Progr. Fract. Differ. Appl4, No. 2, 99-110 (2018) %N =S¥\ 929

Progress in Fractional Differentiation and Applications
An International Journal

http://dx.doi.org/10.18576/pfda/040204

Riemann-Liouville Fractional Derivative and Application
to Model Chaotic Differential Equations

Kolade M. Owolabi?*

1 Department of Mathematical Sciences, Federal Univers$ifieohnology, PMB 704, Akure, Ondo State, Nigeria
2 |nstitute for Groundwater Studies, Faculty of Natural argtiéultural Sciences, University of the Free State, Blom$in 9300,
South Africa

Received: 17 April 2017, Revised: 29 July 2017, Acceptedc8 2017
Published online: 1 Apr. 2018

Abstract: In this work, the stability analysis and numerical treatingfirchaotic time-fractional differential equations arensiered.
The classical system of ordinary differential equationghwiitial conditions is generalized by replacing the fiostler time derivative
with the Riemann-Liouville fractional derivative of order, for 0 < o < 1. In the numerical experiments, we observed that analysis
of pattern formation in time-fractional coupled differemtequations at some parameter value is almost similar tassical process.

A range of chaotic systems with current and recurrent istsr@hich have many applications in biology, physics andresgging are
taken to address any points and queries that may naturallyr.oc

Keywords: Chaotic systems, fractional calculus, numerical simatetj Riemann-Liouville derivative.

1 Introduction

Fractional calculus has a long histod+]. It is seen as the generalization of ordinary differemiagnd integration to
non-integer orders. Over the years, fractional calculus feaind to play an important role in the modeling of a
considerable number of real-life or physical phenomenairfstance, the predator-prey dynanmicq], the modeling of
memory-dependent and complex media such as porous ntedieaind references therein. It has emerged as an essential
tool for the study of dynamical systems where standard nasttase not effective with strong limitations. A lot of
research findings have revealed that majority of modelsatebased only on the integer (classical) order derivatiees
not provide enough information to describe the complexitguch phenomena, on the basis of their mathematical and
physical considerations. Some system of equations preldays which may be finite, infinite, or state-dependent.
Others are subject to an impulsive effect. This paper aimsafure a wide reader of specialists such as biologist,
economist, engineers, mathematicians as well as physimisthe application of fractional calculus to address vexio
nonlinear problems.

A general time-fractional differential equation of ordeis given by

On 28 U(t) + -+ P12 u(t) + do 2 Cu(t) =0 1)

wheregs € R, d =0,1,2,...,n are the coefficients of the differential equations. Withiless of generality, we letr, >
On_1> 0n_2 > --- > dp > 0. Following [3], we present the analytical solution df)(in the general form

o  1\k
u = =y o7 (63.80.3..... 81 -2)
& K 8o+01+8++++6 2=k
Xn72 (ﬁ>GXk t _E;an_anfl an+n72(anfl_a')5'+l (2)
iEL o s ; J;) j)9j ;
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where(k; &, 1, &, ..., dn—2) are multinomial coefficients and the teng(t,A; &, 1) denotes the Mittag-Leffler function
type, bear in mind thady > 0;0; > 0;...,d,_2 > 0, as suggested by Podlubr8/10]. This function is given by

X5(L,AE.T) :t'f‘s“’lEéi) (/\tf) , for 5=0,1,2,...

whereEffT (v) is thed—th derivative of two parameters Mittag-Leffler functiaki]

(3) e (i+o)
E,/(v)= . —, for 6=0,1,2,....
gr(V) iZo"(f'+56+T)"!

The Laplace transform of functioxs (t, £A; a, n) is defined by

olyd—n

LA @)} = T

®3)

fory > |A|Y/9. Readers are referred 8, L2] for a list of some useful Laplace transforms and their isegunctions.

The non-local nature of fractional derivatives can be usedmulate accurately many natural phenomena containing
long memory, for example, the groundwater and geo-hydsologdels B, 7, 13]. In recent years, there has been
considerable interest in formulating different methodsitonerically solve various types of differential and intgr
equations. One of the outstanding techniques is the use exftrsh methods 14-21], due to their flexibility of
implementation over finite and infinite intervals. A goodvay of many appropriate numerical approximations can be
foundin 22 23].

Precisely speaking, we consider the fractional ordindffeidintial system of the form

Zgzu(t) = f(t,u(t)), te(0,T], T>0, (4)

wheref € C([0,T] xR,R), a € (0,1), andn > 0 is an integer not less than Here, we denote the tergg, u(t) is the

Riemann-Liouvilleath-order derivative of function(t) defined by

_ 1 &

r(n—o)dt"
The rest of this paper is structured as follows. There areratdefinitions of fractional derivatives, a quick tour bds

on the most useful and widely applied cases, such as the Rielrauville, the Caputo, and the Griinwald-Letnikov tgpe

are briefly discussed in Section 2. Numerical method of appration is given in Section 3. Modelling of three chaotic

problems arising in biology, physics and financial econ@nisaconsidered in Section 4. Finally, the main conclusion is
outlined in Section 5.

t
RLgdu(t) = /(t—f)”“"lu(”)dé, n—l<a<n, nez". (5)
' 0

2 Preliminary Background

In this section, we briefly introduced some of the usefuliprlaries regarding fractional calculus theoty3, 24-26).
The Riemann-Liouville fractional integral of orderfor a functionu(t) € C*([0,b],R"); b > 0 is given by

1

RLanU(t) _ m

/Ot(t—f)"‘lwf)df, 0<a <o, (6)

wherel” (-) denotes the Euler's gamma function.
The left Riemann-Liouville derivative and the right Riemahiouville derivative with ordera > 0 of the given
functionu(t) € C1([0,b],R") are respectively given as

gn gn
"I = g (780 = Frmgr g L (-8 @) )

and

o) - g [ - 2

wheren is an integer which satisfigs— 1 < o < n.

b
| &0 tuEa, (®)
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The Riemann-Liouville fractional derivative of orderc (0, 1] for a functionu(t) € C*([0,b],R"); b > 0 is given by

n

d _
RLZGU() = =3 ()

n t
e J, (0T Uz, ©

forallt € [0,b] andn— 1 < a < n, wheren > 0 is an integer.
The left Caputo derivative and the right Caputo derivativénwrdera > 0 of the given functioru(t), fort € (0,b)
are respectively given as

t
Cogu(t) = 78" i) = ﬁ /O (t— &)U (&)ds, (10)
and
—1)n b
o) = (178" [uP0)] = mo D e g 1)

wheren is an integer which satisfigs— 1 < o < n.
The Caputo fractional derivative of orderc (0,1] for a functionu(t) € C*([0,b],R"); b > 0 is given by

1

C@a{tu(t) = m

[ tnae, (12)

forallt € [0,b].
The Grunwald-Letnikov fractional derivative of order> 0 of a functionu(t) is given by

(5]
Sl u(t) = lim = 5 (—1)'<(“> u(t — kh), (13)

whereh is the time-step.
The one-parameter Mittag-Leffler functi@y (z) is defined by

0 wk
Ea (Z) = kzom (14)

This function arises in the solution of fractional integegliations and interpolates between the power law and erfiahe
law (whena = 1, we obtairE; (z) = €*) scenarios for phenomena modelled by classical and fratardinary equations
[27-31].

3 Numerical Approximation and Stability Analysis of Time-Fractional Differential System
with Riemann-Liouville Derivative

In this section, we first present the numerical approxinmedithe Riemann-Liouville time-fractional derivative Withe
power law kernel32], and later discuss the stability analysis of time-fractibdifferential equations.

3.1 Riemann-Liouville Approximation

We shall present directly the numerical approximation, éfjrdtion, we have

1

t
) = gy o OO EE,

RGELT(0) = Srult),

d .. Uty u(t))
Gu0 = %, (15)
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where
1 tjt1 —a
u(tja) = m/o (tjra— &) f(&)dE
and
) = e | - ) 1()ae
VU ra-a)o !
Our numerical approximation is presented as follows:

) = ﬁ [ ooz,

= DYRIERIEE
(16)
_ 1 e iy e
P " /t (=) mde,
j
= r(zl_ a) Zo f(tSH)er T [t 2 —tera) ™ = (142 —197).
similarly,
u(tj) = ﬁ/otj (t — &)~ f(§)d¢,
(7)
]
_ I'(21 a)gl f(ts) +2f(t3— 1) [t —ts- )9 — (tj —ts)1 9] + O(AY)
Thus
Ra8 {t )} = Atl'(; a) { f(tSH)er i (G2 —tern) 7 = (tya — 1) 7]
i
-3 S e —w“’]} 4o
+Ed,j7
where

t5+1 f - f tS+1 t5+1 f - f tS—i-l)
o - .
@ T At (1-a) 1 a {zo/t e Z)/t T

Theorem 31(Atangana and Gomez-AguilaB?]) Let f denotes a function not necessarily differentiabldaiT], then
the fractional derivative of of ordera in the Riemann-Liouville sense is defined by

j
RLQ&t{u(t)} _ Atr(;_ = {SZO f(ts+1)2+ f(ts) [(tj+1—ts+1)1‘°’ B (tj+1—ts)1‘°’]

L f(ts) + f(ts 1) 1 1
=Y ——— [t —ts1) T T =t —ts)
51 |
+Eaq j,
where
i 1-a 1-a
Eaj SC(tHl = )

ProofReaders are referred to Atangana and Gomez-AguBRifpr details.
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3.2 Stability Analysis of Fractional Differential SystemRiemann-Liouville Sense

Here, we shall consider the stability of fractional diffietial system in the sense of the Riemann-Liouville fraciion
derivative P4, 33
Rbggu(t) =Fu(t), 0<a <1, (19)
whereu(t) = [uy(t),U(t),...,un(t)]T € R", F = (fij)nxn € R™", with initial condition taken the form
RL.@&flU(t)h:o =Up = [Ulo, uoo, - - -, Uno]T. (20)
In what follows we analyze equatiofh) for stability whenF has zeros and non-zero eigenvalues.

Theorem 32 If all the eigenvalues of satisfies

arTt

largA (F))[ > =, (21)
then the zero solution of fractional differential systet8)(is asymptotically stable.
ProofBy taking the Laplace transform on both sides of equati®), (subject to the initial conditior2Q), we get
u(s)s® —up=FU(s),
which means that the solution of fractional differentiadtgm (L9) can be written as
u(t) = upt® 1Eq o (FtY).
By following [10,34], we assume thédt is diagonalizable, such that
A =AFA=diagA1, A2, ..., An).
whereA denotes an invertible matrix. Then,
Eaa(Ft%) = AEy q(At%)A ™ = AdiagEa o (At?), Ea.a (A2t?),Eq.a(Ast?),... Ea.a(Ant®)A L.
By using the two-parameter Mittag-Leffler function

k 7S

;m+ﬁ(|zrlik)v (22)

Ea’g(z):_
and 1), we have
a ¢ /\ta o|—1-k ;
Eaa)\t ;I_a ) + O(JAtY| )= 0,t— 4+, 1<j<n

So that,
HEC{7G (/\ta)H == ||diaanya()\lta), Ea7a ()\Zta), ana()\gta), ey Ea7a ()\nta)] H — 0

Again, we recall that any matri& € R"™" can be written in its Jordan canonical form
F=AA1 (23)
whereJ denotes the diagonal block matdx= diag(J;, 2, Js, - .., Ju), and

Al
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Clearly,
Ea.a(FtY) = AdiagEq.a(J1t), Eq.a (Jt%),. .., Eq.q (Iut?)]A L,
and
@ (Jjt9)s ©
Eaa(Jjt%) = S :
a.a(Jit) L (as+a) ZOI‘ as+a i
ASKIASTL . KT
o) C{)S /\:5 . .
=y — - ] ' ' (24)
2,Flas+a) et
S)\JS
J
J—l
Eaa(At%) £ F-EaaAt) -+ gy (a%) Eaa(Ajt9)
i ana()\jt )

The termK{, 1 < i < nj — 1 denotes the binomial coefficients. It is noticeable thaaif(Aj(F))| > g 1<j<Mand
t — oo, with further calculations, we have

1 ! . .
|Ea,a(Ajt?)] =0, ‘i_' (%\J) Ea,a(Ajt?)]| =0, for0<i<nj, 1< j<M.

In fact, it is obvious that

Eaa(At?) = - § —2——+ oAt 1),
(LG( J ) Szzr(a_as) (| J | )

which means thd€q o (Ajt9)| — 0 ast — o, and

1(0‘§)iEaa<At> i (o ){ 3 ﬁ’(lAjt"l”)}

1 —i— StaS .
o Zz '(s+i ||rza (SGJ;) )SA + (AR Ky
K (—1)(s+i—1)IA;mas
:_s; il(s— 1! (a —as)

+ oA,

which results t% i (M ) Eaa(Ajt9)] =0, 1<i<nj—1ast — . It follows that||u(t)|| = ||upt® *Eq.q(Ft%)| — 0
ast — oo, for any non-zero initial valueg. This completes the proof.

Theorem 33 Let 0 < a < 2. For internal stability, we consider the fractional awtomous system at = 0, that is
Rbgu(t) = Fu(t), (25)
with a = [a1,0z,...,aq|" which hasn— dimensional representation

RLggtun(t) = faaun(t) + fialip(t) + -+ Fagln(t),
RL.@&?Uz(t) = f21U1(t) + f22U2(t) +- 1+ onUn(t),

RL@&{]UH(U = fnlul(t) + fn2'~«|2(t) + fnnun(t), (26)
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whereaq;i’s are fractional numbers between 0 and 2. Supgoiethe least common multiple of the denominatqis of
ai's, wherea; =y, /X, X € Z* fori =1,2,...,nand we sef8 = 1/k. We define

AROL— . —f1p - —fap
—f21  AKI2 —fy, ... —fon
det . : : =0. (27)

- i(nl - .fnz - AKGn - fon

If all a;’s are fractional number, the characteristic polynomialiaipn @7) can be transformed to integer order
polynomial. Then the zero solution ofdimensional fractional differential systerq) is globally asymptotically stable
provided all roots\;’s of the characteristic equatio87) satisfy

larg )| >B7—2T, vi.

By puttingA = R in equation 27), the characteristic equation can be written in the forn@ﬁfét— F)=0.
ProofSee Deng et al.34] for a similar proof.

Theorem 34 Assume all the eigenvalues of matfixsatisfy @5), that is,
amn
largA (F))| = =,

and the critical eigenvalues found satisfyimgg(A (F))| = %* have the same geometric and algebraic multiplicities, then
we can say that the zero solution of fractional differergiagtem 19) is not asymptotically stable but rather stable.

ProofLet us assume there is a critical eigenvalgewhich satisfiegarg(A,)| = & with both geometric and algebraic
multiplicity equal to unity. Then, from the above, we preisiwe solution of {9) as
u(t) = Ut 1Eq o (Ft?) = (28)
uot® A diagEq q (J1t?),. ... Ea,a(Jp-1t), Ea.a(Apt?),Ea,a (Jps1t?),. .., Ea,a(Jpt?) A2

whereJgs are Jordan block matrices with ordgrargAq(F))| > % andz nq +Yoept1Ng+1l=nqg=1,....p—
1Lp+1,...,w

We obtain from above
(Apt) "

1 S
Ea,a(Apt?) = E(/\pt )L/ exp((Apt®) ) — Z I(a—aq)

+O(|(Apt )79, (29)

Assume
Ap= s(cosﬂ+ [ sing)
p 2 2 )’
recall thati> = —1, andw denotes the modulus @, Then,

Baalet”) = clr {wta (0050{7 +'S'na7n” s eXF’([ (00307 +|sma—n)}(la>/a>

2
s arn am\]1—4d 1
z (Cosa +;:;1 2)] +ﬁ“wt"’ (cosa%TjLisina?n)‘ T
q=2
:% w(I-a)/apl- "(sm 5 +|cosa7))exp(iw1/“t)
S [w %99 (cos?Y" —isin9d)] 1
~ + 0 ((wt®)~179), 30
2, Fla—ag () ™9) (30)
similarly, we have
9 g g (Apt?) = %(w(l“’)/“ (sm 5 +|cosa7)) exp(iwl/"t) (31)
s —Qt—aq agrr O!qﬂ —-q
a1 [~ (cosJ" —isin®d) ] w1
t qu Fla—aq) + 0 (ot ).
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From the above, it is obvious that the absolute value of tisetfirm ist w(1-9)/9, put the remainder terms tend to zero
ast — +o0. We can see from the result presented in The@&thatEy o (Jqt?) — 0 ast — 4o, forq=1,...,p—1,0+
1,...,w, which show that the solution of fractional differentiaksym (L9) is stable but not asymptotically stable. This
completes the proof.

4 Numerical Experiments

In this section, we present some numerical experimentseothiaotic time-fractional differential equations arisfrgm

the fields of mathematical biology, physics and finance incithe time classical derivatives are replaced with the
Riemann-Liouville fractional derivatives of ordere (0,1). Numerical approximation is done with the forward diffecen
scheme which we execute with the Matlab R2012a package.

4.1 Lotka-Volterra System

Let us consider the time-fractional order Lotka-Volterys@®m [LO]

RLggu(t) = au(t) + eu(t) — Bu(t)v(t) — Tw(t)u?(t)
REggV(t) = —cv(t) +du(t)v(t) (32)
REggw(t) = —pwi(t) + Tw(t)u’(t)

whereu(t) > 0,v(t) > O,w(t) > 0 are the two-predator and one-prey densities. The paresreei®,c.d,&,p,T are

w(t)
w(t)

wit)
w(t)
w(t)

h T S
o
s 0 o5 T i 0 25 g o T i
v(®) u() ut) ut)

Fig. 1. Simulation result for fractional Lotka-Volterra syster®2). The upper and lower rows correspond to species evolution a
o = 0.73 anda = 0.95 respectively. Other parameters are giver8s).(Simulation runs for t=100.

assumed positive. Whenevpr= 0,7 = 0, we recall the fractional order one-predator and one-pregel discussed
in [35]. The Lotka-Volterra system3@) displays chaotic attractors in Figuteat different values otr (as given in the
caption) for the parameter values

a=1B=1c=1d=1¢6=2 p=3, 1=267 u(0) =1, v(0) = 1.4, w(0) = 1. (33)
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4.2 Hyperchaotic System

Here, we consider the time-fractional order problem whielsatibe a novel hyperchaotic system given by the four-
dimensional dynamics3f|

REggpu(t) = y(v(t) —u(t)) +w(t) +2(t)

REg6v(t) = Bu(t) —u(twit) +z(t) (34)
REgGaw(t) = u(t)v(t) — Tw(t)

REg6iz(t) = —p(u(t) +v(t)

o( )
whereu(t), v(t),w(t) andz(t) denotes the states, apd3, T, p are positive (constants) parameters. The 4D sys8)ras

150

w(t)

o 20 a0 R 4 E 0 - 20 a0 E E ) 50 100 3 E ) 50
u(t) u(t) v(t) v(t)

Fig. 2: Numerical results atr = 0.91 showing the 3D (upper-row) and 2D (lower-row) projecti@i the novel hyperchaotic system

(34) with initial conditionsu(0) = 2.6,v(0) = 2.1,w(0) = 2.5 andz(0) = 2.3. Other parameters are given BB). Simulation runs for
t=100.

t=10

300

200

W\««mw\\w\‘w i

5 —100

u,v,w,z

u,v,w,z
*
¢
‘

-200

-300

-400

time

Fig. 3: Time series result of the novel hyperchaotic syst8d) &t a = 0.87 with different instances of simulation tinhe= 2, 10. Other
parameters are given in Figuee

presented in Figuredand3, displays a strange hyperchaotic attractors for the paeanalues
y=18 B=1251=4, p=6. (35)
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4.3 Halvorsen Circulant Chaotic System

Lastly, we consider the Halvorsen circulant chaotic sys@ascribed by the 3D dynamic37]

w(t)
v(t)
w(t)
w(t)

K w0 3 5 = K w0 3 5 = 10 K o 3

w(t)

v(t)
w(t)

207~ = 10 =

o 205 ut ET) E o0 o

Cuy

Fig. 4: Strange chaotic attractors of the Halvorsen sys&#pift R? andR? obtained atr = 0.93 with upper-row y= 1.68, 8 = 3.82)
and lower-row y = 1.27, 3 = 4). Simulation runs for timé= 100.

time time time

Fig. 5: Time series result of the Halvorsen circulant chaotic syg&6) showing chaotic oscillations at = 0.85 for some instances of
simulation timet = 5,10,20 withy = 1.27 and = 4.

(t)) —wA(t) (36)

which is symmetric with respect to cyclic interchanges ahponentsi, v andw. Halvorsen have shown that the circulant
chaotic system described i88) is chaotic whery = 1.27 andf3 = 4. In the numerical experiment, we simulate with
the initial conditionsu(0) = 0.2, v(0) = 0.6 andw(0) = 0.2. Figure4 illustrates the strange attractor of syste36)(in
RR3. Various 2D projections ofu, V), (u,w) and(v,w) coordinate are shown. It should be mentioned that, apart fhe
patterns obtained for the examples considered here, dtlhetic and more-complex structures are obtainable, dépgnd
on the choices of initial conditions and other parameteues
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5 Conclusion

We have given a mathematical analysis with numerical treatrfor general time-fractional differential equationsthe
model, we the standard time derivative is replaced with tleerann-Liouville fractional derivative of order, defined

in the interval(0, 1]. We observed that strange attractors can only occur if tife-hand side of the differential equation
is coupled. Some numerical examples which have wide agjaicén physics, biology and engineering are illustrated
for different values ofo to cover the pitfall and naturally arise question. In theufaet the mathematical analysis and
numerical treatment reported in this paper will be extertddane-space fractional reaction-diffusion equations.
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