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Abstract: It is considered the inverse problem of identification the order ρ of the fractional Riemann - Liouville derivative in time in

the abstract subdiffusion equation, the elliptical part of which is a self-adjoint positive operator with a discrete spectrum. It is proved

that the norm ||u(t)|| of the solution at a fixed t = t0 restores uniquely the order ρ . At the same time, an interesting effect was discovered:

for sufficiently large t, the norm ||u(t)||, considered as a function of ρ , is monotolically decreasing. A number of examples of concrete

subdiffusion equations are discussed.

Keywords: Identification of order of derivative, Fourier’s method, inverse problem, Riemann-Liouville derivatives, subdiffusion
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1 Main results

It has long been known that for modeling subdiffusion (anomalous or slow diffusion), it is necessary to use differential
equations of fractional order ρ ∈ (0,1). But in this case, unlike integer-order differential equations, the order ρ of the
fractional derivative is often unknown, and there are no specific instruments for measuring it. The problem of
determining this parameter is interesting not only theoretically, but also necessary for solving initial-boundary value
problems and studying the properties of solutions. Such a problem in the mathematical literature is called the inverse
problem of identification the order of a fractional derivative. The paper [1] by Li, Liu, Yamamoto surveys works on such
inverse problems.

In this paper, we deal with order inversion in the subdiffusion equation with a fractional Riemann-Liouville derivative
with respect to time.

Let H be a separable Hilbert space, (·, ·)-the inner product, and || · ||-the norm of the space H. Further, let A be a self-
adjoint positive operator acting on H. Assume that A has a compact inverse and denote by {vk} its system of complete
orthonormal eigenfunctions, and by λk-the set of countable non-negative eigenvalues: 0 < λ1 ≤ λ2 · ··.

For vector-valued functions (or simply functions) h : R+ → H, fractional integrals and derivatives are defined in the
same way as for scalar functions (see, e.g., [2]), while known properties and formulas are preserved. For example, if h(t)
is a function defined on [0,∞), then its fractional integral of order ν < 0 has the form

∂ ν
t h(t) =

1

Γ (−ν)

t
∫

0

h(ξ )

(t − ξ )ν+1
dξ , t > 0,

here it is assumed that the integral exists and Γ (ν) is the gamma function of Euler. The fractional derivative in the sense
of Riemann - Liouville is defined as

∂
ρ
t h(t) =

d

dt
∂

ρ−1
t h(t), 0 < ρ < 1.
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In order to get the definition of the Caputo fractional derivative, it is necessary to swap differentiation and fractional
integration in this definition:

D
ρ
t h(t) = ∂

ρ−1
t

d

dt
h(t).

It should be noted that in the case of ρ = 1 both introduced fractional derivatives coincide with the ordinary derivative:

∂th(t) = Dth(t) =
d
dt

h(t).
Suppose that ρ ∈ (0,1] is a fixed number, and let C((a,b);H) be the set of continuous vector functions u(t) of t ∈ (a,b).

Consider the Cauchy type problem:






∂
ρ
t u(t)+Au(t) = 0, 0 < t ≤ T ;

lim
t→0

∂
ρ−1
t u(t) = ϕ ,

(1)

where ϕ is a given vector in H. If ρ = 1, then the initial condition has the form u(0) = ϕ .
Problem (1) is called the forward problem.

Definition 1. A solution of the forward problem is called a function u(t) such that ∂
ρ
t u(t),Au(t) ∈ C((0,T ];H) and

satisfying the Cauchy problem (1) for all t ∈ (0,T ].

As usual, denote by Eρ ,µ(t) the Mittag-Leffler function:

Eρ ,µ(t) =
∞

∑
k=0

tk

Γ (ρk+ µ)
.

For the forward problem (1) we have the following result:

Theorem 1. For any ϕ ∈ H the forward problem has a unique solution and this solution has the form

u(t) =
∞

∑
k=1

tρ−1Eρ ,ρ(−λkt
ρ)(ϕ ,vk)vk. (2)

A number of authors have studied the forward problem (1) for various operators A. We will only mention a few of
these works. The case of the subdiffusion equation with Au = uxx has been thoroughly studied (see, e.g. the monographs
by A.A. Kilbas et al. [3] and A.V. Pskhu [4]). Gorenflo, Luchko and Yamamoto [5] studied the subdiffusion equations in
Sobelev spaces and Kubica and Yamamoto [6] considered the forward problem for subdifussion equations having time-
dependent coefficients. The multidimensional case (x ∈R

N) was studied, for example, in [3], [7] - [10], while in [3], [7] -
[9] the authors considered the Laplace operator instead of differential expression uxx, and the author of [10] investigated
pseudo-differential operators with constant coefficients defined in the entire space RN .

A result similar to the above, for equation (1) with the Caputo derivative, was obtained by M. Ruzhansky et al. [11].
In the case when A is an arbitrary elliptic differential operator, this theorem is proved in [12].

Obviously solution (2) depends on ρ ∈ (0,1]. Now suppose that the order of the fractional derivative ρ is unknown
and consider the inverse problem: is it possible to uniquely determine this parameter ρ if as additional information we
have the norm

W (t0,ρ) = ||u(t0)||
2 = d0 (3)

at a fixed time instant t0 > 0?
We will call the inverse problem the problem (1) together with the over-determination condition (3).
Let us fix a number ρ0 ∈ (0,1) and consider the inverse problem for ρ ∈ [ρ0,1].

Definition 2. A solution of the inverse problem is a pair {u(t),ρ} of a solution u(t) of the forward problem and a parameter

ρ ∈ [ρ0,1] satisfying the over-determination condition ( 3).

Lemma 1. There exists a number T0 = T0(ρ0,λ1) such that for all t0 ≥ T0 and for an arbitrary ϕ ∈ H function W (t0,ρ)
monotonically decreases in ρ ∈ [ρ0,1].

Let us formulate the main result of the work:

Theorem 2. Let t0 ≥ T0 and ϕ ∈ H. Then for the inverse problem to have a solution {u(t),ρ} it is necessary and sufficient

that condition

W (t0,1)≤ d0 ≤W (t0,ρ0)

be satisfied.
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It should be noted that in a review article by Z. Li et al. [1] (p. 440) in the section ”Conclusions and open problems”
the question was raised: if additional information about the solution at a fixed time point is specified as ”observation data”,
is it possible to unambiguously recover the order of fractional derivatives? Obviously, the formulated Theorem 2 gives
a positive answer to this question, since in this theorem the value W (t,ρ) at a fixed time t0 is taken as the ”observation
data”.

The considering inverse problem, in view of its importance for applications, has been studied by many specialists (see
the review article [1] and the bibliography therein, [13] -[26]). It should be noted that in all previously known papers, the
authors considered the following additional condition

u(x0, t) = h(t), 0 < t < T, (4)

at the observation point x0 ∈ Ω . But, as it turned out, this condition guarantees only the uniqueness of the solution of
the inverse problem (see [13] - [16]). In this regard, it should be emphasized that, as Theorem 2 states, condition (3), in
contrast to condition (4), guarantees both the uniqueness and existence of a solution.

Hatano et al. [17] considered the subdiffusion equation ∂
ρ
t u =△u with initial function ϕ ∈C∞

0 (Ω) and homogeneous
Dirichlet boundary condition (see also [18]). The authors proved that if △ϕ(x0) 6= 0, then

ρ = lim
t→0

[

t∂tu(x0, t)[u(x0, t)−ϕ(x0)]
−1
]

.

For the best of our knowledge, only the paper [19] by J. Janno considers the problem of the existence of a solution
to the inverse problem. By specifying an over-determination boundary condition Bu(·, t) = h(t),0 < t < T , the author
succeeded in proving an existence theorem for recovering the integral operator kernel in the considered equation and also
the order ρ , 0 < ρ < 1 of the Caputo derivative.

We also note the following recent papers, where various inverse problems for the subdiffusion equations are
investigated. In the papers by Z. Li, Z. Zhang [20] and R. Ashurov, Yu. Fayziev [21] the authors investigated the inverse
problem of simultaneously recovering the source function and the order of the fractional time derivative. In [20] only the
uniqueness is proved, while in [21] both the existence and uniqueness of a solution to the inverse problem are proved.
The next two papers [22] and [23] are devoted to the study of the inverse problem of recovering both the orders of
fractional derivatives with respect to space and time variables. Again, in paper [22] only the uniqueness is proved, and in
paper [23] both the existence and uniqueness are proved. It should also be noted that the elliptic part of the subdiffusion
equation considered in [23] has a continuous spectrum. The authors of [24] discuss for a homogeneous subdifussion
equation, elliptical part of which is an arbitrary second order operator, similar issues discussed in the present paper. Work
[25] is, as it were, a continuation of work [24]: here the elliptic part is a differential operator of arbitrary order, and the
subdiffusion equation is inhomogeneous. Due to the inhomogeneity of the equation, the unknown order of the fractional
derivative also depends on the right-hand side of the equation. As additional information for the inverse problem, the
authors of both papers considered the value at a fixed time of the solution projection onto the first eigenfunction. Note
that the methods proposed in these papers, in contrast to the present paper, are applicable only when the first eigenvalue
of the corresponding elliptic operator is equal to zero. We also note the article [26], in which a result similar to Theorem
2 was proved for the subdiffusion equation with the Caputo derivative. The method applied in work [26] is similar to that
used in the present work, and it is based on the study of the monotonicity of the Mittag-Leffler function Eρ ,ρ(t) with
respect to the parameter ρ . It should be especially noted that this property of the Mittag-Leffler function has not been
studied by other authors. As it turned out, this method can be applied to solve inverse problems of determining the order
of the fractional derivative for various fractional differential equations. So in work [27] this method was applied to
determine the vector order of fractional derivatives for systems of pseudo-differential equations, and in work [28] - for
equations of mixed type. The authors of [29] applied a slightly modified version of this method to solve a similar inverse
problem for the fractional wave equation.

In conclusion, we give the following remarks:

1) Any differential operator can be taken as the operator A if it has a complete orthonormal system of eigenfunctions.
The operators discussed in M. Ruzhansky et al. [11], including the fractional Sturm-Liouville operators, harmonic and
anharmonic oscillators, and fractional Laplacians are examples of such operators.

Note that the work [11] is devoted to the study of another type of inverse problems, namely, the inverse problem of
determining the source function.

2) The results of this work can also be applied to systems of fractional differential equations. To do this, it suffices to
take RN as the Hilbert space and N-dimensional symmetric quadratic matrix {ai, j} as the operator A.

3) Further, one can consider various functions as W (t,ρ). The following functions W (t,ρ) = ||Au(t)||2 and W (t,ρ) =
(u,ϕ) can be cited as an example.
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2 Forward problem

This section is devoted to the proof of Theorem 1.

We note at once that the function (2) satisfies formally the conditions of problem (1) (see e.g., [30], p. 173 and [31]). To
show that it is indeed a solution of problem (1), according to Definition 1, it is necessary to prove that Au(t)∈C((0,T ];H)
and ∂

ρ
t u(t) ∈C((0,T ];H).

To do this we need the following asymptotic estimate of the Mittag-Leffler function (see, for example, [32], p. 136)

|Eρ ,µ(−t)| ≤
C

1+ t
, t > 0. (5)

Let

S j(t) =
j

∑
k=1

tρ−1Eρ ,ρ(−λktρ)(ϕ ,vk)vk.

Then

AS j(t) =
j

∑
k=1

λktρ−1Eρ(−λkt
ρ)(ϕ ,vk)vk.

Apply the Parseval equality and estimate (5) to get

||AS j(t)||
2 =

j

∑
k=1

|λktρ−1Eρ(−λktρ)(ϕ ,vk)|
2 ≤Ct−2||ϕ ||2

(here we used the inequality λ tρ(1+λ tρ)−1 < 1). Hence, Au(t) ∈C((0,T ];H).

Since ∂
ρ
t S j(t) =−AS j(t) (see equation in (1), then from the arguments above, we have ∂

ρ
t u(t) ∈C((0,T ];H).

To prove the uniqueness of the solution, we assume, as usual, that there are two solutions u1(t) and u2(t). Then the
difference u(t) = u1(t)− u2(t) satisfies the homogeneous problem:

∂
ρ
t u(t)+Au(t) = 0, t > 0; (6)

lim
t→0

∂
ρ−1
t u(t) = 0. (7)

Set

wk(t) = (u(t),vk).

For any k ∈ N equation (6) implies

∂
ρ
t wk(t) = (∂

ρ
t u(t),vk) =−(Au(t),vk) =−(u(t),Avk) =−λkwk(t).

Therefore, we arrive at the Cauchy problem (see (7)):

∂
ρ
t wk(t)+λkwk(t) = 0, t > 0; lim

t→0
∂

ρ−1
t wk(t) = 0.

It is known (see, for example, [30], p. 173 and [31]) that this problem has a unique solution: wk(t) = 0, t ∈ (0,∞), for
all k ≥ 1. This means that the solution of the forward problem is unique.

Therefore, Theorem 1 is proved completely.

3 Inverse problem

Lemma 2. Let 0 < ρ0 < 1. Then there is a number T0 = T0(ρ0,λ1) such that functions eλ (ρ) = t
ρ−1
0 Eρ ,ρ(−λ t

ρ
0 ) are

positive and monotonically decrease in ρ ∈ [ρ0,1] for all t0 ≥ T0 and λ ≥ λ1.
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Proof. Let 0 < β < π and δ (1;β ) stand for a contour oriented by non-decreasing argζ and consisting of the following
parts: 1) the ray argζ =−β , |ζ | ≥ 1, 2) the arc −β ≤ argζ ≤ β of the circle |ζ |= 1, and 3) the ray argζ = β , |ζ | ≥ 1. It

is obvious that in this case the complex ζ -plane is divided into two unbounded parts: G(+)(1;β ) to the right of δ (1;β ) in

orientation and G(−)(1;β ) - to the left of it.

Let β = 3π
4

ρ , ρ ∈ [ρ0,1). Since −λ t
ρ
0 ∈ G(−)(1;β ), then (see [32], formula (2.29), p. 135)

t
ρ−1
0 Eρ ,ρ(−λ t

ρ
0 ) =−

1

λ 2t
ρ+1
0 Γ (−ρ)

+
1

2π iρλ 2t
ρ+1
0

∫

δ (1;β )

eζ 1/ρ
ζ

1
ρ +1

ζ +λ t
ρ
0

dζ = f1(ρ)+ f2(ρ). (8)

To show the validity of the lemma, it suffices to prove that d
dρ eλ (ρ) < 0 for all ρ ∈ [ρ0,1), since the positiveness of

eλ (ρ) is a consequence of the inequality eλ (1) = e−λ t > 0.
We first estimate the derivative f ′1(ρ). Let Ψ(ρ) be the logarithmic derivative of the gamma function (see [33]):

Ψ(ρ) =
(

lnΓ (ρ)
)′
=

Γ ′(ρ)

Γ (ρ)
.

Then

f ′1(ρ) =
ln t0 −Ψ(−ρ)

λ 2t
ρ+1
0 Γ (−ρ)

.

Since
1

Γ (−ρ)
=−

ρ

Γ (1−ρ)
=−

ρ(1−ρ)

Γ (2−ρ)
, Ψ(−ρ) =Ψ(1−ρ)+

1

ρ
=Ψ(2−ρ)+

1

ρ
−

1

1−ρ
,

then

f ′1(ρ) =
1

λ 2t
ρ+1
0

ρ(1−ρ)[Ψ(2−ρ)− lnt0]+ 1− 2ρ

Γ (2−ρ)
=−

f11(ρ)

λ 2t
ρ+1
0 Γ (2−ρ)

. (9)

The known (see [33]) estimate Ψ(2−ρ)< 1− γ , where γ ≈ 0,57722 is the Euler-Mascheroni constant, leads to

f11(ρ)> ρ(1−ρ)[lnt0 − (1− γ)])+ 2ρ− 1.

For t0 = e1−γe2/ρ one has ρ(1−ρ)[lnt0 − (1− γ)])+ 2ρ− 1 = 1. Therefore, f11(ρ)≥ 1, if t0 ≥ T0 and

T0 = e1−γe2/ρ0 . (10)

Thus, by virtue of (9), for all such t0 we arrive at

f ′1(ρ)≤−
1

λ 2t
ρ+1
0

. (11)

We turn to the estimate of derivative f ′2(ρ). Let F(ζ ,ρ) be the integrand in (8):

F(ζ ,ρ) =
1

2π iρλ 2t
ρ+1
0

·
eζ 1/ρ

ζ 1/ρ+1

ζ +λ t
ρ
0

.

In order to take into account the dependence of the integration domain δ (1;β ) on ρ while differentiating the function
f ′2(ρ), we represent integral (8) as

f2(ρ) = f2+(ρ)+ f2−(ρ)+ f21(ρ),

where

f2±(ρ) = e±iβ

∞
∫

1

F(se±iβ ,ρ)ds,

f21(ρ) = i

β
∫

−β

F(eiy,ρ)eiydy = iβ

1
∫

−1

F(eiβ s,ρ)eiβ sds.
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Let us consider the function f2+(ρ). Since β = 3π
4

ρ and ζ = seiβ , then

eζ 1/ρ
= e

1
2 (i−1)s

1
ρ
.

For the derivative of f2+(ρ) one has

f ′2+(ρ) = I ·

∞
∫

1

e
i−1

2 s1/ρ
s

1
ρ +1

e2iaρ
[

1
ρ2 (

1−i
2

s
1
ρ − 1) lns+ 2ia− 1

ρ − lnt0 −
iaseiaρ+λ t

ρ
0 ln t0

seiaρ+λ t
ρ
0

]

seiaρ +λ t
ρ
0

ds,

where I = eia(2π iρλ 2t
ρ+1
0 )−1 and a = 3π

4
. By virtue of the inequality |seiaρ +λ t

ρ
0 | ≥ λ t

ρ
0 we arrive at

| f ′2+(ρ)| ≤
C

ρλ 3t
2ρ+1
0

∞
∫

1

e−
1
2 s1/ρ

s
1
ρ +1 [ 1

ρ2
s1/ρ lns+ lnt0

]

ds.

Lemma 3. Let 0 < ρ ≤ 1 and m ∈ N. Then

J(ρ) =
1

ρ

∞
∫

1

e−
1
2 s

1
ρ

s
m
ρ +1

ds ≤Cm.

Proof. Let us make a change of variables:

r = s
1
ρ s = rρ , ds = ρrρ−1dr.

Then

J(ρ) =

∞
∫

1

e−
1
2 rrm−1+2ρdr ≤

∞
∫

1

e−
1
2 rrm+1dr =Cm.

Lemma 3 is proved.

Application of this lemma gives (note, 1
ρ lns < s

1
ρ , provided s ≥ 1)

| f ′2+(ρ)| ≤
C

λ 3t
2ρ+1
0

[C3

ρ
+C1 ln t0

]

≤
C

λ 3t
2ρ+1
0

[ 1

ρ
+ lnt0

]

.

One has the same estimate for f ′2−(ρ).
Finally consider f21(ρ). We have

f ′21(ρ) =
a

2π iλ 2t
ρ+1
0

·

1
∫

−1

eeias
eias e2iaρs

[

2ias− lnt0 −
iaseiaρs+λ t

ρ
0 lnt0

eiaρs+λ t
ρ
0

]

eiaρs +λ t
ρ
0

ds.

Therefore,

| f ′21(ρ)| ≤C
ln t0

λ 3t
2ρ+1
0

.

Estimates of f ′2± and f ′21, and estimate (11) leads to

d

dρ
eλ (ρ)≤−

1

λ 2t
ρ+1
0

+C
1/ρ + lnt0

λ 3t
2ρ+1
0

.

Therefore, this derivative is negative provided

t
ρ0

0 >
C

λ1

(

1

ρ0

+ lnt0

)

.

Hence, one can specify a number T0 = T0(ρ0,λ1) (see also (10)) such that for all t0 ≥ T0

d

dρ

[

t
ρ−1
0 Eρ ,ρ(−λ t

ρ
0 )
]

< 0, λ ≥ λ1, ρ ∈ [ρ0,1].

Lemma 2 is proved.
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Note

W (t,ρ) = ||u(t)||2 =
∞

∑
k=1

|(ϕ ,vk)|
2|tρ−1Eρ(−λktρ)|2.

Therefore, it is easy to see that Lemma 1 is a consequence of Lemma 2. In turn, Theorem 2 follows from Lemma 1.
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