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Abstract: In this work, we extend the mathematical model of leptospirosis diseasaklng into account the exposed individuals,
the related death rate and the transmission coefficients between susdeytilale and infected vector. Initially, we present the local
asymptotical stability of both the disease-free and endemic equilibrium.s&ehe Lyapunov function theory with some sufficient
conditions. This shows the global stability of both the disease-free arefr@aequilibrium. Further, we present the bifurcation of the
model and exhibit that the local asymptotical stability of the disease-fréedemic equilibrium co-exists with the threshold quantity.
Finally, we discuss the numerical results.
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1 Introduction to study the behavior of leptospirosis disease. In their
work, they represent the rate of change for both vector
Mathematical formulation play an important role to and human population. The human population is further
present the transmission dynamics of different diseasedlivided into two main groups Juveniles and adults.
Among the diseases leptospirosis disease is one of th&riampo et al. 10] considered a deterministic models for
infectious disease which cause by a bacteria calledhe transmission of leptospirosis disease presented in
leptospira. Human as well as Mammals are mostly[10]. In their work they considered a number of
infected from this disease. Leptospirosis is a zoonoticleptospirosis disease in Thailand and shown the numerical
bacteriological disease, caused by members of the genu@mulations. Zaman 1[1] considered the real data
Leptospira. Due to the greater incidence in tropical presented in J1] to study the dynamical behavior and
regions, it is considered one of the most geographicallyrole of optimal control theory of this disease, for more
widespread zoonosis in the world. Spectrum of humanreferences]9,18,20,21,22].
diseases caused by Leptospira broad, ranging from

subclinical Infections to severe infections multiple arga In this paper, we extend the work off] by adding
dysfunction syndrome, sometimes fatal completioR[3, the exposed clas€, to human population and the
4,5]. exposed clasg&, to the vector population, death rate to

Risk factor of the disease are, Rice planters, sewehuman population and vector population, a transmission
cleaners, workers cleaning canals, agriculture laboheasi coefficient between susceptible vector and infected
contract this disease. In many model the exposed classuman. First, we combine both the model to obtained a
define for different diseases2]], they consider the single model, then find the local asymptotical stability of
exposed class for human population, and use thehe (DFE) and then find the local stability of endemic
transmission and carried out the dynamics for his modelequilibrium and bifurcation of the model. Then we
Many models have been modeled to represent theresent, the bifurcation analysis and global asymptotical
compartmental dynamics of both the susceptible, infectedstability of the Disease-free and then find the endemic
and recovered human and vector populatid;7,[8]. equilibrium by using the lyapunov function. For the local
Pongsuumpun et al9] developed mathematical models stability of the (DFE) and (EE) we introduce the basic
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reproduction number. We also discuss the numerical
result.

The paper is organized as follows. In Section 2 we
present the mathematical formulation . Section 3 we show
the local stability of both the disease-free and endemic
equilibrium with bifurcation analysis of the model.
Section 4 is devoted to the global stability of both the
disease-free and endemic equilibrium. In Section 5, we
presents numerical simulation of the model using the real
data of Thailand.

2 Model Formulation

In this section, we combine the model presentedlif] |
we add the exposed class for both vector and humar
population. By the interaction of both non linear models
of human and vector (rats) to a new single model of
constructing system of seventh differential equations. To
formulate our model , we assume th8f(t) represent of
susceptible humarky(t) is the exposed class for human,
Ih(t) represent infected humarR,(t) represent the
recovered class for human at tinte For the vector
population, we assume th8f(t) represent the susceptible
vector ,E,(t) represent exposed clask(t), represent the
class of infected vector at tinteThus the total population
of human isNp = S,(t) + En(t) + In(t) + Ra(t), and vector
population isNy = S,(t) + Ey(t) + Iy(t). The interaction of
both the model is presented in flow chart in Figure 1.

By the above mention modification, the system of non-
linear differential equation is given by

Fig. 1: The plot represents the flow diagram of the interaction of
human and vector.

dcTsth = a1 — HoSh — BriSlv — 1S5 + ARy,

% = B1Slv+ 015 — UoEn — anEp, ay, the natural death rate for the vector populatiodpisat
an rate the exposed human move to infected class of
%h = anEn — Holh — Hnlp — Snlh, human, while at the rate af, the exposed vector move to
the infected vector class. The infected vector dies at the
dry _ _ _ 1 rate ofdy.
@i’ = Onlh— HoRh — AnRh, @ We obtain the total dynamics of human population by
adding the human Subclasses is given by,
95— 2y — &S, — B2Suln. ’ Jvendy
dNy
9 = BS I — Gy~ oLE, T Ko pale )
dl Similarly adding the vector Subclasses we get the total
@ = vEv—dolv—&ly, dynamics of vector population is given by
with initial conditions dNy SNy — 3 4
ot a— — Ovly. 4)

$=20,En=>20,1h>0,R, 20,5 >0, E >0, Iv>0.

2)

From (1) and (2), we get,

Here a; is the recruitment rate for humar; is the

transmission coefficient between human and infected dNh dNy

vector. The transmission rate betwegnand |y, is shown o SA HoNn  and o S%T %Ny (5)
by B, the susceptible human infected at rateagf The

natural death rate for the human populatiorus while Now, we can prove that

the infected human dies from the disease at the ratg.of dNj a

The growth rate for the vector population is denoted by g = & ~HoNn <0 for Ny > o’
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dN, which is called the threshold quantity ,
a
V< g, — < _<
at =% %N, <0 for N> &’ ©) _ a0n01TyTsd + avanfiBracan
For the systeml( the feasible region is TT2T4Ts(Ho + 011)
Q= (S0, Ea(t),In(0). Ra(®), Sit) Eu(t) (1)) € where
Ri, (Nn=gpiay  NsF _ To= (Ho+ah), To=(Ho+Hn+0), Ta=(Ho+An),
Proposition Let the variables

(Sh(t) + En(t) + In(t) + Ra(t) of human population and
the variablesS,(t) + Ey(t) + Iy(t)) of vector population is
the solution of the systeni) with the associated initials
conditions (2) and the s&. ThenQ under systeml() is
positively invariant and attracting.

Proof: To prove this we consider the Lyapunov function

N(t) = (Nn(t) +Nu(t)) = (Sh(t) +En(t) + In(t) + Ra(t),

Su(t) + Eu(t) + Iv(t)). ()
Taking its time derivative. We get
dN
o (a1 — HoNp — Hnln, a2 — SNy — &ly)
We can easily prove that.
G < a—pNa <0, for Ny> B, ©

and B < a,— HN, <0, for N, > z.

Its clear from (8) thaw < 0. Here using comparison
theorem [L4] to show that 0< (Np,Ny) < (Np(0)e Hot +

ol (L—eho), Ny(O)e &t 4 2 (1—e %))

t — 0 we get,

0.< (Nn,Ny) < (5 %5;+ &) and we conclude tha® is an
attracting set. O

3 Local Stability Analysis

In this section, we find the disease free equilibrium for

the system ). Find the basic reproduction humbBg

called the threshold qunatity by the method developed b

[17]. We introduceR, in DFE and also in the EE of the

system () for the local stability. We show that the

Ta=(do+av),Ts = (o + &)
In the following we find the disease free state of the
system L) aroundE;.
Theorem: The DFE aboutE; of the system 1) for
Rop < 1, stable locally asymptotically , & > % and
(Ho+o01) > 5“5*}2%;\“, otherwise unstable.
Proof: To show that the systeml) is stable locally
asymptotically setting left side of the systert) Equal
zero get the following Jacobian matrdy aroundE;. See
detail in Appendix 1.

3.1 Endemic Equilibria and Bifurcation of the
Model

For the endemic equilibria of the systefh), we use
E>= (S, E: IR, S, By, |y) and setting left hand side of
the systemX) equal to zero, to get the equilibria.

T ToT4T5(d0 + B2l )1

5= (a1 TyTsan(&o + Bolyy) + anBravBeazlyy)’
Talp,
E' =
h an )
. _ only
Rh - T3 I
S = S+ Bl
N NN
Ta(&o+ B2lf)

VT TTs(&+ Bl
Theorem For Ry > 1, the EEE aroundt, of the system

y(l) is locally asymptotically stable if the following

Inequalities are satisfied.

Biaz
Ho > T3T4Ts

and

reproduction numbeRy co-exists with the disease-free ayd > HMEA

ToTa(Ho+01)’

and endemic equilibrium. To obtain the disease freegtherwise unstable.

equilibrium by setting left hand side of the systef) (
equal to zero, around the poifg = ($2,0,0,0,,0,0).
Solution of the system1j yields, we obtained the
Disease-free equilibrium arouri = (S,0,0,0,<),0,0)
is , where

& _&
Sﬂi(HoJrGl) and & o

Proof: To prove the above theorem, setting left side of the
system {) equal to zero, around an endemic equilibrium
E> give the Jacobian matrix,

See Appendix 2 in detalil.

3.2 Bifurcation of the Model

To find the backward bifurcation of the systef),(@nd

The quantity which described the disease by the quantityfor the backward bifurcation one of the infected
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component at least non-zero. In the systdinusing the
first equation and substituting the value §f Iy and R}
and after the calculations we obtained for

f(I) = Als?+BIj +C =0 ©)
where,
A = a1 BETETITZ + a1 BETaa1 TZTZ + AndnTakoTaTs Bz

+AndnTsPravBraz + Andna1 TaTs 2,

B = ayTyTs[0 T4 TaTs B2 + ST B1avBoar + & TZa1TaTs B
+80T4 TaTsB200 TS TaTsPod0 TS PravBods
+&TZ2a1T4TsPo + BoTET4Ts b + B3 fravar TZ
+BTEa1 T4 Tsdy — TapoTaTs Bz + BravfBoar T
+a1T4T5T3f2 + AndnTako T4 Ts %0 + Apon a1 T4 Ts Ay,

C = ayTZT2a18T3(1 - Ry).

Backward bifurcation
30 T T T

251

20r

- 15¢

10F

Fig. 2: The plot represents the bifurcation of the model.

Ro, if Ry < 1 thenC is positive and ifRy > 1 thenC is
negative. FoA > 0 the positive solution depends upon the
sign of C andB. For Ry > 1 the equation(9) having two
roots, positive and negative. Ry = 1, then we see that
C = 0 and we obtain a non-zero solution of equation (9),
that is—%, is positive<—=- B < 0, for B < 0 then there
exists a positive endemic equilibrium fBs = 1. It means
that equilibria continuously depending up@g, this show
that there exists an interval f&, which have two positive
equilibria

—B—VBZ—4AC —B+VBZ—4AC
R S —

The local stability of DFE co-exists with the local
asymptotic stability of the EE whelRy < 1, see 15,16 .
For the backward bifurcation setting the discriminant
B? — 4AC = 0 and then solving for the critical points of

. . . _ BZ
Rp which is given byR, =1 — pTon If Re <Ry

equivalentlyB? — AC > 0 and backward bifurcation occur
for the points ofRy such thatR. < Ry < 1. To illustrate
we consider represent in Figure 8j = 23, a, = 12,
o = 0.0071, A, = 0.066, & = 0.0023, &, = 0.0029,
ay, = 0.0081, a; = 0.0001, 3; = 0.0074, 3, = 0.0073,
Un = 0.0002

4 Global Stability (GS) Analysis of the M odel

In this section, we shows the global stability of the
system 1) by using the lyapunov function of the
disease-free state and then using the endemic equilibrium
and find the GS of the endemic equilibrium. First we
show the global stability in the following by defining the
lyapunov function.

Theorem: The DFE arounde; of the systemX) is GAS

for Ry =1, ifs =9 S =% andé, > Tﬁi‘%;‘i’”,
otherwise unstable.

Proof: Here we show the GS of the disease-free state for
the system1) by using the lyapunov function.

V(t) = WS +WoEn +Walp +WiRy +WsS,

+W6EV+VV7IV7
whereW (i = 1...7) are positive constants to be choosing
later.
Taking derivative w.r to timet of the above defined
function, we have
d$, dEp

V() =W— +Wo—

(t) {h +Wa at

dly dRy ds,
We g +Wag W

dE, dly
W —— —.
+Ws it +Wy, at

Using the systeml] we get,

The coefficientA is positive always an@ depends upon V'(t) = Wi[a; — toS, — BiSlv — 015 + AnRy)

© 2014 NSP
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FWo[BiSly + 1S, — T1En] +Ws[ahER — Talh] s-1
L'(t) = Wi( s a1 — HoSh — B1Shlv — 01Sh + ARy
+FWa[dnlh — TaRn] +Ws[az — %S, — B2S/In+ (T oo~ S~ BS ] + W S+ 00— i)
We[B2Sulh — T4Ey] + Wy [ayEy — Tsly ). HWa[anEn — Toln] +We[8ln — TaRa] +We[BoShly — T4Ey)
Where (/) denotes the derivative w.r.t time, and after the +HWr[avB, —Tsh],
simplifications we get where (1) denotes time derivatives . After a little
V'(t) = By[\Weay —WeTa] + BoSuln[We — Wk) arrangement we get,
, -1
EnWaath —WoT) + 01 W — W] L'(t) = a1w1<S‘:Sg )- HO%W1($ 1) BZW%(S‘% 1)y
-1 —
Bl WE — Wa] + Ry W Ts — WaAy) A g‘sﬁ R Wora ) Wt (5~ 1)~
+Wiag —Wh oS, —WsTzlh W5 T3Ry — Wy Tsly + W ay —We T4]Ey + WS, — Wi T2l
+Wydnln —Wo Tsly +Wsap — W50 +Wyan —W5Ty|Ep + [WeB2 — B1WA ( S:SE 1)]|V
Now we choosing the constants, S -1
Wi =W = atp, Ws =Ty, Wy = %0, Ws = ay, Ws = a, HWe — Vo= =) 1BeSiln
W, =Tganday = (Ho+01)S,, &2 = &S, Ho= (Ho+ .
ai), ( )$ $ ( Choosing the constant®y = %%ﬁﬁ W =1,
to obtain, the following equation after some arrangements _ (S—1)BT1 W _ (S—1)BTy
, V\é - S;ah ’ 4 - S,;aﬁ 1
V/(t) = — HoTaTsO0Talh (Ko + 1) [Sh — ] _ (S-1BTT, _ (8- N C) A
VVS— GﬁS*,fSn ’ W6— S VV7— Say '
—UoTaTs8ay Ta&[S, — ) — Lo T2TEHTaly a = (bo+ m)S, & = &S. after the some
simplifications we obtain,
~IhMT2Ta(ko+0)(Ro—1) — OnAndhbloTaTsdo | = (wo+anS(S-Df  wS(S-V  S(S DAl
- BS - BAS S
—T1To(TaTsa1dy — Ta(po + a1))]. +Ah<s;3—; Bll)ﬁZRh B 1) a;swss;; -1
V'(t) is negative folRy > 1 andd, > T3%‘$;‘Il). LSE-VBATN (S -DETLTHR (S -DT
Also Vi) = 0 is zero for Sy a; Sy Sav
$ =S =S Ri=En=Ilh=Iy=E/=0. L'(t) is negative forS, = 1 and L(t) is zero for all
Hence by Lassalle’s principle 18] E; is globally $=5.5=S5,R=0E,=0,1,=0,E,=0,I,=0.
asymptotically stable. This end the proof. [J Hence by the theorem of asymptotic stability3], the
Next, we show that the endemic equilibrium polit of  endemic equilibrium stat&, is globally asymptotically
the systemX) is globally asymptotically stable. In order stable. This completes the proof.

to do this, we define the Lyapunov function and show thatj
the endemic equilibrium poinE; of the system X) is
globally asymptotically stable.

Theorem: The endemic equilibriunk, of the systen(1)

is stable globally asymptotically, i, = 1, otherwise
unstable.

Proof: To show that the endemic equilibrium is globally
asymptotically stable, we define the following Lyapunov

5 Numerical Simulation and Discussion

In this section, we present the numerical simulation of
the proposed modell). The given systemlj is solve
numerically by using the well-known method, called

function. Runge-Kutta order four scheme by using Matlab.
s S Figure 3 represents the dynamical behavior of human
Ltla=Wi(Si—S - 4+1)+ P | populatl_on. 'Ifhe. bold line represent th<=T pppulatlon of
® (5 -5 S J TS -S S ) susceptible individual. The exposed individuals are
FWSE +Walp + WKE, + W, represented by the dashed line. The dotted line show the
Y\@, A WsRh . bEy -+ Wrly ) the population of infected individuals. The dashed dotted
whereW (i = 1....7) are positive constants will chosen |ine representing the recovered human population from
later. _ o ) the infection. The parameter values that we used in the
Taking the time derivative of the above function along the numerical ~ simulations are a; = 5 x 1072
solution of systemX) we get, B1 = 0.04a;, = 0.06, B, = 0.0078, A, = 2.85x 1073,
@© 2014 NSP

Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

1054 NS 2 M. A. Khan et. al. : Mathematical Modeling towards the Dynamical Interactio

Dynamical behavior of vector population

Population behavior of human population
120 T T T T T T T T 1800 T T T T T T T T
+Sh * Sv
--E wot \ e Bl
- |
wby e i |
‘= =R 1400F
st 1200f
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s 8 100l
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b 600 F
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5 200 "
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Fig. 3: The plot represents the human population.

Fig. 4: The plot represents the vector population.
human and vector class, a transmission coefficient
between Vectors of human exposed and infected vector.

b = 9 x 10%@m = 2 x 106 P
Uh =8x10%8,=21x103 ap =2, 8% =1x101,

_ 2 5 _10-3 .
ay=1x10" ,5\,—10 . Appendlxl

Figure 4 represent the dynamical behavior of the vector
population. The bold line show the class of susceptible

vector. The dashed line indicate the exposed class of [—Up—a; O 0 Ah 0 O —Bl(yoilal)‘

vector population and the dotted line represent the

population of infected vector. —a1 -, O 0 0 0 Bulpts)
0 an —T» 0O 0O O 0

6 Conclusion Jo= 0 0 & -Tz0 O 0

In this paper, we modify the model by the classes of 0 0 —B(3) 0 &% O 0

exposed to the human and vector population, Disease

mortality in humans and vector population in the infected

class vector transmission coefficients between human

exposure and infection. L O 0 0 0 0 av -Ts |
We supply local asymptotic stability of the DFE and (10)

EE. For the endemic equilibriufRy > 1 is asymptotically - o7

stable ancRy < 1 the DFE locally asymptotically stable. €quation of the above matrix is,

We also show backward bifurcation for the system (1).

With Lyapunov’s theory of functions global stability of (—Mj;—A)(—M1T; —A)(—=M1TiToa10hAn — A)

the equilibrium state, free from disease and endemic is (Mg —A) (=8 —A)(M3dhTa—A)(Mg—A) = 0,

obtained. We make sure that these new assumptions and

analysis of an appropriate biological point of the previousWNeré

assumptions, without exposed Class , disease mortality ity = Lo+ a1, Mp = &ahuoﬁlﬁ,

0 0 B(% 0 0-T, O

By elementary row operation we get the characteristics

© 2014 NSP
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where,

M3 = —M1T1T2T3+5nalahAh7 Ml _ HO"'B]_I* +og
- \ ’

Mg = —M3dnT4Ts + CvaszﬁzSgav-

Mz = Baly + o1,
A= My <0, A2=-MT; <0, M3 = &S, anHoB1S:,
Az = ~MiTiT20100An <0, A4 =~ <0, Mg = —SMiTiT2TaTs + G028, an HoBi S
As = M3, Ag = M3d,Ta, A7 = Ma, A= My <0,
As < 0 M3 < 0,M3 <0, A = —MiT1 <0,

putting the value oM3z andM; we obtain,
M1 Ti To T3 — dharapAn > O.

Ag = —M1T1T2T4 < O,

and the condition, M=—-& <0,
Oha10nAn As = —&M1T1T4T, <O,
(Ho+01) > T
Ag = Ma.
A <0< M3gdTs<0, M3dTs<O, 6)\ 40 Mo <0 Ms <0, putting the value of;
utting the value oM we get, +0q) > o1ty 6 <0< Mg <0 My <0, putting the value o,
putting aweget, (Ho+au) > gy , andMy, M1 Ti T2 TaTs — avdofBeS, anoBrS;, > O, after

A7 <0& My <0, My <0, using the value dfly
M3dnT4Ts — ayM,oTzBSay > 0, usingMz and M, and
after the arrangement we get,

the simplifications and taking some arrangements we get,

[BoHoTaTsBoan + 32y TaTs Baad] 1y + [y GofBo o o1z B (Ro — 1)

5 a ap + &azB1B2((Ho+ 1) Ti T2TaTs — ay &, Ah o) Ro
(Ho+ 0 TaT2 TsOnTaTs + & nntiofy (Ho+a1) Taﬁz(%) + BaBran ez (8 (Ho + 1) — 8122B1B2) + 28 (Ho + 1) Boaa TaTs )] I
+a + 03 (Ho + a1)TaTsay + 82 Brae TaTsaw th > 0.
+ B TakoTTslh(L-Ro) + B TaRo(& L2 . 0

So the eigenvalues belongs to above jacobian matrix
So the eigenvalues corresponds to the above jacobiahave — negative real parts if Ry > 1,

matrix have negative real parts o > 0% and (Mo + ayTiTeTals > avOnkodo _and
S.a ag/\ P % HoTaTs &8 (Ho + 01) > awaPifBo. So the endemic equilibrium
(Ho+ a1) > St point E, of the systemX) is locally asymptotically stable.

Thus the DFE arounds; of the system 1) is stable  This completes the proof of the theorem. O
locally asymptotically.
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