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Abstract: Radial basis function-Pseudospectral method and Fourier Pseudospectral (FPS) method are 

extended for stiff nonlinear partial differential equations with a particular emphasis on the comparison of the 

two methods. Fourth-order Runge-Kutta scheme is applied for temporal discretization. The numerical results 

indicate that RBF-PS method can be more accurate than standard Fourier pseudospectral method for many 

nonlinear wave equations. 
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1 Introduction 

Radial basis function-Pseudospectral method (see the references [2], [3]), is extended for stiff nonlinear 

differential equations. We compare the RBF meshless method with well documented standard Fourier 

Pseudospectral method [4, 11] for the following nonlinear wave equations. 

0 xxxt uuuu     (Burgers equation) ,            (1) 

0 xxxxt uuuu     (Kortewege-de Vries equation),           (2) 

0 xxxxxxxxxxt uuuuuu     (Kuramoto-Sivashinsky equation).         (3) 

Burgers equation is an important fluid dynamic model. Many researchers studied this model for conceptual 

understanding of physical flows and for testing of various numerical methods [6]. The Korteweg-de Vries 

equation was derived by Korteweg and de Vries to model water in shallow canal [8]. The Kuramoto- 

Sivashinsky equation is the simplest equation that exhibit chaotic behavior [7, 10]. This equation contains 

both the second and fourth order derivative in its linear part. The second term acts as an energy source and 

the nonlinear term transfers energy from low to high wave numbers. While the fourth order term counter 

balance the destabilizing effect of the second term. All of the above equations are time-dependent stiff 

PDEs which are combination of low order nonlinear terms and higher order linear terms. In both RBF-PS 

and FPS techniques once we descretize the spatial part of the PDE we get a system of ODEs which can be 

solved by an appropriate ODE solver. 

 

2  RBF meshless method 

For a given set of centers   d

N Rxxxx ,...,,, 321   an RBF approximation of the solution ),( txu  of a 

PDE given by 

 



N

j

jj xxttxu
1

,)(),(            (4) 
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Where,  jxx   is a function known as radial basis function,   is the Euclidian norm and 

},...,,{ 21 N  is the expansion coefficients vector, which may be obtained at the nodes. The nodes 

may or may not coincide at the nodes. However in this study we take the nodes },...,,{ 21 Nxxx to be 

coincide with the centers. We can use infinitely smooth radial basis functions with free parameter c such as 

multiquadrics
22)( crr  , inverse multiquadrics 

22/1)( crr   or piecewise smooth functions 

like cubic
3)( rr  ,   thin plate splines )log(2 rr  and Wendland's compactly supported functions like 

)318)(35()1()( 26   crcrcrr . In RBF meshless approach for each collocation points 

Nixi ,...,2,1,  , equation (4) may be written in the matrix-vector form as 

Au  ,             (5) 

The entries of the matrix A  are  jiij xxA  . 

 Using equation (1) the derivatives xu  may be obtain by differentiating the radial basis functions and then 

evaluate at each point Nixi ,...,2,1,  , we have in matrix-vector notation  

xx Au  .            (6)           

Where the entries of the matrix xA are  
ixxjxx

dx

d


 . The differentiation matrix can be obtained by 

solving equations (5)-(6) for the value of . Thus we have, 

uDuAAu xxx  1
,            (7) 

where,
1 AAD xx  is the differentiation matrix.  It should be noted that the differentiation matrix depends 

on the invertibility of the matrix A . It is well known that the matrix A  is always invertible for distinct set 

of collocation points. In a similar way, we can write 

uDuAAu xxxxxx  1
,           (8) 

Where, 
1 AAD xxxx , and the entries of the matrix  xxA  are  

ixxjxx
dx

d



2

2

. Similarly we can 

compute differentiation matrices of higher order. Using the above differentiation matrices, the RBF-PS  

schemes corresponding to equations (1)-(3) are given as 

 

uDuDu
dt

du
xxx   *    (Burgers equation) ,           (9) 

uDuDu
dt

du
xxxx   *    (Kortewege-de Vries equation),           (10) 

uDuDuDuDu
dt

du
xxxxxxxxxx   *    (Kuramoto-Sivashinsky equation).        (11) 

The schemes (9)-(11) are of the form 

)(uF
dt

du
              (12) 

To descretize (12) in time we can use any ODE solver. In our computations we are using fourth-order 

Runge-Kutta method given as 

 

)(),
2

(),
2

(),( 3423121 truFrr
t

uFrr
t

uFruFr nnnn 

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)22(
6
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1 rrrr
t

uu nn  
.         (13) 
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It should be noted that in RBF meshless method the differentiation matrices xD , xxD  and xxxD are 

computed only once outside the time-stepping procedure. Inside the time-stepping we require only matrix-

vector multiplications. So this approach is much faster than the approach used in [9], where the 

interpolation coefficients are computed at each time-step. 

 

3 Fourier Pseudospectral method 

In this section, we present Fourier pseudospectral method proposed by sanders et al. [11]. In general the 

Fourier pseudospectral method is implemented with periodic boundary conditions. Let ),( txu be periodic 

on a spatial grid jx  of period 2  with the spacing of grid points Nh /2 . The interval of length other 

than 2  can easily be handled by a scale factor. The discrete Fourier transformed of a function ),( txu  is 

defined  







N

j

ikx

jk

NN
keuhu j

1

,
2

,...,1
2

,ˆ           (14) 

and the corresponding inverse discrete Fourier transform is 

,,...,2,1,ˆ
2

1 2/

12/

Njeuu ikxj
N

Nk

kj  


         (15) 

 

where, k is wave number. If u  is differential function with Fourier transform û  then Fourier transform of 

the pth derivative 
pu is 

k

pp uikku ˆ)()()̂(             (16) 

In this method a given PDE is multiplied by an integrating factor and make a change of variable. This 

allow us to solve the linear part exactly and then use a numerical scheme to solve the transformed 

nonlinear equation. This procedure has been used for PDEs by Trefethen [12], Fornberg and Driscoll [5], 

Cox and Mattews [1]. We write KS equation (3) in the form 

0)(
2

2  xxxxxxxxxxt uuuuu 


.         (17) 

The Burgers equation (1) can be reduced from KS equation (3) by setting 0 , 0 , while the KdV  

equation (2) can be obtained by setting 0  and 0  in equation (3). The Fourier transform of the KS 

equation (3) is given as 

0ˆ}{)̂)(
2

(ˆ 4322  ukikku
ik

ut 


.        (18) 

Let )( 432 kikkl    multiply the above equation by 
lte  and let ueU lt ˆˆ  , we have 

)̂()
2

(ˆ 2ue
ik

U lt

t


 .            (19) 

The linear term is eliminated and the problem is no longer stiff. Working in the Fourier space we have 

)))ˆ((()
2

(ˆ 21 UeFFe
ki

U ltlt

t




.        (20) 

Where, F  is the discrete Fourier transform operator. The nonlinearity involved in the models (1)-(3) 

causes a little trouble for an explicit time-stepping method if we use FPS method without using the method 

of integrating factor. However it would compute solution successfully but would need a very small time 

step for stability. The method of integrating factors allows us to take a relatively larger time step. 
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3 Numerical experiments 

 

In this section, we employ three problems, the Burgers equation, the Korteweg-de Vries (KdV) equation 

and the Kuramoto-Sivashinsky (KS) equation to make a comparison between the Fourier Pseudospectral 

(FPS) method and RBF-PS methods. 

 

Burgers equation: We solve the moving front problem given by the Burgers equation over the spatial 

interval 10  x  ,with the initial solution and boundary conditions [13], 

 

 

)sin(5.0)2sin()0,( xxxu   ,         (21) 

0),1(,0),0(  tutu .           (22) 

The solution generates a steep front moving towards 1x ,which also decays with time due to the 

boundary conditions. The solution is advanced in time using fourth-order Runge-Kutta with step size 

001.0t  for both RBF-PS method and FPS schemes and are shown in Figure 1. In the computations we 

used 001.0,150,005.0,1  tN  and 01.0c . 

 
                  a- RBF-PS solution of Burgers equation.                                             b- FPS solution of Burgers equation. 

 

Figure 1:  RBF-PS and FPS solutions of Burgers equation, when, ,150,005.0,001.0  Nt   

]1.0[],[,01.0  bac , corresponding to problem (21). 

 

Korteweg-de Vries equation: We solve the KdV equation (3) using RBF-PS method and FPS methods 

over the spatial domain 160  x , with the single soliton initial solution and boundary conditions 

),(sec2)0,( 0

2 xxhxu             (23) 

.0),16(,0),0(  tutu            (24) 

The L , 2L  error norms and  two of the conservative quantities 
b

a

uduI1 , 
b

a

duuI 2

2 are computed 

and compared. We define 2,1),0(/)0()(  iIItIE iiii as the relative errors in the conservative 

quantities. For time integration fourth-order Runge-Kutta method is used for both RBF-PS and FPS 

schemes. The results are shown in Table 1. We used 10,25,1,6 0  xN and MQ shape 

parameter 1c . The exact solution of the KdV equation is given as 

)4(sec2),( 0

2 txxhtxu  .         (25) 

Again we solve the KdV equation (2) over the interval   x , but this time with the initial solution 

and boundary condition 

))1(5.0(sec3))2(5.0(sec3)0.( 2222  xBhBxAhAxu ,       (26) 



M.  Uddin:  RBF-PS method and Fourier Pseudospectral method…                                                                             59 

 

0),(,0),(  tutu  ,          (27) 

which is the interaction of two solitary waves centered at 2x , and 1x . Here the constants 
23A  

and 
23B  are the amplitudes, which are proportional to the speeds of the two waves. So the wave of larger 

amplitude moves faster than the wave with smaller amplitude interacting it and passing through it cleanly. 

In our computations we used 1,1,10,256,0231.0,16,25 6   tNcBA ,  

The results of both RBF meshless method and FPS methods are shown in Figure 2. 

 
Table 1: Comparison of RBF-PS method and FPS method for the numerical solution KdV equation, when, 

]16,0[],[,7,1,256  batcN , corresponding to problem (23). 

 
 RBF-PS method FPS method 

t   L                       2L                      1E                        2E       L                   2L                       1E                          2E  

3101 
 

51036.7  41041.4  71070.5  81065.3   
71030.4  61031.1   

91049.2     
61023.6   

4101 
 

51014.7  41030.4  81013.2  81061.3   
91085.3  81030.2  91049.2     

61025.6   

 

 
                        a- RBF-PS method of KdV equation.                                                 b- FPS method for KdV equation. 

 

Figure 2: RBF-PS and FPS solutions of KdV equation, when 0231.0,256,10 6   cNt  

Corresponding to problem (26). 

 

 Kuramoto-Sivashinsky equation:  Here we solved the KS equation (3) over the spatial domain 

160  x  with the initial solution and boundary conditions 

))((tanh))((tanh))([tanh(159)0,( 0

3

0

2

0 xxDxxDxxDCxu      (28) 

0),16(,0),0(  tutu            (29) 

The L , 2L  error norms are computed. For time integration fourth-order Runge-Kutta method.  

The results are shown in Table 2. In this computations we have used ,120,1,4,1,1  N  

5.1,2/1,6  cDC and the exact solution of the KS equation (3) is given by 

))((tanh))((tanh))([tanh(159),( 0

3

0

2

0 CtxxDCtxxDCtxxDCtxu    (30) 

 

Finally we consider the KS equation (3) with the initial solution and boundary conditions as 

)),
16

sin(1)(
16

cos()0,(
xx

xu               (31) 

0),16(,0),0(  tutu  ,           (32) 

We solve this problem using both the RBF-PS method and FPS methods. For time integration we used 

fourth-order Runge-Kutta method. The solution is shown in Figure 3. Despite the sensitivity and chaotic 

behavior of the equation both the methods produced the correct solution over a very long run, which would 

be difficult to obtain by using some low order schemes. In this computation we used 
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5.1,0001.0,120,1,0,1,2  ctN  , and the spatial domain, 160  x .  

 
Table 2: Comparison of RBF-PS method and FPS method for the numerical solution of Kuramoto-Sivashinsky equation, 

when ]16.0[],[,1,120,5.1  batNc , corresponding to problem (28). 

 
 RBF-PS method FPS method 

t      L                   2L                   L                        2L                     

3101   
41078.4    

31041.4   
31070.1    

31007.6         

4101   
410478    

31041.4   
31070.1    

31007.6         

 

 

 
          a- RBF-PS solution of KS equation.                                b- FPS solution of KS equation.  

 

Figure 3: RBF-PS method and FPS method for the numerical solution of Kuramoto-Sivashinsky equation, 

when ]16.0[],[,5.1,120,0001.0   bacNt , up to time 100t , corresponding to (31). 

 

3 Conclusions 

 

Radial basis function-Pseudospectral (RBF-PS) and Fourier Pseudospectral (PS) methods are applied for 

some nonlinear wave equations. The results of the two methods for these stiff partial differential equation 

are compared. For Burgers equations both the method produced identical graphical solution. The FPS 

performed better than RBF meshless method in solving Burgers equation. However the RBF meshless 

method produced better results than FPS method for Kuramoto-Sivashinsky equation. Both the methods 

remained stable for time step size
3100.1 t . However FPS method worked better with relatively 

larger time step t . It is found that RBF meshless method is a reliable and robust approach of spectral level 

accuracy. It has great potential for application in engineering disciplines. 
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