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Abstract: In this work, we extend the mathematical model of leptospirosis disease bytaking into account the exposed individuals,
the related death rate and the transmission coefficients between susceptiblehuman and infected vector. Initially, we present the local
asymptotical stability of both the disease-free and endemic equilibrium. We use the Lyapunov function theory with some sufficient
conditions. This shows the global stability of both the disease-free and endemic equilibrium. Further, we present the bifurcation of the
model and exhibit that the local asymptotical stability of the disease-free and endemic equilibrium co-exists with the threshold quantity.
Finally, we discuss the numerical results.
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1 Introduction

Mathematical formulation play an important role to
present the transmission dynamics of different diseases.
Among the diseases leptospirosis disease is one of the
infectious disease which cause by a bacteria called
leptospira. Human as well as Mammals are mostly
infected from this disease. Leptospirosis is a zoonotic
bacteriological disease, caused by members of the genus
Leptospira. Due to the greater incidence in tropical
regions, it is considered one of the most geographically
widespread zoonosis in the world. Spectrum of human
diseases caused by Leptospira broad, ranging from
subclinical Infections to severe infections multiple organ
dysfunction syndrome, sometimes fatal completion[1,2,3,
4,5].

Risk factor of the disease are, Rice planters, sewer
cleaners, workers cleaning canals, agriculture labor easily
contract this disease. In many model the exposed class
define for different diseases [21], they consider the
exposed class for human population, and use the
transmission and carried out the dynamics for his model.
Many models have been modeled to represent the
compartmental dynamics of both the susceptible, infected
and recovered human and vector population [6,7,8].
Pongsuumpun et al. [9] developed mathematical models

to study the behavior of leptospirosis disease. In their
work, they represent the rate of change for both vector
and human population. The human population is further
divided into two main groups Juveniles and adults.
Triampo et al. [10] considered a deterministic models for
the transmission of leptospirosis disease presented in
[10]. In their work they considered a number of
leptospirosis disease in Thailand and shown the numerical
simulations. Zaman [11] considered the real data
presented in [11] to study the dynamical behavior and
role of optimal control theory of this disease, for more
references [19,18,20,21,22].

In this paper, we extend the work of [11] by adding
the exposed classEh to human population and the
exposed classEv to the vector population, death rate to
human population and vector population, a transmission
coefficient between susceptible vector and infected
human. First, we combine both the model to obtained a
single model, then find the local asymptotical stability of
the (DFE) and then find the local stability of endemic
equilibrium and bifurcation of the model. Then we
present, the bifurcation analysis and global asymptotical
stability of the Disease-free and then find the endemic
equilibrium by using the lyapunov function. For the local
stability of the (DFE) and (EE) we introduce the basic
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reproduction number. We also discuss the numerical
result.

The paper is organized as follows. In Section 2 we
present the mathematical formulation . Section 3 we show
the local stability of both the disease-free and endemic
equilibrium with bifurcation analysis of the model.
Section 4 is devoted to the global stability of both the
disease-free and endemic equilibrium. In Section 5, we
presents numerical simulation of the model using the real
data of Thailand.

2 Model Formulation

In this section, we combine the model presented in [11]
we add the exposed class for both vector and human
population. By the interaction of both non linear models
of human and vector (rats) to a new single model of
constructing system of seventh differential equations. To
formulate our model , we assume that,Sh(t) represent of
susceptible human,Eh(t) is the exposed class for human,
Ih(t) represent infected human,Rh(t) represent the
recovered class for human at timet. For the vector
population, we assume thatSv(t) represent the susceptible
vector ,Ev(t) represent exposed class ,Iv(t), represent the
class of infected vector at timet. Thus the total population
of human isNh = Sh(t)+Eh(t)+ Ih(t)+Rh(t), and vector
population isNv = Sv(t)+Ev(t)+ Iv(t). The interaction of
both the model is presented in flow chart in Figure 1.

By the above mention modification, the system of non-
linear differential equation is given by

dSh
dt = a1−µ0Sh −β1ShIv −α1Sh +λhRh,

dEh
dt = β1ShIv +α1Sh −µ0Eh −αhEh,

dIh
dt = αhEh −µ0Ih −µhIh −δhIh,

dRh
dt = δhIh −µ0Rh −λhRh,

dSv
dt = a2−δ0Sv −β2SvIh,

dEv
dt = β2SvIh −δ0Ev −αvEv,

dIv
dt = αvEv −δ0Iv −δvIv,

(1)

with initial conditions

Sh ≥ 0, Eh ≥ 0, Ih ≥ 0, Rh ≥ 0, Sv ≥ 0, Ev ≥ 0, Iv ≥ 0.
(2)

Here a1 is the recruitment rate for human,β1 is the
transmission coefficient between human and infected
vector. The transmission rate betweenSv andIh is shown
by β2, the susceptible human infected at rate ofα1. The
natural death rate for the human population isµ0, while
the infected human dies from the disease at the rate ofµh.
The growth rate for the vector population is denoted by

Fig. 1: The plot represents the flow diagram of the interaction of
human and vector.

a2, the natural death rate for the vector population isδ0, at
αh rate the exposed human move to infected class of
human, while at the rate ofαv the exposed vector move to
the infected vector class. The infected vector dies at the
rate ofδv.

We obtain the total dynamics of human population by
adding the human Subclasses is given by,

dNh

dt
= a1−µ0Nh −µhIh. (3)

Similarly adding the vector Subclasses we get the total
dynamics of vector population is given by

dNv

dt
= a2−δ0Nv −δvIv. (4)

From (1) and (2), we get,

dNh

dt
≤ a1−µ0Nh and

dNv

dt
≤ a2−δ0Nv. (5)

Now, we can prove that

dNh

dt
≤ a1−µ0Nh ≤ 0 f or Nh >

a1

µ0
,
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dNv

dt
≤ a2−δ0Nv ≤ 0 f or Nv >

a2

δ0
, (6)

For the system (1) the feasible region is
Ω = [(Sh(t),Eh(t), Ih(t),Rh(t),Sv(t),Ev(t), Iv(t)) ∈
R7
+, (Nh ≤ a1

(µ0+α1)
, Nv ≤ a2

δ0
)]

Proposition Let the variables
(Sh(t) + Eh(t) + Ih(t) + Rh(t) of human population and
the variablesSv(t)+Ev(t)+ Iv(t)) of vector population is
the solution of the system (1) with the associated initials
conditions (2) and the setΩ . ThenΩ under system (1) is
positively invariant and attracting.
Proof:To prove this we consider the Lyapunov function

N(t) = (Nh(t)+Nv(t)) = (Sh(t)+Eh(t)+ Ih(t)+Rh(t),

Sv(t)+Ev(t)+ Iv(t)). (7)

Taking its time derivative. We get

dN
dt

= (a1−µ0Nh −µhIh,a2−δ0Nv −δvIv)

We can easily prove that.

dNh
dt ≤ a1−µ0Nh ≤ 0, f or Nh ≥ a1

µ0+α1
,

and dNv
dt ≤ a2−δ0Nv ≤ 0, f or Nv ≥ a2

δ0
.

(8)

Its clear from (8) thatd(Nh,Nv)
dt ≤ 0. Here using comparison

theorem [14] to show that 0≤ (Nh,Nv) ≤ (Nh(0)e−µ0t +
a1

µ0+α1
(1− e−µ0t), Nv(0)e−δ0t + a2

δ0
(1− e−δ0t))

t −→ ∞ we get,
0 ≤ (Nh,Nv) ≤ ( a1

µ0+α1
,

a2
δ0
) and we conclude thatΩ is an

attracting set. �

3 Local Stability Analysis

In this section, we find the disease free equilibrium for
the system (1). Find the basic reproduction numberRo
called the threshold qunatity by the method developed by
[17]. We introduceRo in DFE and also in the EE of the
system (1) for the local stability. We show that the
reproduction numberR0 co-exists with the disease-free
and endemic equilibrium. To obtain the disease free
equilibrium by setting left hand side of the system (1)
equal to zero, around the pointE1 = (S0

h,0,0,0,S
0
v ,0,0).

Solution of the system (1) yields, we obtained the
Disease-free equilibrium aroundE1 = (S0

h,0,0,0,S
0
v ,0,0)

is , where

S0
h =

a1

(µ0+α1)
and S0

v =
a2

δ0
.

The quantity which described the disease by the quantity,

which is called the threshold quantity ,

R0 =
a1αhα1T4T5δ0+αvαhβ1β2a2a1

T1T2T4T5(µ0+α1)δ0
,

where

T1 = (µ0+αh), T2 = (µ0+µh +δh), T3 = (µ0+λh),

T4 = (δ0+αv),T5 = (δ0+δv).

In the following we find the disease free state of the
system (1) aroundE1.
Theorem: The DFE aboutE1 of the system (1) for
R0 ≤ 1, stable locally asymptotically , ifδ0 >

(µ0+α1)
µ0T4T5

and

(µ0+α1)>
δhαhα1λh

T1T2T3
, otherwise unstable.

Proof: To show that the system (1) is stable locally
asymptotically setting left side of the system (1) equal
zero get the following Jacobian matrixJ0 aroundE1. See
detail in Appendix 1.

3.1 Endemic Equilibria and Bifurcation of the
Model

For the endemic equilibria of the system(1), we use
E2 = (S∗h,E

∗
h , I

∗
h ,R

∗
h,S

∗
v ,E

∗
v , I

∗
v ) and setting left hand side of

the system (1) equal to zero, to get the equilibria.

S∗h =
T1T2T4T5(δ0+β2I∗h )I

∗
h

(α1T4T5αh(δ0+β2I∗h )+αhβ1αvβ2a2I∗h )
,

E∗
h =

T2I∗h
αh

,

R∗
h =

δhI∗h
T3

,

S∗v =
a2

δ0+β2I∗h
,

E∗
v =

β2a2I∗h
T4(δ0+β2I∗h )

,

I∗v =
αvβ2a2I∗h

T4T5(δ0+β2I∗h )
.

Theorem For R0 ≥ 1, the EEE aroundE2 of the system
(1) is locally asymptotically stable if the following
inequalities are satisfied.
µ0 >

β1a2
T3T4T5

and

a2δ0 >
δvβ2αhµ0

T1T2T3(µ0+α1)
,

otherwise unstable.
Proof: To prove the above theorem, setting left side of the
system (1) equal to zero, around an endemic equilibrium
E2 give the Jacobian matrix,
See Appendix 2 in detail.

3.2 Bifurcation of the Model

To find the backward bifurcation of the system (1), and
for the backward bifurcation one of the infected
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component at least non-zero. In the system (1) using the
first equation and substituting the value ofS∗h, I∗v andR∗

h
and after the calculations we obtained for

f (I∗h ) = AI∗h
2+BI∗h +C = 0 (9)

where,

A = a1β 2
2 T 2

3 T 2
4 T 2

5 +a1β 2
2 T3α1T 2

4 T 2
5 +λhδhT3µ0T4T5β2

+λhδhT3β1αvβ2a2+λhδhα1T4T5β2,

B = a1T4T5[δ0T 2
3 T4T5β2+δ0T 2

3 β1αvβ2a2+δ0T 2
3 α1T4T5β2

+δ0T 2
3 T4T5β2δ0T 2

3 T4T5β2δ0T 2
3 β1αvβ2a2

+δ0T 2
3 α1T4T5β2+β2T 2

3 T4T5δ0+β 3
2 β1αva2T 2

3

+β2T 2
3 α1T4T5δv −T3µ0T4T5β2+β1αvβ2a2T3

+α1T4T5T3β2+λhδhT3µoT4T5δ0+λhδhα1T4T5δv],

C = a1T 2
4 T 2

5 α1δ0T3(1−R0).
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Fig. 2: The plot represents the bifurcation of the model.

The coefficientA is positive always andC depends upon

R0, if R0 < 1 thenC is positive and ifR0 > 1 thenC is
negative. ForA > 0 the positive solution depends upon the
sign of C andB. For R0 > 1 the equation(9) having two
roots, positive and negative. IfR0 = 1, then we see that
C = 0 and we obtain a non-zero solution of equation (9),
that is−B

A , is positive⇐⇒ B < 0, for B < 0 then there
exists a positive endemic equilibrium forR0 = 1. It means
that equilibria continuously depending uponR0, this show
that there exists an interval forR0 which have two positive
equilibria

I0 =
−B−

√
B2−4AC

2A
, I1 =

−B+
√

B2−4AC
2A

.

The local stability of DFE co-exists with the local
asymptotic stability of the EE whenR0 < 1, see [15,16] .
For the backward bifurcation setting the discriminant
B2 − 4AC = 0 and then solving for the critical points of
R0 which is given byRc = 1− B2

4Aa1T 2
4 T 2

5 T3α1δ0
. If Rc < R0

equivalentlyB2−AC > 0 and backward bifurcation occur
for the points ofR0 such thatRc < R0 < 1. To illustrate
we consider represent in Figure 2:a1 = 23, a2 = 12,
µ0 = 0.0071, λh = 0.066, δ0 = 0.0023, δv = 0.0029,
αv = 0.0081, α1 = 0.0001, β1 = 0.0074, β2 = 0.0073,
µh = 0.0002

4 Global Stability (GS) Analysis of the Model

In this section, we shows the global stability of the
system (1) by using the lyapunov function of the
disease-free state and then using the endemic equilibrium
and find the GS of the endemic equilibrium. First we
show the global stability in the following by defining the
lyapunov function.
Theorem: The DFE aroundE1 of the system (1) is GAS
for R0 ≥ 1, if Sv = S0

v , Sh = S0
h and δv ≥ T3(µ0+α1)

T4T5α1
,

otherwise unstable.
Proof: Here we show the GS of the disease-free state for
the system (1) by using the lyapunov function.

V (t) = W1Sh +W2Eh +W3Ih +W4Rh +W5Sv

+W6Ev +W7Iv,

whereWi(i = 1...7) are positive constants to be choosing
later.
Taking derivative w.r to timet of the above defined
function, we have

V ′(t) = W1
dSh

dt
+W2

dEh

dt

+W3
dIh

dt
+W4

dRh

dt
+W5

dSv

dt

+W6
dEv

dt
+W7

dIv

dt
.

Using the system (1) we get,

V ′(t) = W1[a1−µ0Sh −β1ShIv −α1Sh +λhRh]

c© 2014 NSP
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+W2[β1ShIv +α1Sh −T1Eh]+W3[αhEh −T2Ih]

+W4[δhIh −T3Rh]+W5[a2−δ0Sv −β2SvIh]+

W6[β2SvIh −T4Ev]+W7[αvEv −T5Iv].

Where(′) denotes the derivative w.r.t time, and after the
simplifications we get

V ′(t) = Ev[W7αv −W6T4]+β2SvIh[W6−W5]

+Eh[W3αh −W2T1]+α1Sh[W2−W1]

+β1ShIv[W2−W1]+Rh[W4T3−W1λh]

+W1a1−W1µ0Sh −W3T2Ih

+W4δhIh −W7T5Iv +W5a2−W5δ0Sv.

Now we choosing the constants,
W1 =W2 = αh, W3 = T1, W4 =

αhλh
T3

, W5 = αv, W6 = αv,

W7 = T4 anda1 = (µ0+α1)S0
h , a2 = δ0S0

v , µ0 = (µ0+
α1),
to obtain, the following equation after some arrangements.

V ′(t) = −µ0T4T5δ0T3αh(µ0+α1)[Sh −S0
h]

−µ0T4T5δ0αvT3δ0[Sv −S0
v ]−µ0T 2

4 T 2
5 δ0T3Iv

−Ih[T1T2T3(µ0+α1)(R0−1)−αhλhδhµoT4T5δ0

−T1T2(T4T5α1δv −T3(µ0+α1))].

V ′(t) is negative forR0 ≥ 1 andδv ≥
T3(µ0+α1)

T4T5α1
.

Also V ′(t) = 0 is zero for
Sh = S0

h,Sv = S0
v ,Rh = Eh = Ih = Iv = Ev = 0.

Hence by Lassalle’s principle [13] E1 is globally
asymptotically stable. This end the proof. �

Next, we show that the endemic equilibrium pointE2 of
the system (1) is globally asymptotically stable. In order
to do this, we define the Lyapunov function and show that
the endemic equilibrium pointE2 of the system (1) is
globally asymptotically stable.
Theorem: The endemic equilibriumE2 of the system(1)
is stable globally asymptotically, ifS∗v = 1, otherwise
unstable.
Proof: To show that the endemic equilibrium is globally
asymptotically stable, we define the following Lyapunov
function.

L(t)a = W1(Sh −S∗h −
Sh

S∗h
+1)+W2(Sv −S∗v −

Sv

S∗v
+1)

+W3Eh +W4Ih +W5Rh +W6Ev +W7Iv.

where Wi(i = 1....7) are positive constants will chosen
later.
Taking the time derivative of the above function along the
solution of system (1) we get,

L′(t) = W1(
S∗h −1

S∗h
)[a1−µ0Sh −β1ShIv −α1Sh +λhRh]

+W2(
S∗v −1

S∗v
)[a2−δ0Sv −β2SvIh]+W3[β1ShIv +α1Sh −T1Eh]

+W4[αhEh −T2Ih]+W5[δhIh −T3Rh]+W6[β2ShIv −T4Ev]

+W7[αvEv −T5Iv],

where (′) denotes time derivatives . After a little
arrangement we get,

L′(t) = a1W1(
S∗h −1

S∗h
)−µ0

Sh

S∗h
W1(S

∗
h −1)−β2W1

Sh

S∗h
(S∗h −1)Iv

+λhW1(
S∗h −1

S∗h
)Rh +W2a2(

S∗v −1
S∗v

)−W2δ0
Sv

S∗v
(S∗v −1)−

W5T3Rh −W7T5Iv +[W7αv −W6T4]Ev +[W5δh −W4T2]Ih

+[W4αh −W3T1]Eh +[W6β2−β1W1(
S∗h −1

S∗h
)]Iv

+[W6−W2(
S∗v −1

S∗v
)]β2SvIh.

Choosing the constants,W1 =
(S∗v−1)β2S∗h
S∗v (S

∗
h−1)β1

W2 = 1,

W3 =
(S∗v−1)β2T1

S∗v αh
, W4 =

(S∗v−1)β2T1
S∗v α2

h
,

W5 =
(S∗v−1)β2T1T2

α2
h S∗v δh

, W6 =
(S∗v−1)

S∗v
, W7 =

(S∗v−1)T4
S∗v αv

,

a1 = (µ0 + α1)S∗h, a2 = δ0S∗v . after the some
simplifications we obtain,

L′(t) =
(µ0+α1)S∗h(S

∗
v −1)β2

β1S∗v
−

µ0Sh(S∗v −1)β2

β1S∗v
−

Sh(S∗v −1)β2Iv

S∗v

+
λh(S∗v −1)β2Rh

S∗v β1
+δ0(S

∗
v −1)−

δ0Sv(S∗v −1)
S∗v

+
S2

h(S
∗
v −1)β2β1T1Iv

S∗v αh
−

(S∗v −1)β 2
2 T1T2T3Rh

α2
h S∗v δh

−
(S∗v −1)T4

S∗v αv
.

L′(t) is negative forS∗v = 1 and L(t) is zero for all
Sh = S∗h,Sv = S∗v ,Rh = 0,Eh = 0, Ih = 0,Ev = 0, Iv = 0.
Hence by the theorem of asymptotic stability [13], the
endemic equilibrium stateE2 is globally asymptotically
stable. This completes the proof.
�

5 Numerical Simulation and Discussion

In this section, we present the numerical simulation of
the proposed model (1). The given system (1) is solve
numerically by using the well-known method, called
Runge-Kutta order four scheme by using Matlab.
Figure 3 represents the dynamical behavior of human
population. The bold line represent the population of
susceptible individual. The exposed individuals are
represented by the dashed line. The dotted line show the
the population of infected individuals. The dashed dotted
line representing the recovered human population from
the infection. The parameter values that we used in the
numerical simulations are a1 = 5 × 10−2,
β1 = 0.04,α1 = 0.06, β2 = 0.0078, λh = 2.85× 10−3,
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Fig. 3: The plot represents the human population.

µo = 9 × 10−4,αh = 2 × 10−6,
µh = 8× 10−4,δh = 2.1× 10−3, a2 = 2, δo = 1× 10−1,
αv = 1×10−2, δv = 10−3.
Figure 4 represent the dynamical behavior of the vector
population. The bold line show the class of susceptible
vector. The dashed line indicate the exposed class of
vector population and the dotted line represent the
population of infected vector.

6 Conclusion

In this paper, we modify the model by the classes of
exposed to the human and vector population, Disease
mortality in humans and vector population in the infected
class vector transmission coefficients between human
exposure and infection.

We supply local asymptotic stability of the DFE and
EE. For the endemic equilibriumR0 ≥ 1 is asymptotically
stable andR0 < 1 the DFE locally asymptotically stable.
We also show backward bifurcation for the system (1).
With Lyapunov’s theory of functions global stability of
the equilibrium state, free from disease and endemic is
obtained. We make sure that these new assumptions and
analysis of an appropriate biological point of the previous
assumptions, without exposed Class , disease mortality in
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Appendix 1

J0 =











































−µ0−α1 0 0 λh 0 0 −β1(
a1

µ0+α1
)

−α1 −T1 0 0 0 0 β1(
a1

µ0+α1
)

0 αh −T2 0 0 0 0

0 0 δh −T3 0 0 0

0 0 −β2(
a2
δ0
) 0 −δ0 0 0

0 0 β2(
a2
δ0
) 0 0 −T4 0

0 0 0 0 0 αv −T5











































.

(10)
By elementary row operation we get the characteristics
equation of the above matrix is,

(−M1−λ )(−M1T1−λ )(−M1T1T2α1αhλh −λ )
(M3−λ )(−δ0−λ )(M3δhT4−λ )(M4−λ ) = 0,

where

M1 = µ0+α1, M2 = δhαhµ0β1S0
h,
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M3 = −M1T1T2T3+δhα1αhλh,

M4 = −M3δhT4T5+αvM2T3β2S0
vαv.

λ1 = −M1 < 0, λ2 =−M1T1 < 0,

λ3 = −M1T1T2α1αhλh < 0, λ4 =−δ0 < 0,

λ5 = M3, λ6 = M3δhT4,λ7 = M4,

λ5 < 0⇔ M3 < 0,M3 < 0,

putting the value ofM3 andM1 we obtain,

M1T1T2T3−δhα1αhλh > 0.

and the condition,

(µo +α1)>
δhα1αhλh

T1T2T3
.

λ6 < 0⇔ M3δhT4 < 0, M3δhT4 < 0,
putting the value ofM3 we get, (µo +α1)>

δhα1αhλh
T1T2T3

.
λ7 < 0⇔ M4 < 0, M4 < 0, using the value ofM4
M3δhT4T5 − αvM2T3β2S0

vαv > 0, using M3 and M2 and
after the arrangement we get,

(µo +α1)T1T2T3δhT4T5+α2
v δhαhµ0β1

a1

(µ0+α1)
T3β2(

a2

δ0
)

+δ 2
h αhλhT3µ0T4T5δ0(1−R0)+δ 2

h αhλhT3R0(δ0
(µ0+α1)

µ0T4T5
)>0.

So the eigenvalues corresponds to the above jacobian
matrix have negative real parts ifδ0 >

(µ0+α1)
µ0T4T5

and

(µo +α1)>
δhα1αhλh

T1T2T3
.

Thus the DFE aroundE1 of the system (1) is stable
locally asymptotically.

Appendix 2

J∗ =

































−µ0−β1I∗v −α1 0 0 0 0 −β1S∗h

β1I∗v +α1 −T1 0 0 0 β1S∗h

0 αh −T2 0 0 0

0 0 −β2S∗v −δ0−β2I∗h 0 0

0 0 β2S∗v β2I∗h −T4 0

0 0 0 0 αv −T5

































.

(11)
Using elementary row operation we get the characteristics
equation for the above matrix is,

(−M1−λ )(−M1T1−λ )(−M1T1T2−λ )(−δ0−λ )
(−δ0M1T1T2T4−λ )(M4−λ ) = 0,

where,

M1 = µ0+β1I∗v +α1,

M2 = β1I∗v +α1,

M3 = δ0β2S∗vαhµ0β1S∗h,

M4 = −δ0M1T1T2T4T5+αvδ0β2§∗vαhµ0β1S∗h.

λ1 = −M1 < 0,

λ2 = −M1T1 < 0,

λ3 = −M1T1T2T4 < 0,

λ4 = −δ0 < 0,

λ5 = −δ0M1T1T4T2 < 0,

λ6 = M4.

λ6 < 0 ⇔ M4 < 0, M4 < 0, putting the value ofS∗v ,
S∗h andM1, δ0M1T1T2T4T5−αvδ0β2S∗vαhµ0β1S∗h > 0, after
the simplifications and taking some arrangements we get,

[δ0µ0T4T5β2a1+δ0a1T4T5β2a2
1]I

∗
h

2+[αvδ0β2αhµ0β1a2δ0(R0−1)

+δ0a2β1β2((µ0+α1)T1T2T4T5−αvδvαhµ0)R0

+β2β1αhαva2(δ 2
0 (µ0+α1)−a1a2β1β2)+2δ 2

0 (µ0+α1)β2a1T4T5)]I
∗
h

+δ 3
0 (µ0+α1)T4T5a1+δ 2

0 β1a2T4T5a1αh > 0.

So the eigenvalues belongs to above jacobian matrix
have negative real parts if R0 ≥ 1,
(µ0 + α1)T1T2T4T5 > αvαhµ0δ0 and
δ 2

0 (µ0 + α1) ≥ a1a2β1β2. So the endemic equilibrium
point E2 of the system (1) is locally asymptotically stable.
This completes the proof of the theorem. �
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