
Appl. Math. Inf. Sci.10, No. 1, 63-70 (2016) 63

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/100106

An Algorithm for Multiplication of Two Biquaternions
Aleksandr Cariow∗, Galina Cariowa and Anna Malewicz

Faculty of Computer Science and Information Technology, West Pomeranian University of Technology, Szczecin, Zołnierska 49, 71-
210 Szczecin, Poland

Received: 9 Jun. 2015, Revised: 7 Aug. 2015, Accepted: 8 Aug.2015
Published online: 1 Jan. 2016

Abstract: In this paper we introduce efficient algorithm for the multiplication of biquaternions. The direct multiplication of two
biquaternions requires 64 real multiplications and 56 realadditions. More effective solutions still do not exist. We show how to compute
a product of the Pauli numbers with 24 real multiplications and 64 real additions. During synthesis of the discussed algorithm we use
the fact that product of two biquaternions may be represented as vector-matrix product. The matrix that participates inthe product
calculating has unique structural properties that allow performing its advantageous decomposition. Namely this decomposition leads to
significant reducing of the computational complexity of biquaternion multiplication.

Keywords: biquaternion, multiplication of biquaternions, fast algorithm, matrix notation

1 Introduction

The Clifford and hypercomplex algebras [1] are seeing
increased application to digital signal and image
processing [2,3,4], computer graphics and machine
vision [5,6,7], telecommunications [8,9] and in public
key cryptography [10]. Preliminary studies show that
when solving problems of data processing are often used
quaternions and biquaternions or complexfield
quaternions [11,12,13,14,15,16,17,18].

Among other arithmetical operations in the Clifford
and hypercomplex algebras, multiplication is the most
time consuming one. The reason for this is, because the
usual multiplication of these numbers requiresN(N − 1)
real additions andN2 real multiplication. It is easy to see
that the increasing of dimension of hypernumber
increases the computational complexity of the
multiplication. Therefore, reducing the computational
complexity of the multiplication of Clifford and
hypercomplex numbers is an important theoretical and
practical task. Efficient algorithms for the multiplication
of quaternions, octonions and sedenions already exist [19,
20,21,22]. No such algorithms for the multiplication of
the biquaternions have been proposed. In this paper, an
efficient algorithm for this purpose is suggested.

2 Formulation of the problem

A biquaternion is defined as follows [11]

b =b0+ b1e1+ b2e2+ b3e3+ b4e4+ b5e5+ b6e6+ b7e7,

where{bi}, i = 0,1, . . . ,7 are real numbers, and{e j},
j = 1,2, . . . ,7 are imaginary units whose products are
defined by the following table [12]:

× e1 e2 e3 e4 e5 e6 e7
e1 −1 e3 −e2 e5 −e4 e7 −e6
e2 −e3 −1 e1 e6 −e7 −e4 e5
e3 e2 −e1 −1 e7 e6 −e5 −e4
e4 e5 e6 e7 −1 −e1 −e2 −e3
e5 −e4 e7 −e6 −e1 1 −e3 e2
e6 −e7 −e4 e5 −e2 e3 1 −e1
e7 e6 −e5 −e4 −e3 −e2 e1 1

Suppose we must to compute the product of two
biquaternions̃b3 = b̃1b̃2, where

b̃1 = x0+ x1e1+ x2e2+ x3e3+ x4e4+ x5e5+ x6e6+ x7e7,
b̃2 = b0+ b1e1+ b2e2+ b3e3+ b4e4+ b5e5+ b6e6+ b7e7,
b̃3 = y0+ y1e1+ y2e2+ y3e3+ y4e4+ y5e5+ y6e6+ y7e7.

∗ Corresponding author e-mail:atariov@wi.zut.edu.pl

c© 2016 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/100106


64 A. Cariow et al. : An algorithm for multiplication of two...

Using “pen and paper” method we can write:

b̃3 = x0b0+ x0b1e1+ x0b2e2+ x0b3e3+

+ x0b4e4+ x0b5e5+ x0b6e6+ x0b7e7+

+ x1b0e1+ x1b1e1e1+ x1b2e1e2+ x1b3e1e3+

+ x1b4e1e4+ x1b5e1e5+ x1b6e1e6+ x1b7e1e7+

+ x2b0e2+ x2b1e2e1+ x2b2e2e2+ x2b3e2e3+

+ x2b4e2e4+ x2b5e2e5+ x2b6e2e6+ x2b7e2e7+

+ x3b0e3+ x3b1e3e1+ x3b2e3e2+ x3b3e3e3+

+ x3b4e3e4+ x3b5e3e5+ x3b6e3e6+ x3b7e3e7+

+ x4b0e4+ x4b1e4e1+ x4b2e4e2+ x4b3e4e3+

+ x4b4e4e4+ x4b5e4e5+ x4b6e4e6+ x4b7e4e7+

+ x5b0e5+ x5b1e5e1+ x5b2e5e2+ x5b3e5e3+

+ x5b4e5e4+ x5b5e5e5+ x5b6e5e6+ x5b7e5e7+

+ x6b0e6+ x6b1e6e1+ x6b2e6e2+ x6b3e6e3+

+ x6b4e6e4+ x6b5e6e5+ x6b6e6e6+ x6b7e6e7+

+ x7b0e7+ x7b1e7e1+ x7b2e7e2+ x7b3e7e3+

+ x7b4e7e4+ x7b5e7e5+ x7b6e7e6+ x7b7e7e7.

Then we have:

y0 =
= x0b0− x1b1− x2b2− x3b3− x4b4+ x5b5+ x6b6+ x7b7,
y1 =
= x0b1+ x1b0+ x2b3− x3b2− x4b5− x5b4− x6b7+ x7b6,
y2 =
= x0b2− x1b3+ x2b0+ x3b1− x4b6+ x5b7− x6b4− x7b5,
y3 =
= x0b3+ x1b2− x2b1+ x3b0− x4b7− x5b6+ x6b5− x7b4,
y4 =
= x0b4− x1b5− x2b6− x3b7+ x4b0− x5b1− x6b2− x7b3,
y5 =
= x0b5+ x1b4+ x2b7− x3b6+ x4b1+ x5b0+ x6b3− x7b2,
y6 =
= x0b6− x1b7+ x2b4+ x3b5+ x4b2− x5b3+ x6b0+ x7b1,
y7 =
= x0b7+ x1b6− x2b5+ x3b4+ x4b3+ x5b2− x6b1+ x7b0.

We can see that the schoolbook method of
multiplication of two biquaternions requires 64 real
multiplications and 56 real additions.

Using the matrix notation, we can rewrite the above
relations as follows:

Y8×1 = B8X8×1 (1)

where

X8×1 = [x0,x1,x2,x3,x4,x5,x6,x7]
T ,

Y8×1 = [y0,y1,y2,y3,y4,y5,y6,y7]
T ,

B8 =























b0 −b1 −b2 −b3 −b4 b5 b6 b7
b1 b0 b3 −b2 −b5 −b4 −b7 b6
b2 −b3 b0 b1 −b6 b7 −b4 −b5
b3 b2 −b1 b0 −b7 −b6 b5 −b4
b4 −b5 −b6 −b7 b0 −b1 −b2 −b3
b5 b4 b7 −b6 b1 b0 b3 −b2
b6 −b7 b4 b5 b2 −b3 b0 b1
b7 b6 −b5 b4 b3 b2 −b1 b0























.

The direct realization of (1) requires 64 real
multiplications and 56 real additions too. We shall present
the algorithm, which reduce arithmetical complexity to 24
real multiplications and 64 real additions.

3 The algorithm

At first, we rearrange the rows of the matrixB8 according
to the following rule of ordering (1, 2, 3, 4, 5, 6, 7, 8)→
(5, 6, 4, 3, 1, 2, 8, 7). Next, we rearrange the columns of
obtained matrix according to the following rule of
ordering (1, 2, 3, 4, 5, 6, 7, 8)→ (1, 2, 8, 7, 5, 6, 4, 3).
The next step of modification of the obtained matrix is to
perform some artificial transformations which, as we see
latter, will bring to minimizing the computational
complexity of the final algorithm. Multiply by (-1) the
fifth and sixth rows of this matrix and than multiply by
(-1) the fifth and sixth columns of obtained matrix. We
can easily see that this transformation leads in the future
to minimize the computational complexity of the final
algorithm. As a result, we obtain the following matrix:

B′
8 =























b4 −b5 −b3 −b2 −b0 b1 −b7 −b6
b5 b4 −b2 b3 −b1 −b0 −b6 b7
b3 b2 −b4 b5 b7 b6 b0 −b1
b2 −b3 −b5 −b4 b6 −b7 b1 b0
−b0 b1 −b7 −b6 −b4 b5 b3 b2
−b1 −b0 −b6 b7 −b5 −b4 b2 −b3
b7 b6 b0 −b1 −b3 −b2 b4 −b5
b6 −b7 b1 b0 −b2 b3 b5 b4























.

Then we can write

B′
8 = R8P(1)

8 B8P(2)
8 R8,

and

Y8×1 = P(1)
8 R8B′

8R8P(2)
8 X8×1 (2)

where

P(1)
8 =























1
1

1
1

1
1

1
1























,

c© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 1, 63-70 (2016) /www.naturalspublishing.com/Journals.asp 65

P(2)
8 =























1
1

1
1

1
1

1
1























,

R8 =























1
1

1
1
−1

−1
1

1























.

Now the matrixB′
8 has a unique block structure:

B′
8 =

[

A4 B4
B4 −A4

]

,

where

A4 =







b4 −b5 −b3 −b2
b5 b4 −b2 b3
b3 b2 −b4 b5
b2 −b3 −b5 −b4






, B4 =







−b0 b1 −b7 −b6
−b1 −b0 −b6 b7
b7 b6 b0 −b1
b6 −b7 b1 b0






.

It is easily verify [22] that the matrix with this
structure can be factorized, than the computational
procedure for multiplication of the biquaternions can be
represented as follows:

Y8×1 = P(1)
8 R8W8×12D12W12×8R8P(2)

8 X8×1 (3)

W8×12 = (T2×3⊗ I4) =























1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1























,

W8×12= (T2×3⊗ I4) =





































1
1

1
1

1
1

1
1

1 1
1 1

1 1
1 1





































,

T2×3 =

[

1 0 1
0 1 1

]

, T3×2 =





1 0
0 1
1 1



 ,

D12 = diag





A4−B4
−(A4+B4)

B4



 ,

H2 =

[

1 1
1 −1

]

– is the order 2 Hadamard matrix,IN

– is the orderN identity matrix, and “⊗” – denotes the
Kronecker product of two matrices [23].

Indeed, it is easy to see that the matrices(A4−B4),
−(A4+B4) andB4 have the following structures:

(A4−B4)=







b4+ b0 −b5− b1 −b3+ b7 −b2+ b6
b5+ b1 b4+ b0 −b2+ b6 b3− b7
b3− b7 b2− b6 −b4− b0 b5+ b1
b2− b6 −b3+ b7 −b5− b1 −b4− b0






=

=

[

A2 B2
−B2 −A2

]

,

−(A4+B4)=







−b4+ b0 b5− b1 b3+ b7 b2+ b6
−b5+ b1 −b4+ b0 b2+ b6 −b3− b7
−b3− b7 −b2− b6 b4− b0 −b5+ b1
−b2− b6 b3+ b7 b5− b1 b4− b0






=

=

[

C2 D2
−D2 −C2

]

,

B4 =







−b0 b1 −b7 −b6
−b1 −b0 −b6 b7
b7 b6 b0 −b1
b6 −b7 b1 b0






=

[

E2 F2
−F2 −E2

]

,

where

A2 =

[

b4+ b0 −b5− b1
b5+ b1 b4+ b0

]

,

B2 =

[

−b3+ b7 −b2+ b6
−b2+ b6 b3− b7

]

,

C2 =

[

−b4+ b0 b5− b1
−b5+ b1 −b4+ b0

]

,

D2 =

[

b3+ b7 b2+ b6
b2+ b6 −b3− b7

]

,

E2 =

[

−b0 b1
−b1 −b0

]

,

F2 =

[

−b7 −b6
−b6 b7

]

.

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


66 A. Cariow et al. : An algorithm for multiplication of two...

As shown in [22], the matrices having such block
structures can be effectively factorized too.

[

A2 B2
−B2 −A2

]

= [I2⊕ (−I2)] (H2⊗ I2)×

×
1
2

diag

[

A2+B2
A2−B2

]

(H2⊗ I2)

(4)

[

C2 D2
−D2 −C2

]

= [I2⊕ (−I2)] (H2⊗ I2)×

×
1
2

diag

[

C2+D2
C2−D2

]

(H2⊗ I2)

(5)

[

E2 F2
−F2 −E2

]

= [I2⊕ (−I2)] (H2⊗ I2)×

×
1
2

diag

[

E2+F2
E2−F2

]

(H2⊗ I2)

(6)

where “⊕” denotes the direct sum of two matrices
[23].

Substituting (4), (5) and (6) in (3) we can write:

Y8×1 = P(1)
8 R8W8×12E12W12×

×D′
12W12W12×8R8P(2)

8 X8×1

(7)

where

E12 = diag(1,1,−1,−1,1,1,−1,−1,1,1,−1,−1),

D′
12 =

1
2

diag















A2+B2
A2−B2
C2+D2
C2−D2
E2+F2
E2−F2















,

W12 = I3⊗ (H2⊗ I2) =

=





































1 0 1 0
0 1 0 1
1 0−1 0
0 1 0 −1

04 04

04

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

04

04 04

1 0 1 0
0 1 0 1
1 0−1 0
0 1 0 −1





































,

A2+B2 =

[

b4+ b0− b3+ b7 −b5− b1− b2+ b6
b5+ b1− b2+ b6 b4+ b0+ b3− b7

]

,

A2−B2 =

[

b4+ b0+ b3− b7 −b5− b1+ b2− b6
b5+ b1+ b2− b6 b4+ b0− b3+ b7

]

,

C2+D2 =

[

−b4+ b0+ b3+ b7 b5− b1+ b2+ b6
−b5+ b1+ b2+ b6 −b4+ b0− b3− b7

]

,

C2−D2 =

[

−b4+ b0− b3− b7 b5− b1− b2− b6
−b5+ b1− b2− b6 −b4+ b0+ b3+ b7

]

,

E2+F2 =

[

−b0− b7 b1− b6
−b1− b6 −b0+ b7

]

,

E2−F2 =

[

−b0+ b7 b1+ b6
−b1+ b6 −b0− b7

]

.

Introduce the following notation:

c0 = 1/2(b4+ b0− b3+ b7),
c1 = 1/2(−b5− b1− b2+ b6),
c2 = 1/2(b5+ b1− b2+ b6),
c3 = 1/2(b4+ b0+ b3− b7),
c4 = 1/2(b4+ b0+ b3− b7),
c5 = 1/2(−b5− b1+ b2− b6),
c6 = 1/2(b5+ b1+ b2− b6),
c7 = 1/2(b4+ b0− b3+ b7),
c8 = 1/2(−b4+ b0+ b3+ b7),
c9 = 1/2(b5− b1+ b2+ b6),
c10 = 1/2(−b5+ b1+ b2+ b6),
c11 = 1/2(−b4+ b0− b3− b7),
c12 = 1/2(−b4+ b0− b3− b7),
c13 = 1/2(b5− b1− b2− b6),
c14 = 1/2(−b5+ b1− b2− b6),
c15 = 1/2(−b4+ b0+ b3+ b7),
c16 = 1/2(−b0− b7),
c17 = 1/2(b1− b6),
c18 = 1/2(−b1− b6),
c19 = 1/2(−b0+ b7),
c20 = 1/2(−b0+ b7),
c21 = 1/2(b1+ b6),
c22 = 1/2(−b1+ b6),
c23 = 1/2(−b0− b7).

Using the above notations and combining partial
decompositions in a single computational procedure we
finally can write following:

Y8×1 = P̃(1)
8 W̃8×12W12A12×24D24×

×P24×12W12W12×8P̃(2)
8 X8×1

(8)

where
P̃(1)

8 = P(1)
8 R8,

P̃(2)
8 = R8P(2)

8 ,

W̃8×12= W8×12E12,

P24×12= I3⊗ I2⊗ 12×1⊗ I2,

A12×24= I3⊗ I4⊗ 11×2

D24 = diag(c0,c1, . . . ,c23),

c© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 1, 63-70 (2016) /www.naturalspublishing.com/Journals.asp 67

P24×12=

=



















































































1
1

1
1

04×2

04×2

1
1

1
1

08×4 08×4

08×4

1
1

1
1

04×2

04×2

1
1

1
1

08×4

08×4 08×4

1
1

1
1

04×2

04×2

1
1

1
1



















































































,

A12×24 =













1 1
1 1

1 1
...

1 1













.

We can see that the direct approach to calculation of
elements{ck}, k = 0,1, . . . ,23 of the matrixD24 requires
56 additions. It is easy to see that the expressions for
calculation of {ck} contain repeated algebraic sums.
Therefore, the number of additions during calculation of
these elements can be reduced.

So, it is easy to verify that the elements
{ck}, k = 0,1, . . . ,23 can be calculated using the
following rationalized vector-matrix procedure:

C24×1 = P24×12A12×8D8(I4⊗H2)B8×1 (9)

where

B8×1 = [b0,b1,b2,b3,b4,b5,b6,b7]
T ,

C24×1 = [c0,c1, . . . ,c23]
T ,D8 =

1
2

I8,

A12×8 =





































−1 1
−1 1
1 1

1 1
−1

−1

06×4

06×4

1
1

1 1
−1 1
−1 −1

1 −1





































,

P24×12=



















































































1
1

1
1

1
1

1
1

1
1

1
1

012×6

012×6

1
−1

1
−1

1
−1

1
−1

1
−1

1
−1



















































































,

P24 =

[

P(0)
12 P(1)

12

P(2)
12 P(3)

12

]

,

P(0)
12 =







































1

1
1

1
1

1







































,

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


68 A. Cariow et al. : An algorithm for multiplication of two...

P(1)
12 =







































1
1

1
1

1
1







































,

P(2)
12 =







































1

1
1

1
1

1







































,

P(3)
12 =







































1
1

1
1

1
1







































.

Fig. 1 shows a data flow diagram, which describes the
fast algorithm for computation of the biquaternions
product and Fig.2 shows a data flow diagram of the
process for calculating the vectorC24×1 elements. In this
paper, data flow diagrams are oriented from left to right.

Straight lines in the figures denote the operations of
data transfer. Points where lines converge denote
summation. The dash-dotted lines indicate the sign
change operation. We deliberately use the usual lines
without arrows on purpose, so as not to clutter the picture.
The circles in these figures show the operation of
multiplication by a variable (or constant) inscribed inside
a circle. In turn, the rectangles indicate the matrix-vector
multiplications with the order 2 Hadamard matrices. As
follows from Fig. 2, calculation of elements of diagonal
matrix D8 requires performing only trivial multiplications
by the power of two. Such operations may be
implemented as primitive shift operations, which have
simple realization and hence may be neglected during
computational complexity estimation [22].

Fig. 1: Data flow diagram of rationalized algorithm for
multiplication of two biquaternions

4 Evaluation of computational complexity

We calculate how many real multiplications (excluding
multiplications by power of two) and real additions are
required for realization of the proposed algorithm, and
compare it with the number of operations required for a
direct evaluation of matrix-vector product in Eq. (1). As
already mentioned the number of real multiplications
required using the proposed algorithm is 24. Thus using
the proposed algorithm the number of real multiplications
to calculate the biquaternion product is significantly
reduced. In the other hand the number of real additions
required using our algorithm is 64. Thus, our proposed
algorithms saves 40 multiplications but increases 8
additions compared with direct method. Therefore, the
total number of arithmetic operations for proposed
algorithm is approximately 27% less than that of the
direct evaluation. It should be noted that in many practical
applications, one of the biquaternions to be multiplied
contains constant coefficients. In this case, the diagonal
matrix elements can be precomputed. This would reduce
the number of additions in the proposed algorithm to 56.

c© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 1, 63-70 (2016) /www.naturalspublishing.com/Journals.asp 69

Fig. 2: Data flow diagram describing the process of calculating
elements of the vectorC24×1 and in accordance with the
procedure (9)

5 Conclusion

The article presents a new vectorized algorithm for the
multiplication of two biquaternions. To reduce the
number of real multiplications, we exploit the strategies
of the synthesis of fast algorithms for the computation of
the matrix-vector products [24]. Minimizing the number
of multiplications is especially important in the design of
specialized VLSI chips because reducing the number of
two-component multipliers also reduces the power
dissipation and lowers the power consumption of the
entire system being implemented. This also results in a
reduction in hardware implementation cost of
”biquaternion multiplier” on the one hand and allows to
the effective use of parallelization of computations on the
other hand. If the VLSI chip already contains embedded
two-component multipliers, their number is always
limited. This means that if the implemented algorithm
contains a large number of multiplications, the developed
processor may not always fit into the chip. So, the

implementation of proposed in this paper algorithm on
the base of VLSI chips, that possess embedded
two-component multipliers, also allows saving the
number of these blocks or realizing the biquaternion
multiplier with the use of a smaller number of simpler
and cheaper VLSI chips. It will enable to design of data
processing units using a chips which contain a minimum
required number of embedded two-component multipliers
and thereby consume and dissipate least power.

So, we have presented an original algorithm which
allows multiplying two biquaternions with reduced
multiplicative complexity. As a result of streamlining the
number of multiplications required to calculate the
biquaternion product is reduced from 64 to 24 at the price
of 8 more additions. Nevertheless, it should be noted that
a hardware multiplier is more complicated unit than an
adder and occupies much more chip area than the adder.
Therefore, this solution is beneficial. Furthermore, the
total number of arithmetic operations decreased by 32
compared with the naive method of calculations.
Therefore, the proposed algorithm is better than the naive
algorithm, even in terms of its software implementation
on a conventional computer.
The authors are grateful to the anonymous referee for a
careful checking of the details and for helpful comments
that improved this paper.

References

[1] R. Abłamowicz (ed.), Clifford Algebras – Applications to
Mathematics, Physics, and Engineering, PIM 34, Birkhauser,
Basel, 2004.

[2] V. Labunets, Computational Noncommutative Algebra and
Applications, NATO Science Series II: Mathematics, Physics
and Chemistry136, 197-225, (2004).

[3] J. Mennesson, Ch. Saint-Jean, L. Mascarilla, Applied
Geometric Algebras in Computer Science and Engineering
9, 1-4, (2010).

[4] T. Batard, M. Berthier, and C. Saint-Jean. In E. Bayro-
Corrochano and G. Scheuermann Eds, editors, Geometric
Algebra Computing in Engineering and Computer Science,
chapter8, 135-161, Springer Verlag, 2010.

[5] D. Hildenbrand , D. Fontijne , C. Perwass, L. Dorst,
Tutorial 3, Proceedings of the 25th Annual Conference
of the European Association for Computer Graphics,
Interacting with Virtual Worlds, Grenoble, France, INRIA
and Eurographics Association, ISSN 1017-4656.

[6] J. Ebling and G. Scheuermann, IEEE Transactions on
Visualization and Computer Graphics11, 469-479, (2005).

[7] R. Wareham, J. Cameron, J. Lasenby, H. Li, P. J. Olver and G.
Sommer (Eds.), IWMM 2004, LNCS3519, 329-349, (2005).

[8] S. Karmakar, B. S. Rajan, IEEE Transactions on Information
Theory55, No. 1, 223-231, (2009).

[9] M.Ye. Ilchenko, T.N. Narytnik, R.M. Didkovsky,
Telecommunications and Radio Engineering72, 1651-
1663, (2013).

[10] E. Malekian, A. Zakerolhosseini, A. Mashatan, The ISC
Int’l Journal of Information Security3, No. 1, 29-42, (2011).

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


70 A. Cariow et al. : An algorithm for multiplication of two...

[11] A. A. Eliovich and V. I. Sanyuk, Theoretical and
Mathematical Physics162, No. 2, 135-148, (2010).

[12] S. J. Sangwine, T. A. Ell, N. Le Bihan, Adv. Appl. Cliff ord
Algebras21, 607-636 (2011).

[13] X.-F. Gong, Z.-W. Liu, Y.-G. Xu, Signal Processing91, 821-
831 (2011).

[14] K. Nand, G. Hamarneh, R. Abugharbieh, 9th IEEE
International Symposium on Biomedical Imaging (ISBI),
538-541 (2012).

[15] S. Said, N. Le Bihan, and S.J. Sangwine, IEEE Transactions
on Signal Processing56, No. 4, 1522-1531, (2008).

[16] S. Miron, N. Le Bihan, Jérôme I. Mars, IEEE International
Conference on Acoustics, Speech and Signal Processing,
1077-1080, (2006).

[17] E.P.J. de Haas, Apeiron15, No. 4, 358-381 (2008).
[18] S.-C. Pei, J.-J. Ding, 15th European Signal Processing

Conference (EUSIPCO 2007), Poznan, Poland, 1337-1341,
(2007).

[19] O. M. Makarov, Zh. Vychisl. Mat. Mat. Fiz.17, No. 6, 1574-
1575 (1977).

[20] A. Cariow, G. Cariowa, Radioelectronics and
Communications Systems (Allerton Press, Inc. USA)
55, Issue 10, 464-473, (2012).

[21] A. Cariow, G. Cariowa, Information Processing Letters113,
324-331 (2013).

[22] A. Ţariov. Algorithmic aspects of computing rationalization
in digital signal processing (in Polish), West Pomeranian
University Press, 2011.

[23] W. H. Steeb, Y. Hardy, World Scientific Publishing
Company. 2 edition, 2011.

[24] A. Cariow, Journal of Signal Processing Theory and
Applications3, No. 1, 1-19 (2014).

Aleksandr Cariow
received the Candidate
of Sciences (PhD) and Doctor
of Sciences degrees (DSc
or Habilitation) in Computer
Sciences from LITMO
of St. Petersburg, Russia in
1984 and 2001, respectively.
In September 1999, he joined
the faculty of Computer
Sciences at the West

Pomeranian University of Technology, Szczecin,
Poland, where he is currently a professor and chair
of the Department of Computer Architectures and
Telecommunications. His research interests include
digital signal processing algorithms, VLSI architectures,
and data processing parallelization.

Galina Cariowa
received the MSc degrees in
mathematics from Moldavian
State University, Chişinău
in 1978 and PhD degree in
computer science from West
Pomeranian University of
Technology, Szczecin, Poland
in 2007. She is currently
working as an assistant
professor in the Department

of Multimedia Systems. She is also an Associate-Editor
of the World Research Journal of Transactions on
Algorithms. Her scientific interests include numerical
linear algebra and digital signal processing algorithms,
VLSI architectures, and data processing parallelization.

Anna Malewicz received
the Eng. degree in Electronics
and Telecommunications
and MSc degree
in Computer Science
from West Pomeranian
University of Technology,
Szczecin, Poland in 2012
and 2013 respectively.
She is currently PhD
student in the Department
of Computer Architectures
and Telecommunications. Her

scientific interests include artificial intelligence, digital
signal and image processing algorithms, programming
languages and biomedical informatics. She is currently
working on software quality assurance.

c© 2016 NSP
Natural Sciences Publishing Cor.


	Introduction
	Formulation of the problem
	The algorithm
	Evaluation of computational complexity
	Conclusion

