetric matrix [1].
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By multiplying both sides of this equation by(I −A),
we get:
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In order to solve the 7 parameters, it is necessary to
have at least 3 homologous points in both systems. In
photogrammetry, topography and geodesy, three
categories of control points may be defined: the points
whose coordinates inX,Y and Z are known, the points
whose only planimetric coordinates inX and Y are
known, and finally the altimetric points whose only
vertical coordinates (inZ) are known. As one can see it in
the equation1, every couple of control points, which is in
X,Y andZ, gives three equations. In order to construct a
system of polynomials, seven equations are necessary,
and therefore we must have at least one couple of points
known in X,Y and Z, as well as one point inZ. In
practice, one has almost always points known inX,Y and
Z. For three pointsK,M andN expressed in the 2 systems
we obtain the following system of 7 equations in 7
unknowns:

f1 =−Xk2−cYk2+bZk2+λXk1−λcYk1+

λbZk1+Tx−cTy+bTz,

f2 =cXk2−Yk2−aZk2+λcXk1+λYk1−
λaZk1+cTx+Ty−aTz,

f3 =−bXk2+aYk2−Zk2−λbXk1+λaYk1+

λZk1−bTx+aTy+Tz,

f4 =−Xm2−cYm2+bZm2+λXm1−λcYm1+

λbZm1+Tx−cTy+bTz,

f5 =cXm2−Ym2−aZm2+λcXm1+λYm1−
λaZm1+cTx+Ty−aTz,

f6 =−bXm2+aYm2−Zm2−λbXm1+λaYm1+

λZm1−bTx+aTy+Tz,

f7 =−bXn2+aYn2−Zn2−λbXn1+λaYn1+

λZn1−bTx+aTy+Tz.

The unknowns of this system are therefore
λ ,a,b,c,Tx,Ty and Tz. However, using some simple
algebraic operations, we can modify these equations, to
obtain a more convenient system with a smaller number
of equations and unknowns. Indeed, with some linear
combinations of the equations, the translation parameters
can be eliminated. We will consider further the new
equations

g1 = f1− f4,

g2 = f2− f5,

g3 = f3− f7,

g4 = f6− f7.

where the unknowns areλ ,a,b and c. Once we
calculate the values of these unknowns, we can compute
easily the parameters of the translation.

Resolution with the aid of Gröbner bases. It is known
that Gr̈obner bases approach can be useful to solve
systems of algebraic equations with a finite number of
solutions. In this direction, we recall first some basic
definitions and notations related to Gröbner bases, and
then we show how we can use them to solve a system of
polynomial equations. For more details on Gröbner bases
and its applications, we refer to [4].

The notion of Gr̈obner basis was introduced by
Buchberger, who gave also the first algorithm to compute
it (see [3]). This algorithm has been implemented in most
general computer algebra systems likeMAPLE,
MATHEMATICA , SINGULAR, MACAULAY 2, COCOA and
SALSA software. To recall the precise definition of
Gröbner bases, letR= K[x1, . . . ,xn] be a polynomial ring
whereK is an arbitrary field. Letf1, . . . , fk be a sequence
of k polynomials in R. The basic algebraic object
associated with the systemf1 = 0, . . . , fk = 0 is the ideal
generated by the polynomialsf1, . . . , fk that we denote it
by I = 〈 f1, . . . , fk〉. Recall that this ideal is the set of all
polynomials f1.h1 + · · · + fk.hk where the hi ’s are
arbitrary polynomials inR. Furthermore, we need a
monomial ordering≺ on R, i.e. a well-ordering order on
the set of monomials s.t. multiplication with a monomial
respects the ordering. Note that a monomial is a power
product of variablesx1, . . . ,xn. As a classical example of a
monomial ordering, we recall the definition of the
lexicographical ordering (LEX), denoted by≺lex. This
ordering is a special monomial ordering having some
interesting applied properties. Let degi(m) be the degree
in xi of a monomialm. If m andm′ are two monomials in
R, then we writem≺lex m′ if the most left non-zero entry
in the sequence
(deg1(m

′)−deg1(m), . . . ,degn(m
′)−degn(m)) is positive,

see [4] for more details. Now, let≺ be a monomial
ordering onR. The leading monomial of a polynomialf
in R is the greatest monomial (with respect to≺) which
appears inf , and we denote it byLM( f ). The leading
coefficient of f , written LC( f ), is the coefficient of
LM( f ) in f . The leading term of f is
LT( f ) = LC( f )LM( f ). If G is a set of polynomials, we
denote byLT(G) the monomial ideal generated byLT(g)
for g in G. The leading term ideal ofI is defined to be
LT(I) = 〈LT( f ) | f ∈ I〉.
Definition 1. (Gröbner basis) A finite subset G of I is
called a Gr̈obner basis of I w.r.t.≺ if LT (G) = LT(I).

Proposition 1. Every ideal I of the ring R has a Gröbner
basis G w.r.t. a given monomial ordering. Moreover, G
generates the same ideal I.

Theorem 1. Let I be an ideal of R, ≺lex the
lexicographical ordering on R and G a Gröbner basis of I
w.r.t. ≺lex. Then, for each i, the intersection of G with
K[xi , . . . ,xn] is a Gröbner basis for the intersection of I
with this ring.

This elimination property implies that to solve a
polynomial systemf1 = 0, . . . , fk = 0, we consider the

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1378 A. Hashemi, M. Kalantari, M. Kasser: Direct Solution of the 7 parameters...

ideal I = 〈 f1, . . . , fk〉 and we compute a Gröbner basisG
of I w.r.t.≺lex. Then, we can find a polynomialgn in G in
only xn. Furthermore, by replacing the roots ofgn in G,
we obtain another polynomial involving onlyxn−1. This
lifting continues all the way up until we calculate the
values of all the variables.

Example 1. Let us consider the systemf = xy−2y = 0
andg= x2−2y2 = 0. Assume thatI is the ideal generated
by f andg in R[x,y] andy ≺lex x. A Gröbner basis ofI
w.r.t. ≺lex is the set{ f ,g,h} whereh= y3−2y. It can be
shown easily that solving the new systemf = g = h = 0
is equivalent to the systemf = g = 0. However, solving
the new system is simpler than the original one. The roots
of h (the values ofy) are 0,

√
2,−

√
2. Finally, replacing

each of these roots ing, we can calculate the
corresponding value forx, and thus the solutions of the
system are(0,0),(2,

√
2),(2,−

√
2).

Macaulay Matrix . Our approach for computing Gröbner
bases is based on constructing Macaulay matrix and
followed by a Gaussian elimination procedure (see [6]).
This matrices were first used for solving polynomial
system by Macaulay in [8] where he generalized
Sylvester’s matrix to multivariate polynomials. The idea
is to construct a matrix whose lines contain the multiples
of the polynomials in the original system, the columns
representing a basis of monomials up to a given degree. It
was observed by Lazard [6] that for a high enough degree,
ordering the columns according to a monomial ordering
and performing a row reduction without column pivoting
on the matrix gives directly a Gröbner basis for the input
system. It seems that this solver was not previously used
in photogrammetry community. Moreover, our
experiments show that our proposed solver is correct,
numerically stable, robust and reasonably fast.

Our approach consists in finding the matrix
representation of the useful multiples of the input
polynomials. In addition, this construction does not
depend on the value of input points. Therefore, for any
given value of input points, we can calculate directly this
matrix, and then a Gröbner basis of the corresponding
ideal is obtained via only a single Gaussian elimination.
Once we have a Gröbner basis, we can compute the
solutions (see [4]). However, the advantage of this
method is that it avoids all the useless computations.

We recall now the definition of a Macaulay matrix and
we explain how we could use it to compute a Gröbner
basis of an ideal. LetI = 〈 f1, . . . , fk〉 be an ideal of
R= K[x1, . . . ,xn] and≺ a monomial ordering onR. Let
G = {g1, . . . ,gs} be a Gr̈obner basis ofI w.r.t. ≺. Since,
for each i, gi belongs to I , then we can write
gi = f1.hi1 + · · ·+ fk.hik for some polynomialshi j in R.
Suppose that we know the monomials appearing in the
hi j ’s. For each monomialm in hi j , we havem fi is a useful
multiple. For instance, for the above example, we observe
that h = (1/2x+ 1) f − 1/2yg. Thus, the set of all useful
multiples for constructing a Gröbner basis of〈 f ,g〉 is
{ f ,g,x f,yg}. Indeed, to find this set, we must perform

such a computation for each element of the Gröbner
basis. We are interested in computing such a set for
calculating a Gr̈obner basis of I. A natural question that
may arise is:How can we compute the set of all useful
multiples for a given ideal?Using the MAPLE package
Groebner, we can compute it. For example, letF be the
set of given polynomials. Then, the functionBasis(F,
T, output = extended) outputs G; a Gr̈obner
basis of the ideal generated byF w.r.t. the monomial
ordering T, and also C; a transformation matrix
expressingG in terms ofF . For example, if we consider
the polynomials of the above example, and setF = [ f ,g]
andT = plex(x,y), i.e. y ≺lex x, then the above function
returnsG= [h, f ,g] and the corresponding transformation
matrix [[1/2x + 1,−1/2y], [1,0], [0,1]]. Thus,
h = (1/2x+ 1) f − 1/2yg. It should be pointed out that,
for the polynomial system describing in the previous
subsection, we replace the coordinates of 3 generic
chosen homologous points in the equationsg1, . . . ,g4 and
compute then its Gröbner basis for an appropriate
monomial ordering. From this basis, we can compute the
set of all useful multiples. Note that this set would be also
the set of useful multiples appearing in the representation
of the elements of a Gröbner basis of〈g1, . . . ,g4〉 if we
replace in thegi ’s the coordinates of the points by those
of another 3 homologous points. So, we can suppose that
we have already computed the set of all useful multiples
for the idealI , and we call itS.

Let d be the maximum degree of monomials appearing
in S. We can now build the Macaulay matrixM( f1, . . . , fk)
(to simplify we denote it byM), as follows: Write down
horizontally all the monomials of degree at mostd, ordered
following the given monomial ordering≺ (the first one
being the largest one). Hence, each column of the matrix
is indexed by a monomial of degree at mostd. For each
m fi in S, we write down the coefficients ofm fi under their
corresponding monomials.









monomials of degree at most d
...
m fi · · ·
...









For any row in the matrix, consider the monomial
indexing the first non-zero column of this row. It is called
the leading monomial of the row, and is the leading
monomial of the corresponding polynomial. Gaussian
elimination applied on this matrix leads to a Gröbner
basis ofI (see [6]). Let M′ be the Gaussian elimination
form of M. As a direct corollary of the main result of [6]
we have:

Corollary 1. The set of polynomials corresponding to the
rows of M′ forms a Gr̈obner basis for I w.r.t.≺.

Example 2. Let us consider again the polynomials
f = xy− 2y and g = x2 − 2y2. Let alsoI = 〈 f ,g〉 be an
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ideal in R[x,y] and y ≺lex x. As we have already shown
that the useful multiples of f and g that we need to
compute a Gr̈obner basis ofI is f ,x f , g and yg. We
construct now the matrixM = M( f ,g) as follows:

M =









x3 x2y x2 y2x xy x y3 y2 y 1

f 0 0 0 0 1 0 0 0 −2 0
x f 0 1 0 0 −2 0 0 0 0 0
g 0 0 1 0 0 0 0 −2 0 0
yg 0 1 0 0 0 0 −2 0 0 0









After applying Gaussian elimination onM, the following
matrixM′ is obtained:

M′ =









x3 x2y x2 y2x xy x y3 y2 y 1

0 1 0 0 −2 0 0 0 0 0
0 0 1 0 0 0 0 −2 0 0
0 0 0 0 2 0 −2 0 0 0
0 0 0 0 0 0 1 0 −2 0









Now, if we transform the rows ofM′ to polynomials,
we get the Gr̈obner basis
{x2y− 2xy,x2 − 2y2,2xy− 2y3,y3 − 2y} for I w.r.t. ≺lex.
Remark that, this basis seems to be different from that
presented in the above example. However, both the sets
are Gr̈obner bases for the same ideal (because the leading
term ideal of both sets generateLT(I), see the definition
of Gröbner bases). Indeed, we can define the concept of
reduced Gr̈obner basis which is unique. Since this is not
the main subject of this article, we do not elaborate it
here.

It is worth noting that, for the polynomial system of
the previous subsection, once we compute the useful
multiples, when the value of the input points changes,
only the coefficients of polynomials change. Thus, using
Lazard’s approach, we build a Macaulay matrix (and we
may compute it directly when the value of the input
points changes), and a Gaussian elimination on this
matrix gives a Gr̈obner basis of the ideal. For the
polynomials g1, . . . ,g4, the matrix M has a dimension
24× 28. Here is the list of the 24 useful multiples of
polynomials that we have computed:

g4,λg4,λ 2g4,λ 3g4,cg4,

λcg4,λ 2cg4,λ 3cg4,g3

λg3,λ 2g3,λ 3g3,cg3,λcg3

λ 2cg3,λ 3cg3,g2,λg2

λ 2g2,λ 3g2,cg2,λcg2

λ 2cg2,λ 3cg2,g1,λ ,g1

λ 2g1,λ 3g1,cg1,λc,g1

λ 2cg1,λ 3cg1.

3. Evaluation of the 7 parameters method

Now, we evaluate with synthetic data the precision of
calculation using the present method. It is necessary to
make vary many parameters, i. e. the rotation on the three
axes, the translation inX,Y andZ, and the scale factor. In
addition to these parameters, we have to add noise on the
input values, with realistic standard deviations. It will
allow us to value the behaviour of the algorithm in
presence of noise.
Configuration of the simulation. As it would be without
interest, as impossible to allow for an interpretation, to
vary all parameters at the same time, we have proceeded
in several steps. In any case the values of the coordinates
in input of the two systems have received a noise with
standard deviations ranging from 10cm to 50cm, with a
step of 10cm. To simplify the writings, the units of length
(meters) are not indicated, since they are without impact
on the results. Then several values on the rotation,
translation and scale factor, are used. Each time, one only
of these parameters varies. The values selected for angles
were 20◦, 40◦, 60◦ and 80◦, for scale factor, 0.5,1,1.5 and
2, and for translations, 2000,4000 and 6000m.
Calculation of the points for the simulation. In a cube
whose side is 2000 (m), 1000 points are randomly
sampled. These 1000 points will constitute the input
points for the first system. In each configuration the
rotation, translation and scale factor are applied to these
1000 points, in order to get a set of coordinates of the
second system. In each configuration 500 random
samples are got. As an example, for a relative translation
of (5000,1500,500), a scale factor of 1.5 and a rotation
with an angle of around theX axis of 42 degrees, theY
axis of 36 degrees, theZ axis of 24 degrees, we get the
Figure4:

Figure 4: In red, the points in the first system. In green, the points
obtained with the given configuration
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Once the two coordinates sets in the two systems are
obtained, we add noise on theX,Y and Z values of all
points, with r. m. s. varying from 10cm to 50cm.

Here we illustrate with some results of the simulation.
A complete version of this one can be found in [5]. They
have been performed for the rotations aroundX,Y, andZ,
for the translations inX,Y andZ, and for the scale values
already described.

Variation of the rotation . In this configuration the angle
of rotation on each of the axes varies in turn. The
translation is equal to(2000,1000,500). The scale factor
is equal to 1.5. We made vary the angle of rotation around
theX,Y, andZ axes, from 0 to 80 degrees, with a step of
20 degrees. In every case only one of the components of
the rotation varies, and the two others are fixed to zero.
We illustrate the results for a rotation of 20 and 80
degrees around theX axis:

Figure 5: Rotation(20◦,0◦,0◦)

Figure 6: Rotation(80◦,0◦,0◦)

Figure 7: Rotation(0◦,20◦,0◦)

Variation of the translation . In this configuration the
three angles of rotation are fixed and are equal to 40◦, 20◦

and 30◦. The scale factor is equal to 2. The translation
varies on every axis from 0 to 6000, with steps of 2000.
The case of translation 0 is the one of a panoramic
configuration. Here we illustrate the results for a
translation of 0 m (panoramic pictures) and a translation
of 6000m.

Figure 8: Rotation(0◦,80◦,0◦)

Figure 9: Rotation(0◦,0◦,20◦)

Figure 10: Rotation(0◦,0◦,80◦)

Figure 11: Translation(0,0,0) Case of panoramic images

Figure 12: Translation(6000,0,0)

Figure 13: Translation(0,6000,0)

Figure 14: Translation(6000,0,0)
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Variation of the scale factor. In this configuration only
the scale varies. The 4 values which are taken in account
are 0.5,1,1.5 and 2. The values of the rotation are equal
to 40 degrees, 20 degrees and 30 degrees. The translation
is equal to(2000,1000,500). Here we illustrate the results
for scales of 0.5 and 2.

Figure 15: Scale= 0.5

Figure 16: Scale= 2

For all of these tests, we have observed that the errors
were rising with the r.m.s. of the noise, and that in nearly
all simulations, the error on the scale factor was lower
than 4×10−5, the errors on the rotations were lower than
0.005◦, and the errors on the translations were lower than
1m. These extremely good values prove the efficiency of
the method in any geometric configuration.

4. Conclusions

The present algorithm of resolution of the 3D similitude
presented here has been tested in different configurations.
This method calculates the elements in a direct manner
using Gr̈obner bases technique, therefore without need of
approached values. In all these simulations, some very
different configurations have been tested in presence of
noise, and we have seen that the algorithm behaves very
well in all these configurations. Without representing
strictly speaking a definitive proof, these are strong
indications on the reliability of this method. The method
of the 7 parameters presented here can be used as an
alternative to the classic bearing. The application of this
method ranges widely beyond photogrammetry and
computer vision, as for example in the domain of geodesy
and topography.
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