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Abstract: We have found some new Ostrowski-type inequalities for functions whose derivative module is relatively

(m,h1,h2)−convex. From the main results some corollaries refereeing to relative convexity, relative P−convexity, relative

m−convexity, relative s−convexity in the second sense and relative (s,m)−convexity are deduced. Also some inequalities of Hermite-

Hadamard type are obtained.
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1 Introduction

The Ostrowski inequality is known in the classical
literature since 1938 [18], when A. Ostrowski gave an
upper bound for the approximation of the integral average

1
b−a

∫ b
a f (t)dt by the value f (x) at the point x ∈ [a,b] as

follows: Let f : I ⊂ [0,+∞)→ R a differentiable function
in I◦, the interior of the interval I, such that f ′ ∈ L [a,b],
where a,b ∈ I and a < b. If | f ′(x)| ≤ M, then the
following inequality holds

∣

∣

∣
f (x)−

1

b− a

∫ b

a
f (u)du

∣

∣

∣
≤

M

b− a

[ (x− a)2 +(b− x)2

2

]

.

The growing development of the concept of convex
function is observed in several studies in which the field
of inequalities has a special attention [13,19]. In the area
of stochastic processes, these generalizations have been
applied with the use of mean square integrals inequalities
[11,12]. Also it is studied the classical
Hermite-Hadamard inequality and Jensen-type
inequalities on fractal sets related with h−convex
functions as showed in [22]. Recently, many
generalizations of the Ostrowski inequality for functions

of bounded variation, Lipschitzian, monotone, absolutely
continuous, convex functions, s-convex and h-convex
functions, (m,h1,h2)−convex functions, n-times
differentiable mappings with error estimates with some
special means together with some numerical quadrature
are done [1,2,3,4,6,10,21].

Another famous integral inequality is named after
those who studied it, J. Hadamard and Ch. Hermite in the
years 1893 and 1883, respectively [8,9].

Using a particular convex function generalization
established by M. Noor [16], called relative convexity
with respect to a function and the so-called s−convexity
in the second sense, we introduce the definition of
(m,h1,h2)−convexity relative to a function and find some
Ostrowski type inequalities, and from these results we
deduce some Hermite-Hadamard type inequalities.

2 Preliminaries

As is known in the literature, the classical concept of
convex function is as follows.
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Definition 1. Let I be an interval in R. A function f : I →
R is said to be convex, if for every x,y ∈ I and every t ∈
(0,1), the inequality

f (tx+(1− t)y)≤ t f (x)+ (1− t) f (y),

holds.

If the inequality in (1) holds in the opposite sense, then we
say that f is concave.

One of the generalizations of this concept, called
s−convexity in the first and second sense, is established
by W. Orlicz [17], later used by W.W. Breckner [5] and
widely studied in applications by M. Alomari et. al. in
[3].

Definition 2. Let 0 < s ≤ 1. A function f : [0,+∞)→ R

is s-convex in the first sense or s1-convex if

f (αx+β y)≤ αs f (x)+β s f (y),

for every x,y ∈ [0,+∞) and α,β ∈ (0,1) and αs +β s = 1.

The function f is s-convex in the second sense or s2-convex

if

f (αx+β y)≤ αs f (x)+β s f (y),

for every x,y ∈ [0,+∞) and α,β ∈ (0,1) and α +β = 1.

If the inequalities in (2) holds in the opposite sense,
then we say that f is s-concave.

Theorem 1. Let f : I ⊂ R+ → R+ a differentiable

function in I◦ such that f ′ ∈ L [a,b] where a,b ∈ I with

a < b. If | f ′| is s-convex in the second sense in [a,b] for

some fixed s ∈ (0,1] and | f ′(x)| ≤ M, x ∈ [a,b], then the

following inequality holds for each x ∈ [a,b].

∣

∣

∣
f (x)−

1

b− a

∫ b

a
f (u)du

∣

∣

∣
≤

M

b− a

[ (x− a)2 +(b− x)2

s+ 1

]

.

The proof of that theorem can be found in [3].

Theorem 2. Let f : I ⊆ R+ → R+ a differentiable

mapping in I◦ such that f ′ ∈ L [a,b] where a,b ∈ I with

a < b. If | f ′|q is s-convex in the second sense in [a,b] for

some fixed s ∈ (0,1], p,q > 1, 1
p
+ 1

q
= 1 and | f ′(x)| ≤ M,

x ∈ [a,b], then the following inequality holds

∣

∣

∣
f (x)−

1

b− a

∫ b

a
f (u)du

∣

∣

∣

≤
M

(1+ p)1/p

( 2

s+ 1

)1/q[ (x− a)2 +(b− x)2

b− a

]

,

for each x ∈ [a,b].

The proof of that theorem can be found in [4]

Theorem 3. Let f : I ⊆ R+ → R+ a differentiable

mapping in I◦ such that f ′ ∈ L [a,b] where a,b ∈ I with

a < b. If | f ′|q is s-convex in the second sense in [a,b] for

some fixed s ∈ (0,1], q ≥ 1, and | f ′(x)| ≤ M, x ∈ [a,b],
then the following inequality holds

∣

∣

∣
f (x)−

1

b− a

∫ b

a
f (u)du

∣

∣

∣

≤ M
( 2

s+ 1

)1/q[ (x− a)2 +(b− x)2

2(b− a)

]

,

for each x ∈ [a,b].

The proof of that theorem can be found in [4].
In [15], M.A. Noor introduced and studied a new class

of convex set and convex function with respect to an
arbitrary function; which are called relative convex set
and relative convex function respectively, as follows. Let
K be a non-empty closed set in a real Hilbert spaces H.

Definition 3. Let Kg a subset of H. Kg is said to be

relatively convex with respect to the function g : H → H if

tg(v)+ (1− t)u∈ Kg

∀u,v ∈ H : u,g(v) ∈ Kg, and t ∈ [0,1].

Definition 4. Let I be an interval in R. A function f :
Kg ⊆ R→R is said to be relatively convex with respect to

function g : R→R if the inequality

f (tg(x)+ (1− t)y)≤ t f (g(x))+ (1− t) f (y) (1)

holds for all g(x),y ∈ Kg, x,y ∈ R and t ∈ [0,1].

If the inequality (1) holds in the opposite sense, then
we say that f is relatively concave.

Definition 5. A function f : Kg → [0,+∞) is said to be

relatively P-convex with respect to function g : H → H,

where s ∈ (0,1], if the inequality

f (tg(x)+ (1− t)y)≤ f (g(x))+ f (y) (2)

holds for each x,y ∈ [0,+∞), g(x),y ∈ Kg and t ∈ [0,1].

If the inequality (2) holds in the opposite sense, then we
say that f is relatively P-concave.

Definition 6. Let m ∈ (0,1]. A function f : Kg → [0,+∞)
is said to be relatively m-convex with respect to function

g : H → H, if the inequality

f (tg(x)+m(1− t)y)≤ t f (g(x))+m(1− t) f (y) (3)

holds for each x,y ∈ [0,+∞), g(x),y ∈ Kg and t ∈ [0,1].

If the inequality (3) holds in the opposite sense, then we
say that f is relatively m-concave.
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Definition 7. A function f : Kg → [0,+∞) is said to be

relatively s-convex in the second sense with respect to

function g : H → H, where s ∈ (0,1], if the inequality

f (tg(x)+ (1− t)y)≤ ts f (g(x))+ (1− t)s f (y) (4)

holds for each x,y ∈ [0,+∞), g(x),y ∈ Kg and t ∈ [0,1].

If the inequality (4) holds in the opposite sense, then we
say that f is relatively s-concave in the second sense.

Definition 8. Let s,m ∈ (0,1]. A function

f : Kg → [0,+∞) is said to be relatively (s,m)-convex in

the second sense with respect to function g : H → H, if the

inequality

f (tg(x)+m(1− t)y)≤ ts f (g(x))+m(1− t)s f (y) (5)

holds for each x,y ∈ [0,+∞), g(x),y ∈ Kg and t ∈ [0,1].

If the inequality in (5) holds in the opposite sense, then we
say that f is relatively (s,m)−concave in the second sense.

Definition 9. Let h : [0,1] → R
+. A function

f : Kg → [0,+∞) is said to be relatively h−convex with

respect to function g : H → H, if the inequality

f (tg(x)+ (1− t)y)≤ h(t) f (g(x))+ h(1− t) f (y) (6)

holds for each x,y ∈ [0,+∞), g(x),y ∈ Kg and t ∈ [0,1].

If the inequality in (6) holds in the opposite sense, then we
say that f is relatively h−concave in the second sense.

In this work we introduce the following definition.

Definition 10. Let h1,h2 : [0,1]→R be non-negative and

not identically zero functions and m ∈ (0,1]. A function f :
Kg → [0,+∞) is said to be relatively (m,h1,h2)−-convex

with respect to function g : H → H, if the inequality

f (tg(x)+m(1− t)y)≤ h1(t) f (g(x))+mh2(t) f (y) (7)

holds for each x,y ∈ [0,+∞), g(x),y ∈ Kg and t ∈ [0,1].

To obtain our main results we need the following
Lemmas whose proofs are found in [20].

Lemma 1. Let f : I ⊆ R → R a differentiable function

in I◦ where a,b ∈ I, a < b and g : R→ R is a function. If

f ′ ∈ L [a,b], then the next equality holds

f (g(x)) −
1

b− a

∫ b

a
f (z)dz

=
(g(x)− a)2

b− a

∫ 1

0
t f ′(tg(x)+ (1− t)a)dt

−
(g(x)− b)2

b− a

∫ 1

0
t f ′(tg(x)+ (1− t)b)dt,

for every x ∈ g−1(I).

Lemma 2. Let f : I ⊆R→R be a differentiable function

in I◦ where a,b∈ I with a< b and g :R→R be a function.

if f ′ ∈ L [a,b], then the following equality

f (x)−
1

b− g(a)

∫ b

g(a)
f (u)du

= (g(a)− b)
∫ 1

0
p(t) f ′(tg(a)+ (1− t)b)dt

holds for every x ∈ [a,b], where

p(t) =

{

t, t ∈ [0, b−x
b−g(a) ]

t − 1, t ∈ ( b−x
b−g(a) ,1]

for every t ∈ [0,1] and any x ∈ [a,b].

Using the technique applied in the work of W.D. Jiang
et. al. [14] it is easy to prove the following Lemma.

Lemma 3. If f (n)(x) exists and is integrable on [a,g(b)]
for n ∈ N, then

S(a,g(b);k,n, f )

=
(g(b)− a)n

2n!

∫ 1

0
tn−1(n− 2t) f (n)(ta+(1− t)g(b))dt

where

S(a,g(b);k,n, f ) =

=
f (a)+ f (g(b))

2
−

1

g(b)− a

∫ g(b)

a
f (u)du

−
n−1

∑
k=1

(k− 1)(g(b)− a)k

2(k+ 1)!
f (k)(a)

3 Main Results

Theorem 4. Let f : I ⊂ [0,+∞) → R be a differentiable

function on I◦ such that f ′ ∈ L [a,b], where a,b ∈ I with

a < b. If | f ′| is relatively (m,h1,h2)−convex with respect

to a function g : R → R in [a,b] and | f ′(x)| ≤ M, the

inequality
∣

∣

∣
f (g(x))−

1

b− a

∫ b

a
f (u)du

∣

∣

∣

≤
M

b− a

[

(g(x)− a)2 +(g(x)− b)2
]

(A1 +mA2),

where

A1 =
∫ 1

0
th1(t)dt and A2 =

∫ 1

0
th2(t)dt

holds for all x ∈ g−1(I).
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Proof. Using Lemma 1 we have

∣

∣

∣
f (g(x))−

1

b− a

∫ b

a
f (u)du

∣

∣

∣

≤
(g(x)− a)2

b− a

∫ 1

0
t

∣

∣

∣
f ′(tg(x)+ (1− t)a)

∣

∣

∣
dt

+
(g(x)− b)2

b− a

∫ 1

0
t

∣

∣

∣
f ′(tg(x)+ (1− t)b)

∣

∣

∣
dt.

Now, since | f ′| is relatively (m,h1,h2)−convex y | f ′(x)| ≤
M we get

∫ 1

0
t

∣

∣

∣
f ′(tg(x)+ (1− t)a)

∣

∣

∣
dt

≤ M

∫ 1

0
th1(t)dt +mM

∫ 1

0
th2(t)dt

and similarly

∫ 1

0
t

∣

∣

∣
f ′(tg(x)+ (1− t)b)

∣

∣

∣
dt

≤ M

∫ 1

0
th1(t)dt +mM

∫ 1

0
th2(t)dt

So we have
∣

∣

∣
f (g(x))−

1

b− a

∫ b

a
f (u)du

∣

∣

∣

≤
M

b− a

[

(g(x)− a)2 +(g(x)− b)2
]

(A1 +mA2)

where

A1 =

∫ 1

0
th1(t)dt and A2 =

∫ 1

0
th2(t)dt

and the proof follows. �

Remark.Letting m = 1, h1(t) = t, and h1(t) = 1− t for all
t ∈ [0,1] in Theorem 4 it follows that

A1 =

∫ 1

0
t2dt =

1

3
and A2 =

∫ 1

0
t(1− t)dt =

1

6

so, by replacement we have

∣

∣

∣
f (g(x))−

1

b− a

∫ b

a
f (u)du

∣

∣

∣

≤
M

b− a

[ (g(x)− a)2 +(g(x)− b)2

2

]

,

making coincidence with Theorem 5 in [20]

Theorem 5. Let f : I ⊂ R+ → R+ a differentiable

function in I◦ such that f ′ ∈ L [a,b] where a,b ∈ I with

a < b. If | f ′|q is relatively (m,h1,h2)−convex with respect

to function g : R → R for some q ≥ 1, 1
p
+ 1

q
= 1 and

| f ′(x)| ≤ M, x ∈ [a,b], then the following inequality holds

∣

∣

∣
f (g(x))−

1

b− a

∫ b

a
f (u)du

∣

∣

∣

≤
M

(p+ 1)1/p
(A1 +mA2)

1/q
[ (g(x)− a)2 +(g(x)− b)2

(b− a)

]

,

for each x ∈ [a,b], where

B1 =

∫ 1

0
h1(t)dt and B2 =

∫ 1

0
h2(t)dt.

Proof. Suppose that p > 1 from lemma (2), and using the
Hölder inequality, we have:

∣

∣

∣
f (g(x))−

1

b− a

∫ b

a
f (u)du

∣

∣

∣

≤
(g(x)− a)2

b− a

∫ 1

0
t| f ′(tg(x)+ (1− t)a)|dt

+
(g(x)− b)2

b− a

∫ 1

0
t| f ′(tg(x)+ (1− t)b)|dt

≤
(g(x)− a)2

b− a

(

∫ 1

0
t pdt

)1/p

×

(

∫ 1

0
| f ′(tg(x)+ (1− t)a)|qdt

)1/q

+
(g(x)− b)2

b− a

(

∫ 1

0
t pdt

)1/p

×

(

∫ 1

0
| f ′(tg(x)+ (1− t)b)|qdt

)1/q

.

Since | f ′|q is relatively (m,h1,h2)−convex with respect to
function g and | f ′(x)| ≤ M, then we have

∫ 1

0
| f ′(tg(x)+ (1− t)a)|qdt

≤

∫ 1

0
h1(t)| f

′(g(x))|q +mh2(t)| f
′(a)|qdt

≤ Mq

(

∫ 1

0
h1(t)+mh2(t)dt

)

dt

and similarly

∫ 1

0
| f ′(tg(x)+ (1− t)b)|qdt

≤ Mq

(

∫ 1

0
h1(t)+mh2(t)dt

)

dt.

Doing

A1 =

∫ 1

0
th1(t)dt and A2 =

∫ 1

0
th2(t)dt,
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it is attained
∣

∣

∣
f (g(x))−

1

b− a

∫ b

a
f (u)du

∣

∣

∣

≤
M

(p+ 1)1/p
(A1 +mA2)

1/q
[ (g(x)− a)2 +(g(x)− b)2

(b− a)

]

,

where 1
p
+ 1

q
= 1. The proof is complete. �

Remark. Letting m = 1, h1(t) = t, and h1(t) = 1− t for
all t ∈ [0,1] in Theorem 5 it follows that

A1 =

∫ 1

0
tdt =

1

2
and A2 =

∫ 1

0
(1− t)dt =

1

2

so, by replacement we have

∣

∣

∣
f (g(x))−

1

b− a

∫ b

a
f (u)du

∣

∣

∣

≤
M

(p+ 1)1/p

[ (g(x)− a)2 +(g(x)− b)2

(b− a)

]

.

Theorem 6. Let f : Kg → R be n−times differentiable

and integrable on Kg. If | f (n)| is relative

(m,h1,h2)−convex with respect to a function g : Kg → R,

then

|S(a,g(b);k,n, f )|

≤
(g(b)− a)n

2n!

(

n− 1

n+ 1

)1−1/q

×

(

C1| f
(n)(a)|q +mC2| f

(n)(g(b))|q)
)1/q

,

where

C1 =

∫ 1

0
tn−1(n− 2t)h1(t)dt

and

C2 =

∫ 1

0
tn−1(n− 2t)h2(t)dt

.

Proof. Using Lemma 3, the power mean inequality and the

fact that | f (n)|q is relative (m,h1,h2)−convex with respect
to a function g : Kg → R then

|S(a,g(b);k,n, f )|

≤

∣

∣

∣

∣

(g(b)− a)n

2n!

∫ 1

0
tn−1(n− 2t) f (n)(ta+(1− t)g(b))dt

∣

∣

∣

∣

≤
(g(b)− a)n

2n!

(

∫ 1

0
tn−1(n− 2t)dt

)1−1/q

×

(

∫ 1

0
tn−1(n− 2t)| f (n)(ta+(1− t)g(b))|qdt

)1/q

≤
(g(b)− a)n

2n!

(

n− 1

n+ 1

)1−1/q

×

(

∫ 1

0
tn−1(n− 2t)×

(h1(t)| f
(n)(a)|q +mh2(t)| f

(n)(g(b))|q)dt
)1/q

So, doing

C1 =

∫ 1

0
tn−1(n− 2t)h1(t)dt

and

C2 =

∫ 1

0
tn−1(n− 2t)h2(t)dt

it is attained

|S(a,g(b);k,n, f )|

≤
(g(b)− a)n

2n!

(

n− 1

n+ 1

)1−1/q

×

(

C1| f
(n)(a)|q +mC2| f

(n)(g(b))|q)
)1/q

.

The proof is complete. �

Remark.Letting m = 1, h1(t) = t, and h1(t) = 1− t for all
t ∈ [0,1] in Theorem 5 it follows that

C1 =
∫ 1

0
tn−1(n− 2t)tdt

=
n

n+ 1
−

2

n+ 2
=

n2 − 2

(n+ 1)(n+ 2)

and

C2 =

∫ 1

0
tn−1(n− 2t)(1− t)dt

=
n

(n+ 1)(n+ 2)

by replacement we have

|S(a,g(b);k,n, f )|

≤
(g(b)− a)n

2n!

(

n− 1

n+ 1

)1−1/q

×

(

C1| f
(n)(a)|q +C2| f

(n)(g(b))|q)
)1/q

,
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4 Some Consecuences

Corollary 1. Let f : I ⊂ [0,+∞)→ R be a differentiable

function on I◦ such that f ′ ∈ L [a,b], where a,b ∈ I with

a < b. If | f ′| is relatively P−convex with respect to a

function g : R → R in [a,b] and | f ′(x)| ≤ M, the

inequality
∣

∣

∣
f (g(x))−

1

b− a

∫ b

a
f (u)du

∣

∣

∣

≤
M

b− a

[

(g(x)− a)2 +(g(x)− b)2
]

.

Proof. Letting m = 1, h1(t) = h2(t) = 1 for all t ∈ [0,1] in
Theorem 4 it follows that

A1 = A2 =

∫ 1

0
tdt =

1

2

by replacement we have

∣

∣

∣
f (g(x))−

1

b− a

∫ b

a
f (u)du

∣

∣

∣

≤
M

b− a

[

(g(x)− a)2 +(g(x)− b)2
]

,

The proof is complete. �

Corollary 2. Let f : I ⊂ [0,+∞)→ R be a differentiable

function on I◦ such that f ′ ∈ L [a,b], where a,b ∈ I with

a < b. If | f ′| is relatively m−convex with respect to a

function g : R → R in [a,b] and | f ′(x)| ≤ M, the

inequality
∣

∣

∣
f (g(x))−

1

b− a

∫ b

a
f (u)du

∣

∣

∣

≤
M(m+ 2)

6(b− a)

[

(g(x)− a)2 +(g(x)− b)2
]

.

Proof. Letting h1(t) = t, and h2(t) = 1− t for all t ∈ [0,1]
in Theorem 4 it follows that

A1 =

∫ 1

0
t2dt =

1

3
and A2 =

∫ 1

0
t(1− t)dt =

1

6

So by replacement we get

∣

∣

∣
f (g(x))−

1

b− a

∫ b

a
f (u)du

∣

∣

∣

≤
M(m+ 2)

6(b− a)

[

(g(x)− a)2 +(g(x)− b)2
]

.

The proof is complete. �

Corollary 3. Let f : I ⊂ [0,+∞)→ R be a differentiable

function on I◦ such that f ′ ∈ L [a,b], where a,b ∈ I with

a< b. If | f ′| is relatively s−convex in the second sense with

respect to a function g : R → R in [a,b] and | f ′(x)| ≤ M,

the inequality
∣

∣

∣
f (g(x))−

1

b− a

∫ b

a
f (u)du

∣

∣

∣

≤
M

(s+ 1)(b− a)

[

(g(x)− a)2+(g(x)− b)2
]

Proof. Letting m = 1, h1(t) = ts, and h2(t) = (1− t)s for
all t ∈ [0,1] in Theorem 4 it follows that

A1 =

∫ 1

0
ts+1dt =

1

s+ 2

A2 =

∫ 1

0
t(1− t)sdt =

1

s+ 1
−

1

s+ 2

So by replacement
∣

∣

∣
f (g(x))−

1

b− a

∫ b

a
f (u)du

∣

∣

∣

≤
M

(s+ 1)(b− a)

[

(g(x)− a)2 +(g(x)− b)2
]

The proof is complete. �

Corollary 4. Let f : I ⊂ [0,+∞)→ R be a differentiable

function on I◦ such that f ′ ∈ L [a,b], where a,b ∈ I with

a< b. If | f ′| is relatively (s,m)−convex in the second sense

with respect to a function g : R→R in [a,b] and | f ′(x)| ≤
M, the inequality
∣

∣

∣
f (g(x))−

1

b− a

∫ b

a
f (u)du

∣

∣

∣

≤
M

b− a

[

(g(x)− a)2 +(g(x)− b)2
]

(

1−m

s+ 2
+

1

s+ 1

)

Proof. Letting h1(t) = ts, and h2(t) = (1− t)s for all t ∈
[0,1] in Theorem 4 it follows that

A1 =

∫ 1

0
ts+1dt =

1

s+ 2

A2 =

∫ 1

0
t(1− t)sdt =

1

s+ 1
−

1

s+ 2

Replacing
∣

∣

∣
f (g(x))−

1

b− a

∫ b

a
f (u)du

∣

∣

∣

≤
M

b− a

[

(g(x)− a)2 +(g(x)− b)2
]

(

1−m

s+ 2
+

1

s+ 1

)

The proof is complete. �

Corollary 5. Let f : I ⊂ R+ → R+ a differentiable

function in I◦ such that f ′ ∈ L [a,b] where a,b ∈ I with

a < b. If | f ′|q is relatively P−convex with respect to

function g : R → R for some q ≥ 1, 1
p
+ 1

q
= 1 and

| f ′(x)| ≤ M, x ∈ [a,b], then the following inequality holds

∣

∣

∣
f (g(x))−

1

b− a

∫ b

a
f (u)du

∣

∣

∣

≤
21/qM

(p+ 1)1/p

[ (g(x)− a)2 +(g(x)− b)2

(b− a)

]

,

for each x ∈ [a,b].
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Proof. Letting m = 1 and h1(t) = h2(t) = 1 for all t ∈ [0,1]
in Theorem 5 it follows that

B1 = B2 =

∫ 1

0
dt = 1.

So, by replacement

∣

∣

∣
f (g(x))−

1

b− a

∫ b

a
f (u)du

∣

∣

∣

≤
21/qM

(p+ 1)1/p

[ (g(x)− a)2 +(g(x)− b)2

(b− a)

]

,

The proof is complete. �

Corollary 6. Let f : I ⊂ R+ → R+ a differentiable

function in I◦ such that f ′ ∈ L [a,b] where a,b ∈ I with

a < b. If | f ′|q is relatively m−convex with respect to

function g : R → R for some q ≥ 1, 1
p
+ 1

q
= 1 and

| f ′(x)| ≤ M, x ∈ [a,b], then the following inequality holds

∣

∣

∣
f (g(x))−

1

b− a

∫ b

a
f (u)du

∣

∣

∣

≤
21/qM

(p+ 1)1/p

[ (g(x)− a)2 +(g(x)− b)2

(b− a)

]

,

for each x ∈ [a,b].

Proof. Letting h1(t) = t, h2(t) = 1− t for all t ∈ [0,1], and
taking m ∈ (0,1] in Theorem 5 it follows that

B1 = B2 =

∫ 1

0
h1(t)dt =

1

2
.

So, by replacement

∣

∣

∣
f (g(x))−

1

b− a

∫ b

a
f (u)du

∣

∣

∣

≤
M

(p+ 1)1/p

(

m+ 1

2

)1/q
[ (g(x)− a)2 +(g(x)− b)2

(b− a)

]

,

The proof is complete. �

Corollary 7. Let f : I ⊂ R+ → R+ a differentiable

function in I◦ such that f ′ ∈ L [a,b] where a,b ∈ I with

a < b. If | f ′|q is relatively s−convex in the second sense

with respect to function g : R → R for some q ≥ 1,
1
p
+ 1

q
= 1 and | f ′(x)| ≤ M, x ∈ [a,b], then the following

inequality holds

∣

∣

∣
f (g(x))−

1

b− a

∫ b

a
f (u)du

∣

∣

∣

≤
M

(p+ 1)1/p

(

2

s+ 1

)1/q
[ (g(x)− a)2 +(g(x)− b)2

(b− a)

]

,

for each x ∈ [a,b].

Proof. Letting m = 1 , h1(t) = ts, h2(t) = (1− t)s for all
t ∈ [0,1] for some s ∈ (0,1], in Theorem 5 it follows that

B1 = B2 =

∫ 1

0
tsdt =

1

s+ 1
.

So, by replacement

∣

∣

∣
f (g(x))−

1

b− a

∫ b

a
f (u)du

∣

∣

∣

≤
M

(p+ 1)1/p

(

2

s+ 1

)1/q
[ (g(x)− a)2 +(g(x)− b)2

(b− a)

]

,

The proof is complete. �

Corollary 8. Let f : I ⊂ R+ → R+ a differentiable

function in I◦ such that f ′ ∈ L [a,b] where a,b ∈ I with

a < b. If | f ′|q is relatively (s,m)−convex in the second

sense with respect to function g : R → R for some q ≥ 1,
1
p
+ 1

q
= 1 and | f ′(x)| ≤ M, x ∈ [a,b], then the following

inequality holds

∣

∣

∣
f (g(x))−

1

b− a

∫ b

a
f (u)du

∣

∣

∣

≤
M

(p+ 1)1/p

(

m+ 1

s+ 1

)1/q
[ (g(x)− a)2 +(g(x)− b)2

(b− a)

]

,

for each x ∈ [a,b].

Proof. Letting m = 1 , h1(t) = ts, h2(t) = (1− t)s for all
t ∈ [0,1] for some s ∈ (0,1], in Theorem 5 it follows that

B1 = B2 =
∫ 1

0
tsdt =

1

s+ 1
.

So, by replacement

∣

∣

∣
f (g(x))−

1

b− a

∫ b

a
f (u)du

∣

∣

∣

≤
M

(p+ 1)1/p

(

m+ 1

s+ 1

)1/q
[ (g(x)− a)2 +(g(x)− b)2

(b− a)

]

,

The proof is complete. �

Corollary 9. Let f : Kg → R be n−times differentiable

and integrable on Kg. If | f (n)| is relative P−convex with

respect to a function g : Kg →R, then

|S(a,g(b);k,n, f )|

≤
(g(b)− a)n

2n!

(

n− 1

n+ 1

)

(

| f (n)(a)|q + | f (n)(g(b))|q)
)1/q

.
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Proof. Letting m = 1 , h1(t) = h2(t) = 1, for all t ∈ [0,1]
in Theorem 6 it follows that

C1 =C2 =

∫ 1

0
tn−1(n− 2t)dt =

n− 1

n+ 1

So, by replacement

|S(a,g(b);k,n, f )|

≤
(g(b)− a)n

2n!

(

n− 1

n+ 1

)

(

| f (n)(a)|q + | f (n)(g(b))|q)
)1/q

The proof is complete. �

Corollary 10. Let f : Kg → R be n−times differentiable

and integrable on Kg. If | f (n)| is relative m−convex with

respect to a function g : Kg →R, then

|S(a,g(b);k,n, f )|

≤
(g(b)− a)n

2n!

(

n− 1

n+ 1

)

(

| f (n)(a)|q + | f (n)(g(b))|q)
)1/q

.

Proof. Letting h1(t) = t and h2(t) = 1− t, for all t ∈ [0,1]
for some m ∈ (0,1] in Theorem 6 it follows that

C1 =
∫ 1

0
tn−1(n− 2t)tdt =

n2 − 2

(n+ 1)(n+ 2)

and

C1 =

∫ 1

0
tn−1(n− 2t)(1− t)dt =

n

(n+ 1)(n+ 2)

So, by replacement

|S(a,g(b);k,n, f )|

≤
(g(b)− a)n

2n!((n+ 1)(n+ 2))1/q

(

n− 1

n+ 1

)1−1/q

×

(

(n2 − 2)| f (n)(a)|q +mn| f (n)(g(b))|q)
)1/q

,

The proof is complete. �

Corollary 11. Let f : Kg → R be n−times differentiable

and integrable on Kg. If | f (n)| is relative s−convex in the

second sense with respect to a function g : Kg →R, then

|S(a,g(b);k,n, f )|

≤
(g(b)− a)n

2n!

(

n− 1

n+ 1

)1−1/q

×

(

n(n− 1)+ s(n− 2)

(n+ s)(n+ s+ 1)
| f (n)(a)|q

+
n!(n+ s− 1)Γ(s+ 1)

Γ (n+ s+ 1)
| f (n)(g(b))|q)

)1/q

.

Proof. Letting m = 1, h1(t) = ts and h2(t) = (1− t)s, for
all t ∈ [0,1] for some s ∈ (0,1] in Theorem 6 it follows that

C1 =
∫ 1

0
tn−1(n− 2t)tsdt =

n(n− 1)+ s(n− 2)

(n+ s)(n+ s+ 1)

and

C2 =

∫ 1

0
tn−1(n− 2t)(1− t)sdt =

n!(n+ s− 1)Γ(s+ 1)

Γ (n+ s+ 1)

So, by replacement

|S(a,g(b);k,n, f )|

≤
(g(b)− a)n

2n!

(

n− 1

n+ 1

)1−1/q

×

(

n(n− 1)+ s(n− 2)

(n+ s)(n+ s+ 1)
| f (n)(a)|q

+
n!(n+ s− 1)Γ(s+ 1)

Γ (n+ s+ 1)
| f (n)(g(b))|q)

)1/q

.

The proof is complete. �

Corollary 12. Let f : Kg → R be n−times differentiable

and integrable on Kg. If | f (n)| is relative (s,m)−convex in

the second sense with respect to a function g : Kg → R,

then

|S(a,g(b);k,n, f )|

≤
(g(b)− a)n

2n!

(

n− 1

n+ 1

)1−1/q

×

(

n(n− 1)+ s(n− 2)

(n+ s)(n+ s+ 1)
| f (n)(a)|q

+
mn!(n+ s− 1)Γ(s+ 1)

Γ (n+ s+ 1)
| f (n)(g(b))|q)

)1/q

.

Proof. The proof follows after evaluating the coefficients
C1 and C2 taking s,m ∈ (0,1], h1(t) = ts and h2(t) = (1−
t)s, for all t ∈ [0,1] in Theorem 6. �

5 Some applications of Hermite-Hadamard

type inequalities

Corollary 13. If in Theorem 4 we choose m = 1, h1(t) =

t , h2(t) = 1− t for all t ∈ [0,1] and g(x) = a+b
2

we get

∣

∣

∣
f

(

a+ b

2

)

−
1

b− a

∫ b

a
f (u)du

∣

∣

∣
≤

M

4
(b− a)

where | f ′| is relatively convex with respect to function g :
R→ R and | f ′(x)| ≤ M, x ∈ [a,b].

Corollary 14. If in Theorem 5 we choose m = 1, h1(t) =

t , h2(t) = 1− t for all t ∈ [0,1] and g(x) = a+b
2

we get
∣

∣

∣
f

(

a+ b

2

)

−
1

b− a

∫ b

a
f (u)du

∣

∣

∣
≤

M

4(1+ p)1/p
(b− a).

where | f ′|q is relatively convex with respect to function g :

R→ R, q ≥ 1, 1
p
+ 1

q
= 1 and | f ′(x)| ≤ M, x ∈ [a,b]
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6 Conclusions

In this work we have found some Ostrowski-type
inequalities for functions whose derivatives in modulus
are (m,h1,h2)−convex. From the main results some
Corollaries referring to other generalized convexity types
are found. Also some Hermite-Hadamard-type
inequalities are deduced. The authors hope that this work
serves to stimulate the study in this line of research.
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