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We consider a classical model of a SIRS epidemic in an open population. The positivity
and permanence are studied and explicit formulæ are obtained by which the eventual
lower bound of the density of infectives can be computed. The stability of the model
is studied. We mainly use the Lyapunov functional to established the global stability
of disease-free and endemic equilibrium points for both the deterministic and stochas-
tic models. In addition we illustrate the dynamic behaviour of the deterministic and
stochastic models via a numerical example.
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1 Introduction

Epidemiology is the study of the spread of infectious diseases with the objective to
trace factors that contribute to their dynamics and stabilities. Formerly and recently mod-
els, which have the population subclasses (i) the susceptibles (S), (ii) the infectives (I)
and (iii) the removals (R), have been studied by a number of authors (see for example
Bailey [2], Tornatore [12], Beretta and Takeuchi [3], Zhang and Teng [13]). The basic
and important research subjects for recent studies are the existence of the threshold values
which distinguish whether the disease dies out, the stability of the disease-free and the en-
demic equilibria, permanence and extinction. Most of these works deal with local stability
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of equilibria of the deterministic model in a closed population. There are very few works
which study both deterministic and stochastic stabilities of the model.
In this paper we consider a model of an SIRS epidemic which is the extension of the clas-
sical SIR model (see [5] and [13]) for which it is assumed that all newborn are susceptibles
and the population grows at a rate b > 0. The susceptibles, infectives and removals die at
different rates, d1, d2 and d3. It is biologically natural to assume that d1 < min(d2, d3).
In addition we suppose that an individual in the class (R) can be cured and becomes a new
susceptible or infected another time, respectively, with rates γ2 and γ3. Mathematically the
model that we consider is defined as follows. At time t the variables, S(t), I(t) and R(t),
represent, respectively, the density of susceptibles, infected and removed individuals. The
epidemial process is thus completely determined by {(S(t), I(t), R(t)); t ≥ 0} while its
dynamics is governed by the system of ordinary differential equations


S′ = b− βSI − d1S + γ3R,

I ′ = βSI − (d2 + γ1) I + γ2R,

R′ = γ1I − (d3 + γ2 + γ3)R,

(1)

with the initial conditions S (0) = S0, I (0) = I0 and R (0) = R0, where the parameter β
is the average number of contacts per infective per unit of time. As is known, systems like
(1) are very important mathematical models which describe epidemiological dynamics. As
mentioned in the first paragraph, the most basic and important questions to ask for these
systems in the theory of mathematical epidemiology concern permanence and stability.
Recently Ma et al [8] and Zhand and Teng [13] studied an SIRS system with time delay.
Under certain conditions they proved the permanence of the disease and stability. Motivated
by the above works the present analysis aims to establish some conditions on the positivity,
boundness of solution and permanence of the epidemic. By using methods in [8] we obtain
explicit formulæ of the eventual lower bound of infectious individuals and the total size of
the epidemic. Applying the Lyapunov functional, we give some sufficient conditions for
local and global stabilities of the deterministic model governed by (1) and of its stochastic
version, which is obtained by random perturbation of the deterministic model.
The organization of this paper is as follows. In the next Section we give the equilibrium
points of the model. In Section 3 we establish the positivity and we give the sufficient
conditions of the ultimate boundedness of system (1). In Section 4 we give the sufficient
and necessary conditions for the local and global stability of the disease-free and endemic
equilibria. In Section 5 the stochastic stability of the disease-free and endemic equilibria
is proved. In Section 6 numerical simulations are performed to complement the analytical
results. Finally in Section 7 a brief discussion of the main results and some ideas for future
research are given.
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2 The Equilibrium Points

The equilibria of (1) are the solutions of the system
b− βSI − d1S + γ3R = 0

βSI − (d2 + γ1) I + γ2R = 0

γ1I − (d3 + γ2 + γ3)R = 0.

(2)

It is evident that (2) has two solutions, E0 = (b/d1, 0, 0) which called the disease-free
equilibrium point and another solution, E∗ = (S∗, I∗, R∗), where

S∗ =
1

β
.

(
d2 + γ1 −

γ1γ2
d3 + γ2 + γ3

)
,

I∗ =

(
βS∗ − γ1γ3

d3 + γ2 + γ3

)−1

(b− d1S
∗) ,

R∗ =
γ1

d3 + γ2 + γ3
I∗

E⋆ is positive if and only if βb
d1

> d2 + γ1 −
γ1γ2

d3 + γ2 + γ3
. Under the last condition E∗ is

called the endemic-disease point.

3 Positivity, Boundedness and Permanence

3.1 Positivity and boundedness of the solution

The application of the classical theory of Ordinary Differential Equations implies that
for every set of initial data, (S0, I0, R0), there exists a unique solution, (S (t) , I (t) , R (t)),
defined in the maximal open interval (−T, T ) with T > 0.

Proposition 3.1. Let (S, I,R) be the solution of (1).

(i) If S0 > 0, I0 > 0 and R0 > 0, then S (t) > 0, I (t) > 0 and R (t) > 0 for every t ∈
[0, T ).

(ii) The solution (S, I,R) is defined in [0,∞) and lim sup
t→∞

N(t) ≤ b

d1
, where N(t) =

S(t) + I(t) +R(t).

Proof. We firstly prove (i). To do this we suppose that there exists t0 ∈ (0, T ) such that
S (t0) = 0, S

′
(t0) ≤ 0 and S (t) > 0 for t ∈ [0, t0) . Then I (t) > 0 for t ∈ [0, t0]. If

this be not the case, there exists t1 ∈ [0, t0] such that I (t1) = 0, I
′
(t1) ≤ 0 and I (t) >

0 fort ∈ [0, t1) . Integration of the third equation of (1) leads to

R (t) = R0 exp [− (d3 + γ2 + γ3) t]

+γ1

∫ t

0

exp [− (d3 + γ2 + γ3) (t− τ)] I (τ) dτ > 0 for t ∈ [0, t1].
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Then I
′
(t1) = γ2R (t1) > 0. This is a contradiction. Hence R (t) > 0 for every t ∈

[0, t0] . Therefore S
′
(t0) = b + γ3R (t0) > 0, but this leads to a contradiction to the

supposition that S
′
(t0) ≤ 0, which completes the proof of (i).

For (ii) we note that N
′
= b − d1S − d2I − d3R ≤ b − d1N . By integrating the last

inequality we obtain

N (t) ≤ b

d1

(
1− e−d1t

)
for every t ∈ [0, T )

≤ 2b

d1
.

The solution (S, I,R) is bounded in the interval [0, T ). Therefore N (t) ≤
b
d1

(
1− e−d1t

)
for every t ∈ [0,∞). Finally lim sup

t→∞
N (t) ≤ b

d1
.

Remark Following the same method used to demonstrate Proposition 3.1, we see that
system (1) with the initial conditions S0 ≥ 0, I0 ≥ 0 and R0 ≥ 0 has a nonnegative solution
defined in all R and the set Ω =

{
(S, I,R) /S > 0, I > 0, R > 0 and S + I +R ≤ b

d1

}
is invariant by (1).

3.2 Permanence of the Epidemic

Lemma 3.1. Let (S, I,R) be the solution of system (1). If there exists a sequence (tn) such
that tn → ∞, S (tn) → l, I (tn) → 0 and R (tn) → 0, then l = b

d1
.

Proof. We have 0 ≤ l ≤ b
d1

. Suppose that 0 ≤ l < b
d1
. Since S (tn) → l, I (tn) → 0 and

R (tn) → 0, it follows that (l, 0, 0) ∈ W (S0, I0, R0) which is the set of W − limit.
Consider (S, I,R), the solution of (1) with the initial condition (l, 0, 0). Therefore
(S(t), I(t), R(t)) ∈ W (S0, I0, R0) for every t because the set ∈ W (S0, I0, R0) is in-
variant by (1). It is easy to verify that S(t) = b

d1
+

(
l − b

d1

)
e−d1t and I (t) = R (t) =

0 for every t ∈ R. Since 0 ≤ l < b
d1
, contrary to the positivity of S in all R (Remark 2),

we have S(t) < 0 for t → −∞.

Proposition 3.2. Let (S, I,R) be the solution of (1) such that βb
d1

> d2 + γ1 − γ1γ2

d3+γ2+γ3
.

Then I∞ > 0. If I is bounded below by the real positive number m, then R∞ ≥ γ1m
d3+γ2+γ3

.

Proof. Suppose that I∞ = 0. We have in this case two possibilities: lim
t→∞

I (t) = 0

or 0 = lim inf
t→∞

I (t) < lim sup
t→∞

I (t) . When lim
t→∞

I (t) = 0, on account of the proof of

Proposition 3.1 we have R (t) →
t→∞

0 and S (t) →
t→∞

b
d1
. Then for ε sufficiently small and



224 El Maroufy, Lahrouz, Leach

t sufficiently large S (t) > b
d1

(1− ε) and

I ′ = βSI − (d2 + γ1) I + γ2R

>

[
β

b

d1
(1− ε)− (d2 + γ1)

]
I + γ2R

=

[
β

b

d1
(1− ε)− (d2 + γ1)

]
I +

γ1γ2
d3 + γ2 + γ3

I − γ2
d3 + γ2 + γ3

R′.

Therefore for t sufficiently large(
I +

γ2
d3 + γ2 + γ3

R

)′

>

[
β

b

d1
(1− ε)− (d2 + γ1) +

γ1γ2
d3 + γ2 + γ3

]
I. (4)

Since βb
d1

> d2 + γ1 − γ1γ2

d3+γ2+γ3
, we can choose ε sufficiently small such that

β
b

d1
(1− ε)− (d2 + γ1) +

γ1γ2
d3 + γ2 + γ3

> 0.

Then for t sufficiently large
(
I + γ2

d3+γ2+γ3
R
)′

> 0. However, I + γ2

d3+γ2+γ3
R > 0 and(

I + γ2

d3+γ2+γ3
R
)

→
t7→∞

0. This is a contradiction in this case. If 0 = lim inf
t→∞

I (t) <

lim sup
t→∞

I (t) , then there exists a sequence (tn)n such that I (tn) →
n→∞

0 and I ′ (tn) = 0.

From the second equation of (1) γ2R (tn) = (d2 + γ1) I (tn) − βS (tn) I (tn) . Since
(S (tn))n is bounded, it follows that R (tn) →

n→∞
0 and lim inf

t→∞
R (t) = 0 (R(t) > 0).

Therefore lim inf
t→∞

[
I (t) + γ2

d3+γ2+γ3
R (t)

]
= 0. Hence there exists a sequence, denoted

also (tn)n, such that

I (tn) +
γ2

d3 + γ2 + γ3
R (tn) →

n→∞
0 and I ′ (tn) +

γ2
d3 + γ2 + γ3

R′ (tn) = 0.

We have I (tn) →
n→∞

0 and R (tn) →
n→∞

0 since (S (tn))n is bounded. There exists, then,

a subsequence, denoted also (tn)n, such that (S (tn))n is convergent and by using Lemma
1 we deduce that S (tn) →

n→∞
b
d1
. Applying the inequality (4) we get, for n sufficiently

large,

0 = I ′ (tn) +
γ2

d3 + γ2 + γ3
R′ (tn)

>

[
β

b

d1
(1− ε)− (d2 + γ1) +

γ1γ2
d3 + γ2 + γ3

]
I (tn) > 0.

This is also a contradiction.
We now turn to prove the second result. If I is bounded below by m > 0, then R′ =

γ1I − (d3 + γ2 + γ3)R ≥ γ1m − (d3 + γ2 + γ3)R. Integrating the above inequality we
get

R (t) ≥ γ1m

d3 + γ2 + γ3
+

(
R0 −

γ1m

d3 + γ2 + γ3

)
exp [− (d3 + γ2 + γ3) t] .

The result follows when t tends towards ∞.
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Theorem 3.1. Let (S, I,R) be the solution of (1) such that βb
d1

> d2 + γ1 − γ1γ2

d3+γ2+γ3
.

Then lim inf
t→∞

I (t) > λe−(d1+β)Λ, where λ and Λ satisfy

βb

d1 + λβ

(
1− e−(d1+βΛ)

)
> d2 + γ1 −

γ1γ2

2
d3 + γ2 + γ3. (5)

Proof. Since βb
d1

> d2 + γ1 − γ1γ2

d3+γ2+γ3
, there exist λ sufficiently small and Λ sufficiently

large such that (5) is satisfied. Firstly we claim that there exists t0 > 0 such that I (t0) > λ.
If this be not the case, I (t) < λ for every t > 0. Then

S′ = b− βSI − d1S + γ3R > b− (d1 + λβ)S.

Integrating the above inequality we obtain for every t > 0 that

S (t) ≥ b

d1 + λβ
+

(
S0 −

b

d1 + λβ

)
e−(d1+λβ)t.

Therefore for every t > Λ S (t) ≥ b
d1+λβ

(
1− e−(d1+λβ)Λ

)
≡ S∆. Combining the second

and third equations in (1) we see that for every t > Λ(
I +

γ2
d3 + γ2 + γ3

R

)′

= βSI − (d2 + γ1) I +
γ1γ2

d3 + γ2 + γ3
I

>

(
βS∆ − (d2 + γ1) +

γ1γ2
d3 + γ2 + γ3

)
I∆,

where I∆ = inf
t≥0

I (t) . By Proposition 3.1 we have I∆ > 0. Since

βS∆ − (d2 + γ1) +
γ1γ2

d3 + γ2 + γ3
> 0

, we deduce that I (t) + γ2

d3+γ2+γ3
R (t) →

t→∞
∞, which contradicts the fact that(

I + γ2

d3+γ2+γ3
R
)

is bounded (Proposition 3.1). Hence there exists t0 > 0 such that
I (t0) > λ and we cannot have I (t) < λ for large t. Therefore we have two possi-
bilities: I (t) > λ for large t or I oscillates about λ. We claim in the second case that
I (t) > λe−(d1+β)Λ. If I oscillates about λ such that I (t1) = I (t2) = λ and I (t) < λ

for t ∈ (t1, t2) , we have I ′ = βSI − (d2 + γ1) I + γ2R > − (d2 + γ1) I. It follows
by the integration of the previous inequality on [t1, t2] that I (t) ≥ I (t1) e−(d2+γ1)t ≥
Rλe−(d2+γ1)(t2−t1). If t2 − t1 < Λ, then I (t) > λe−(d1+β)Λ for every t ∈ [t1, t2] . If
this be not the case, we have I (t) > λe−(d1+β)Λ in [t1, t1 + h] . We claim that the above
inequality remains true in the interval [t1 + h, t2]. If this be not the case, there exist T1 and
T2 such that [T1 , T2] ⊂ [t1 + h, t2] and

I (T1 ) = I (T2) = λe−(d1+β)Λ

I (t) < λe−(d1+β)Λ for t ∈ (T1 , T2)

I ′ (T1 ) < 0 < I ′ (T2) .
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Using Proposition 2 we have

I ′ (T1 ) = βS (T1 ) I (T1 )− (d2 + γ1) I (T1 ) + γ2R (T1 )

>
[
βS∆ − (d2 + γ1)

]
λe−(d1+β)Λ + γ2R (T1 )

>
[
βS∆ − (d2 + γ1)

]
λe−(d1+β)Λ +

λ1λ2I
∆

d2 + γ2 + γ3
.

Since 0 < I∆ = inf
t≥0

I (t) ≤ I (t) < λe−(d1+β)Λ for t ∈ [T1 , T2] , it follows that

I ′ (T1 ) ≥
(
βS∆ − (d2 + γ1) +

γ1γ2
d3 + γ2 + γ3

)
I∆ > 0.

This contradicts the fact that I ′ (T1 ) < 0. Therefore I (t) > λe−(d1+β)Λ for t sufficiently
large. This completes the proof of the Theorem.

4 Deterministic Stability

4.1 The local stability of the disease-free point

Theorem 4.1. The disease-free point,
(

b
d1
, 0, 0

)
, is locally asymptotically stable for (1) if

and only if βb
d1

< d2 + γ1 − γ1γ2

d3+γ2+γ3
.

Proof. Let u = (u1, u2, u3) = (S − b
d1
, I, R). By (1) the t-derivative of u is

u
′

1 = −β
(
u1 + b

d1

)
u2 − d1u1 + γ3u3

u
′

2 = β
(
u1 + b

d1

)
u2 − (d2 + γ1)u2 + γ2u3

u
′

3 = γ1u2 − (d3 + γ2 + γ3)u3.

(6)

Linearising the system (6) at the point (0, 0, 0) we obtain u
′
= Mu, where

M =

 −d1 −βb
d1

γ3

0 βb
d1

− (d2 + γ1) γ2

0 γ1 − (d3 + γ2 + γ3)

 .

The matrix M has three eigenvalues,
λ1 = −d1

λ2 = 1
2

[
βb
d1

− (d2 + γ1)− (d3 + γ2 + γ3) +
√
∆
]

λ3 = 1
2

[
βb
d1

− (d2 + γ1)− (d3 + γ2 + γ3)−
√
∆
]

with

∆ =

[
βb

d1
− (d2 + γ1)− (d3 + γ2 + γ3)

]2
+ 4γ1γ2.

The disease-free point
(

b
d1
, 0, 0

)
is locally asymptotically stable if and only if the real parts

of the eigenvalues are negative. This is equivalent to βb
d1

< d2 + γ1 − γ1γ2

d3+γ2+γ3
.
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4.2 The global stability of the disease-free point

Theorem 4.2. If βb
d1

< d2 + γ1 − γ1γ2

d3+γ2+γ3
, then the disease-free point, ( b

d1
, 0, 0), is

globally asymptotically stable.

In order to prove the above theorem we need the following results.

Lemma 4.1. ( [11]) Let D be a bounded interval in R and g : (t0,∞) × R → R be
a bounded and uniformly continuous function. Furthermore let x : (t0,∞) → R be a
solution of x′ = g (t, x), which is defined on the whole interval (t0,∞) . Then

(i) lim inf
t→∞

g (t, x∞) ≤ 0 ≤ lim sup
t→∞

g (t, x∞) and

(ii) lim inf
t→∞

g (t, x∞) ≤ 0 ≤ lim sup
t→∞

g (t, x∞) ,

where x∞ = lim sup
t7→∞

x (t) and x∞ = lim inf
t7→∞

x (t).

Proof. From the second equation of (1) we have I ′ (t) = g (t, I (t)), where g (t, I) =

βS (t) I (t)− (d2 + γ1) I (t) + γ2R (t) . Using (ii) of Lemma 2 we deduce that

0 ≤ lim sup
t→∞

g (t, I∞)

or

0 ≤ lim sup
t→∞

[βS (t) I∞ − (d2 + γ1) I
∞ + γ2R (t)]

and hence

0 ≤ βS∞I∞ − (d2 + γ1) I
∞ + γ2R

∞.

Applying Lemma 2 to (1) we get

R∞ ≤ γ1
d3 + γ2 + γ3

I∞. (7)

Therefore 0 ≤ βS∞I∞ − (d2 + γ1) I
∞ + γ1γ2

d3+γ2+γ3
I∞. Use of the previous inequality

and the fact that S∞ ≤ N∞ ≤ b
d1

lead to

0 ≤
[
βb

d1
− (d2 + γ1) +

γ1γ2
d3 + γ2 + γ3

]
I∞.

However, βb
d1

− (d2 + γ1) +
γ1γ2

d3+γ2+γ3
< 0. Hence I∞ = 0 = lim

t→∞
I (t) and by (7) we

obtain R∞ = 0 = limR (t)
t→∞

. It remains to show that lim
t→∞

S (t) = b
d1
. To do this it is

enough to see that S∞ ≥ b
d1
. Applying (i) of Lemma 2 to the equation of (1) we obtain

(b− βS∞I − d1S∞ + γ3R)∞ ≤ 0. Then b − βS∞I∞ − d1S∞ + γ3R∞ ≤ 0. Since
I∞ = R∞ = 0, it follows that b− d1S∞ ≤ 0.
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4.3 The stability of the endemic point

Theorem 4.3. If βb
d1

> d2+γ1− γ1γ2

d3+γ2+γ3
, then the endemic point is locally asymptotically

stable. Moreover there exists an explicit attractive region A for the solution of (1), that is,
for any initial condition (S0, I0, R0) such that (S0 − S∗, I0 − I∗, R0 −R∗) ∈ A we have

lim
t→∞

(S(t)− S∗) = lim
t→∞

(I(t)− I∗) = lim
t→∞

(R(t)−R∗) = 0.

Proof. Let v1 = S − S∗ , v2 = I − I∗ , v3 = R − R∗ and v = ( v1, v2, v3). By (1) the
t-derivatives of v1, v2 and v3 are

v′1 = − (d1 + βI∗ ) v1 − β v1v2 − βS∗v2 + γ3v3

v′2 = − (d2 + γ1 − βS∗) v2 + βv1v2 + βI∗ v1 + γ2v3

v3 = γ1v2 − (d3 + γ2 + γ3) v3.

(8)

Consider the functional

V1 (v) =
1

2

[
w1v

2
1 + w2v

2
2 + w3v

2
3 + w4 (v1 + v2 + v3)

2
]
.

The first derivative of V1 along the trajectory of a solution of (8) is

V̇1 = − [β w1v2 + (d1 + βI∗ )w1 + d1w4] v
2
1

− [d2w4 + (d2 + γ1 − βS∗)w2 − βw2v1] v
2
2

− [(d3 + γ2 + γ3)w3 + d3w4] v
2
3

− [βS∗w1 + (d1 + d2)w4 − βI∗ w2] v1v2

− [(d1 + d3)w4 − γ3w1] v1v3

− [(d2 + d3)w4 − γ2w2 − γ1w3] v2v3. (4.9)

Choose w1, w2 and w4 such that βS⋆w1 + (d1 + d2)w4 − βI⋆w2 = 0 and (d1 + d3)w4 −
γ3w1 = 0. Then w2 = kw4, where k = 1

βI∗

(
d1+d3

γ3
βS∗ + d1 + d2

)
. The relation in (9)

can be expressed in terms of the previous variables as

V̇1 = − [β w1v2 + (d1 + βI∗ )w1 + d1w4] v
2
1 − [d2w4 − βw2v1] v

2
2 + P (v2, v3) ,

where

P (v2, v3) = − (d2 + γ1 − βS∗)w2v
2
2 − [(d2 + d3)w4 − γ2w2 − γ1w3] v2v3

− [(d3 + γ2 + γ3)w3 + d3w4] v
2
3 .

P (v2, v3) is negative if the discriminant

δ = [(d2 + d3)w4 − γ2w2 − γ1w3]
2 − 4 (d2 + γ1 − βS∗)w2

× [(d3 + γ2 + γ3)w3 + d3w4]
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is negative. Since d2 + γ1 − βS∗ = γ1γ2

d3+γ2+γ3
, we obviously have

δ < 0 if and only if [(d2 + d3)w4 − γ2w2 − γ1w3]
2
< 4 (d2 + γ1 − βS∗)

×w2 [(d3 + γ2 + γ3)w3 + d3w4]

if and only if
[
γ1

w3

w4
− (d2 + d3 − γ2k)

]2
< 4k

×
[
γ1γ2

w3

w4
+ d3 (d2 + γ1 − βS∗)

]
if and only if Q

(
w3

w4

)
< 0

with

Q(
w3

w4
) = γ2

1

(
w3

w4

)2

− 2γ1 (d2 + d3 + γ2k)
w3

w4
+ (d2 + d3 − γ2k)

2

−4kd3 (d2 + γ1 − βS∗) .

The discriminant of Q
(

w3

w4

)
is

δ′ = γ2
1 (d2 + d3 + γ2k)

2 − γ2
1 (d2 + d3 − γ2k)

2
+ 4γ2

1kd3 (d2 + γ1 − βS∗)

= 4γ2
1k [γ2 (d2 + d3) + d3 (d2 + γ1 − βS∗)] .

Let w and w′ be the roots of Q
(

w3

w4

)
such that w′ < w and w > 0. We choose w3 and w4

such that max (0, w′) < w3

w4
< w. In this case, δ < 0, we have also P (v2, v3) < 0. Set

α1 = d2w4

βw2
= d2

βk , α2 = (d1+βI∗ )w1+d1w4

β w1
= d1+βI∗ + d1γ3

β(d1+d3)
and α = min (α1, α2) .

If
v1 < α and v2 > −α, then V̇1 < 0. (10)

Let |v| = max (|v1| , |v2| , |v3|) , θ = min
|v|=α

V1 (v) and

A =
{
v ∈ R3/ |v| < α, V1 (v) < θ

}
. We claim that, if v (0) ∈ A, then | v (t)| <

α for every t. If this be not the case, there exists τ > 0 such that |v (τ)| = α and

|v (t)| < α for every t ∈ [0, τ) . (11)

Then the definition of θ implies that V1 (v (τ)) ≥ θ since | v (τ)| = α. Now com-
bining (10) with (11) we obtain d

dtV1(v(t)) < 0. Then V1 (v (t)) is decreasing and
V1 (v (t)) < V1 (v (0)) for all t ∈ [0, τ) , but V1 (v (t)) is continuous and therefore
V1 (v (τ)) ≤ V1 (v (0)) . Hence V1 (v (0)) ≥ θ since v (0) ∈ A. This is a contradic-
tion. Finally, if v (0) ∈ A, we have V̇1 < 0. Therefore V1 is a Lyapunov functional and this
completes the proof of the Theorem.

5 Stochastic Stability

In this Section we discuss the stochastic stability of the following model

dX = f (X) dt+ g (X) dB, (12)
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where g = (g1, g2, g3) , gi , i = 1, 2, 3, are locally Lipchitz functions, B is three-
dimensional brownian motion (see [4] or the references given therein) and

f (X) =

 b− βSI − d1S + γ3R

βSI − (d2 + γ1) I + γ2R

γ1I − (d3 + γ2 + γ3)

 .

We denote by L the differential operator associated with (12) , defined for a nonnegative
function, V (t, x) ∈ C1,2 (R× Rn), by

LV =
∂V

∂t
+ fT .

∂V

∂x
+

1

2
Tr

[
gT .

∂2V

∂x2
.g

]
,

where ∂V
∂x =

(
∂V
∂x1

, ∂V
∂x2

, ∂V
∂x3

)T

and ∂2V
∂x2 =

(
∂2V

∂xi∂xj

)
ij
, i, j = 1, 2, 3, “T” and “Tr”

mean, respectively, transposition and trace.
With the reference to the book by Afnas’ev et al [1] the following auxiliary results hold.

Theorem 5.1. Suppose that there exist a nonnegative function V (t, x) ∈ C1,2(R,Rn) and
two real positive continuous functions, a and b, and constant K > 0 such that, for |x| < K,

a (|x|) ≤ V (t, x) ≤ b (|x|).

(i) If LV ≤ 0, |x| ∈ ]0,K[, then the trivial solution of (12) is stable in probability.

(ii) If there exists a continuous function λ : R0
+ → R0

+, positive on R+, such that

LV ≤ −λ (|x|) ,

then the trivial solution of (12) is asymptotically stable.

The best general reference to stability and related results can be found in [6] and [7].

Proposition 5.1. Let g be a locally Lipchitz function such that supp g ⊂
◦
Ω. Then the set

Ω is stable by (12) .

Proof. Let u (0) ∈ Ω . Suppose by contradiction that there exists t0 such that u (t0) /∈ Ω,

then there exists τ0 such that u (t) /∈
◦
Ω for every t ∈ [τ0, t0] . Since suppg ⊂

◦
Ω, it follows

that du = f (u) dt for every t ∈ [τ0, t0] . This is a contradiction to the invariance of Ω by
(1) .

5.1 Stability of the disease-free point

Theorem 5.2. Let βb
d1

< d2 + γ1 − γ1γ2

d3+γ2+γ3
. For any locally Lipchitz function g such that

supp g ⊂
◦
Ω and

g21 (S, I,R) ≤ σ1

(
S − b

d1

)2

, where
1

2
σ1 < d1, (13)

the disease-free point
(

b
d1
, 0, 0

)
is globally asymptotically stable.
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Proof. Let u1 = S − b
d1
, u2 = I and u3 = R. Consider the functional,

V2 (u) =
1

2
m1u

2
1 +m2u2 +m3u3, u = (u1, u2, u3) ∈ R× R∗

+ × R∗
+,

where the constants m1, m2 and m3 are to be chosen in the course of the proof.

fT .
∂V2

∂u
= m1u1

[
−β

(
u1 +

b

d1

)
u2 − d1u1 + γ3u3

]
+m2

[
β

(
u1 +

b

d1

)
u2 − (d2 + γ1)u2 + γ2u3

]
+m3 [γ1u2 − (d3 + γ2 + γ3)u3]

= −d1m1u
2
1 − [(d2 + γ1)m2 − γ1m3]u2

− [(d3 + γ2 + γ3)m3 − γ2m2]u3 − βm1

(
u1 +

b

d1

)
u1 u2

+βm2

(
u1 +

b

d1

)
u2 + γ3m1u1 u3

= −d1m1u
2
1 − βm1u

2
1 u2 − β

(
b

d1
m1 −m2

)
u1 u2 + γ3m1u1 u3

−
[(

d2 + γ1 − β
b

d1

)
m2 − γ1m3

]
u2

− [(d3 + γ2 + γ3)m3 − γ2m2]u3.

We choose m1 such that b
d1
m1 −m2 = 0. We obtain

fT .
∂V2

∂u
= −d1m1u

2
1 − βm1u

2
1 u2 −

[(
d2 + γ1 − β

b

d1

)
m2 − γ1w3

]
u2

− [(d3 + γ2 + γ3)m3 − γ2m2]u3 +
γ3d1
b

m2u1 u3.

Since S + I +R ≤ b
d1

in Ω, we have u1 ≤ 0, 0 < u2 ≤ b
d1

and 0 < u3 ≤ b
d1
. Hence

fT .
∂V2

∂u
≤ −d1m1u

2
1 −

[(
d2 + γ1 − β

b

d1

)
m2 − γ1m3

]
u2

− [(d3 + γ2 + γ3)m3 − γ2m2]u3.

We choose m2 and m3 such that(
d2 + γ1 − β b

d1

)
m2 − γ1m3 > 0 and (d3 + γ2 + γ3)m3 − γ2m2 > 0

which are equivalent to γ1γ2

(d3+γ2+γ3)
m2 < γ1m3 <

(
d2 + γ1 − β b

d1

)
m2. Hence the choice
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of w2 and m3 is possible since γ1γ2

d3+γ2+γ3
< d2 + γ1 − β b

d1
. Using (13) we have

LV2 =
∂V2

∂t
+ fT .

∂V2

∂u
+

1

2
Tr

[
gT .

∂2V2

∂u2
.g

]
= fT .

∂V2

∂u
+

1

2
m1g

2
1

≤ −d1m1u
2
1 −

[(
d2 + γ1 − β

b

d1

)
m2 − γ1m3

]
u2

− [(d3 + γ2 + γ3)m3 − γ2m2]u3 +
1

2
σ1m1u

2
1

≤ −
(
d1 −

1

2
σ1

)
m1u

2
1 − b

d1

[(
d2 + γ1 − β

b

d1

)
m2 − γ1m3

]
u2
2

− b

d1
[(d3 + γ2 + γ3)m3 − γ2m2]u

2
3.

By Theorem 5 the proof is complete.

5.2 Stability of the endemic point

In this Section we use the notation of Theorems 4 and 6 and their proofs.

Lemma 5.1. Let a ∈ R∗
−, b, c ∈ R and set ∆ = b2 − 4ac. For all x ∈ R

ax2 + bx+ c <
−∆

4a
.

Theorem 5.3. If βb
d1

> d2 + γ1 − γ1γ2

d3+γ2+γ3
for any locally Lipchitz function g such

that g21 (S, I,R) ≤ λ1 (S − S∗)
2, g22 (S, I,R) ≤ λ2 (I − I∗)

2 and g23 (S, I,R) ≤

λ3 (R−R∗)
2
, where 1

2λ1 < d1,
1
2λ2 < d2

k+1 and 1
2λ3 <

−w4Q
(

w3
w4

)
4k(d2+γ1−βS∗)(w3+w4)

for
any w3

w4
such that max (0, w′) < w3

w4
< w, then the endemic point is asymptotically stable.

Proof. We have

LV1 =
∂V1

∂t
+

1

2
(w1 + w4) g

2
1

·

+
1

2
(w2 + w4) g

2
2+

1

2
(w3 + w4) g

2
3

= − [β w1v2 + (d1 + βI∗ )w1 + d1w4] v
2
1 − [d2w4 − βw2v1] v

2
2

+P (v2, v3)+
1

2
(w1 + w4) g

2
1+

1

2
(w2 + w4) g

2
2

·

+
1

2
(w3 + w4) g

2
3 .
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Using the estimations satisfied by the functions g1, g2 and g3 we obtain

LV1 ≤ − [β w1v2 + (d1 + βI∗ )w1 + d1w4] v
2
1 − [d2w4 − βw2v1] v

2
2

+P (v2, v3)+
1

2
λ1 (w1 + w4) v

2
1+

1

2
λ2 (w2 + w4) v

2
2

+
1

2
λ3 (w3 + w4) v

2
3

= −
[
β w1v2 +

(
d1 −

1

2
λ1 + βI∗

)
w1 +

(
d1 −

1

2
λ1

)
w4

]
v21

−
[
d2w4 −

1

2
λ2 (w2 + w4)− βw2v1

]
v22 + P (v2, v3)

+
1

2
λ3 (w3 + w4) v

2
3 .

Applying Lemma 3 to the polynomial P (v2, v3) like the function of v2 we give, namely

P (v2, v3) <
w4Q

(
w3
w4

)
4k(d2+γ1−βS∗)(w3+w4)

v23 , it follows that

LV1 < −
[
β w1v2 +

(
d1 −

1

2
λ1 + βI∗

)
w1 +

(
d1 −

1

2
λ1

)
w4

]
v21

−
[
d2w4 −

1

2
λ2 (w2 + w4)− βw2v1

]
v22

+

1

2
λ3 (w3 + w4) +

w4Q
(

w3

w4

)
4k (d2 + γ1 − βS∗) (w3 + w4)

 v23 .

The conditions satisfied by λ1 and λ2 lead to

k1 =

(
d1 − 1

2λ1 + βI∗
)
w1 +

(
d1 − 1

2λ1

)
w4

β w1
> 0

and

k2 =
d2w4 − 1

2λ2 (w2 + w4)

βw2
> 0.

Let k < min (k1,k2) . If |v| = max (|v1| , |v2| , |v3|) < k, we have

βw1v2 +

(
d1 −

1

2
λ1 + βI∗

)
w1 +

(
d1 −

1

2
λ1

)
w4

> −βw1k +

(
d1 −

1

2
λ1 + βI∗

)
w1 +

(
d1 −

1

2
λ1

)
w4 > 0

and d2w4 − 1
2λ2 (w2 + w4) − βw2v1 > d2w4 −

·
1
2λ2 (w2 + w4) − βw2k > 0. It follows
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that

LV1 < −
[
−β w1k +

(
d1 −

1

2
λ1 + βI∗

)
w1 +

(
d1 −

1

2
λ1

)
w4

]
v21

−

d2w4 −
·

1

2
λ2 (w2 + w4)− βw2k

 v22

+

1

2
λ3 (w3 + w4) +

w4Q
(

w3

w4

)
4k (d2 + γ1 − βS∗) (w3 + w4)

 v23 .

The condition satisfied by λ3 implies that

1

2
λ3 (w3 + w4) +

w4Q
(

w3

w4

)
4k (d2 + γ1 − βS∗) (w3 + w4)

< 0.

Finally, when we apply Theorem 5, Theorem 7 follows.

6 Numerical Examples
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Figure 6.1: The stochastic model and its deterministic model (black). (a) the density of the three
classes of individuals (S: blue, I: red,R: green) versus time, (b) the dynamic behaviour of
(S(t), I(t), R(t))(red ). Here b = 0.5, β = 0.7, d1 = 0.9, d2 = 0.7, d3 = 0.5, λ = 0.2, λ =

0.1, λ = 0.6 and we have R0 = 0.5 and E = (0.55, 0, 0). (For interpretation of the references to
colour in the legend of this figure the reader is referred to the electronic version of this article.)



Qualitative Behaviour of a Model of an SIRS Epidemic 235

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

Time (years)

D
e
n

s
it

y
 (

S
,I
,R

)

(a)

 

 

0.8
1

1.2
1.4

1.6
1.8

2
2.2

0

0.2

0.4

0.6

0.8

1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Density of susceptibles

(b)

Density of infectives

Figure 6.2: The stochastic model and its deterministic model (black). (a) the density of the
three classes of individuals (S: blue,I: red,R: green ) versus time, (b) the dynamic behavior of
(S(t), I(t), R(t)) (red). Here b = 0.5, β = 0.7, d1 = 0.1, d2 = 0.4, d3 = 0.2, λ = 0.6, λ =

0.5, λ = 0.5 and we have R0 = 4.6 and E = (1.07, 0.78, 0.39). (For interpretation of the ref-
erences to colour in the legend of this figure the reader is referred to the electronic version of this
article.)

In this Section as an example of random perturbation we adopt the idea of Mukherje
in [9]. We allow the random perturbations of the variables (S, I,R) around the disease-

free point E0 = (b/d1, 0, 0) if the constant R0 =
βb
d1

d2+γ1− γ1γ2
d3+γ2+γ3

< 1 and otherwise

around the endemic positive equilibrium point E∗ = (S∗, I∗, R∗) in the case when it is
asymptotically stable. We assume that the random perturbations are a type of white noise
proportional to the distance of S, I and R from values of the equilibria. So the system (12)
becomes 

dS = b− βSI − d1S + γ3R+ σ1(S − E1)dW 1
t

dI = βSI − (d2 + γ1) I + γ2R+ σ2(I − E2)dW 2
t

dR = γ1I − (d3 + γ2 + γ3)R+ σ3(R− E3)dW 3
t ,

(12)

where (E1, E2, E3) is equal to E0 or E∗, σi, i = 1, 2, 3, are real positives constants, W 1
t ,

W 2
t and W 3

t are standard Wiener processes independent from each other (Stroock and
Varadham [10]).
In the following we present some numerical simulations of two examples which validate the
theoretical results obtained in this paper. For simplicity we choose the initial conditions:
S0 = 1, I0 = 0.01 and σ1 = 0.04, σ2 = 0.01, σ3 = 0.1 are supposed to satisfy the
conditions of Theorem 6 and Theorem 7. The values of the other parameters are explained
in each example.
It can be seen from Figure 6(a) and Figure 6(b) that, when R0 < 1, it increases away from
the disease-free point. In this case the endemic equilibrium E∗ is asymptotically stable.
We can also see that the trajectory of the stochastic process remains close to the trajectory
of its deterministic analogue during a finite time interval. We should note that the path of



236 El Maroufy, Lahrouz, Leach

stochastic process eventually leaves the trajectory and is absorbed in the equilibrium point
(Figure 1(b) and Figure 2(b)).

7 Conclusion

The dynamic behaviour of deterministic as well as the stochastic model for the spread
of an SIRS epidemic are presented in this paper. We established the same properties of
stability. The numerical results also indicate that there exist positive-stable disease-free and
endemic equilibria. Moreover for future research it should be feasible to use the stochastic
differential equation, (12), with a general diffusion term g and to find a suitable Lyapunov
functional for unconditional stability of the positive equilibrium of the model, (1), of the
SIRS epidemic. Another possible direction for future research is to consider how control
strategies may be devised. Finally, taking into account the available statistical data, we can
use the stochastic diffusion inference to estimate the parameters of the model.
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