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Abstract: In this paper we present a new and simple algorithm to solve the Abel’s second kind integral equation using the concept

of homotopy perturbation method with a modern adaptation in Laplace transformation. By this method, analytical solution and good

approximate solutions can be obtained with only a few iterations. Several numerical examples are presented to illustrate the method,

and the results show the proposed method is very effective.
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1 Introduction

In recent years, the homotopy perturbation method
(HPM) has been studied and successfully applied by
many engineers, scientists and researchers, and used to
solve the integral equations and differential equations [1,
2,3,4,5,6,7,8,9]. This HPM was introduced first by Dr. Ji
Huan He in 1998 [10,11]. HPM is a coupling of the
homotopy method, a basic concept of topology, and the
classical perturbation technique. This coupling will
provide with a suitable way to obtain approximate or
analytic solution for different problems arising in various
scientific fields. Some advantages of HPM are: good
approximate solutions can be obtained with only a few
iterations, and it yields a very fast convergence of the
solution series in many cases. This method has been used
to solve many problems [2,3,4,6,7,8,9,10,11,12,13,14,
15,16,17,18,19,20], specially in integral equations [1,4,
8,13,14]. There are several algorithms created to solve
differential equation with maple implementation, see for
example, [21,22,23,24,25,26,27,28,29]. In this paper,
we propose a new method for finding the analytic solution
or an approximate solution of generalized Abel’s integral
equations of the second kind using the concept of HPM
via Laplace transformation, and the approach to analytic

solution of this method is very simple and
computationally winsome.

Frequently, we come across Abel’s integral equations
in mathematical physics, biology, electronics and
mechanics, many applications of chemistry such as
crystal growth, heat conduction, and electro-chemistry
etc. (see [30]), and the generalized Abel’s integral
equation often looks in two forms namely first kind and
second kind. The first one is as follows

f (x) =

∫ x

0

u(ξ )

(x− ξ )α
dξ , (1)

and the second kind is as follows

u(x) = f (x)+
∫ x

0

u(ξ )

(x− ξ )α
dξ , (2)

where f (x) is continuous function, 0 < α < 1 and
0 ≤ x,ξ ≤ ρ and ρ is constant.

The main aim of this paper is to find the analytic
solution or approximate solutions of the generalized
Abel’s integral equations of the second kind of the
form (2) using the concept of HPM via Laplace
transformation. The main advantage of this proposed
method is the combination of two powerful methods,
namely HPM and Laplace transformation, for obtaining

∗ Corresponding author e-mail: srinithota@ymail.com , srinivasarao.thota@sru.edu.in

c© 2022 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/sjm/090202


30 S. Thota: Solution of generalized Abel’s integral equations

speedy convergent series for generalized Abel’s integral
equations of the second kind. The paper is organized as
follows: in Section 2, we described the proposed method;
and in Section 3, we discussed several examples to
illustrate the exactness and stability of the proposed
method.

2 Description of the method

In this section, we illustrate the basic idea of the proposed
method for solution of the generalized Abel’s integral
equation of the second kind via Laplace transform as
follows.

Recall the equation (2),

u(x) = f (x)+

∫ x

0

u(ξ )

(x− ξ )α
dξ . (3)

Take the Laplace transform on both sides in equation (3)
using convolution property of the Laplace transform, we
have

L[u(x)] = L [ f (x)]+
Γ (1−α)

s1−α
L [u(x)] . (4)

Now operate the inverse Laplace transform in equation (4)
on both sides, we have

u(x) = f (x)+L−1

[

Γ (1−α)

s1−α
L [u(x)]

]

. (5)

According to HPM (see, for example, [2,7,9,10,11,20]) ,
we can write the solution of the equation (3) as a power
series in p:

v(x) =
∞

∑
n=0

pnvn(x). (6)

To obtain an approximate solution of equation (6), put p =
1:

u(x) = lim
p→1

v(x) =
∞

∑
n=0

vn(x). (7)

Here the functions vn(x), for n = 0,1, . . ., are determined
by using the convex homotopy iterative scheme (see [1,2,
3,4,5,7,8,9,10,11,12,13,14,20,31]) as follows:

∞

∑
n=0

pnvn(x) = f (x)+ p

(

L−1

[

Γ (1−α)

s1−α
L

[

∞

∑
n=0

pnvn(x)

]])

.

(8)

The functions vn(x) are obtained by equating the
corresponding coefficients of powers of p on both sides,
for n = 1,2,3, . . .,

p0 : v0(x) = f (x)

pn : vn(x) = L−1

[

Γ (1−α)

s1−α
L [vn−1(x)]

]

.
(9)

Here we are mainly concerned about the perturbation
equation, that can be constructed easily in several ways

by homotopy, and an initial guess v0(x), that can also be
selected freely by HPM. Once if we choose these parts,
then the homotopy equation is determined easily, because
the other part is the original equation and hence less
changes are required.

In the following section, we shall provide several
example by the homotopy perturbation technique and
comparisons are made to show the efficiency of the
proposed method.

3 Numerical examples

In Example 1, we find the analytical solution of the
generalized Abel’s integral equation of second kind going
through the procedure as described in Section 2, and other
examples are presented to show the efficiency of the
proposed method. All the results in examples are
calculated using the computer algebraic system Maple 13.

Example 1[32] Consider the generalized Abel’s

integral equation

u(x) = x2 +
27

40
x

8
3 −

∫ x

0

u(ξ )

(x− ξ )
1
3

dξ . (10)

The exact solution of (10) is u(x) = x2.

Applying Laplace transform to equation (10) on both

sides, we get

L[u(x)] = L

[

x2 +
27

40
x

8
3

]

− Γ ( 2
3
)

s
2
3

L [u(x)] . (11)

Operating the inverse Laplace transform on both sides in

equation (11), we get

u(x) = x2 +
27

40
x

8
3 −L−1

[

Γ ( 2
3
)

s
2
3

L [u(x)]

]

. (12)

By HPM, we have the following convex homotopy

∞

∑
n=0

pnvn(x) = x2 +
27

40
x

8
3 − p

(

L−1

[

Γ ( 2
3 )

s
2
3

L

[

∞

∑
n=0

pnvn(x)

]])

.

(13)

Now equating the corresponding coefficients of powers of

p in equation (13), we have the following iterates vn(x),
for n = 0,1,2, . . .,
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p0 : v0(x) = x2 +
27

40
x

8
3 ,

p1 : v1(x) =−L−1

[

Γ ( 2
3
)

s
2
3

L [v0(x)]

]

,

=− 27

40
x

8
3 − 81

√
3

280

Γ ( 2
3
)3x

10
3

π
,

p2 : v2(x) =
1

840

Γ ( 2
3
)3(243

√
3x

10
3 + 70x4π)

π
,

p3 : v3(x) =− 1

18480

(

1540x4+ 729x
14
3

)

Γ

(

2

3

)3

,

p4 : v4(x) =
243

6160
Γ

(

2

3

)3

x
14
3 +

729

58240

Γ ( 2
3
)6x

16
3

√
3

π
,

p5 : v5(x) =− 1

524160

Γ ( 2
3
)6(6561

√
3x

16
3 + 1456x6π)

π
,

and so on. In this manner, one can obtain the rest of

components of the homotopy perturbation iterations.

Now, we can approximate the analytical solution u(x) by

the shortened series as

u(x) =
n

∑
i=0

vi(x)→ x2 as n → ∞.

We show the comparison between the exact solution and

the approximate solution obtained by the proposed

method graphically in Figure 1. One can observe that the

solution obtained by the present method almost identical

to the exact solution. Better approximation of the results

can be obtained by perform more number of iterations.

The numerical results are given in Table 1 with absolute

errors due to the approximation, which shows the

approximate solution is strongly agreed with the exact

solution. In Figure 2, we show the absolute error

E20 = |uexact(x) − uappox(x)| between approximate

solution and exact solution due to the approximation at

level n = 20 which is very small.

Example 2[33] Consider a second kind Abel’s integral

equation as follow

u(x) = x+
4

3
x

3
2 −

∫ x

0

u(ξ )

(x− ξ )
1
2

dξ , (14)

with exact solution x.

Now apply the homotopy perturbation method to (14), we

have the following convex homotopy

∞

∑
n=0

pnvn(x)= x+
4

3
x

3
2 − p

(

L−1

[

√

π

s
L

[

∞

∑
n=0

pnvn(x)

]])

.

(15)

Fig. 1: Graphical comparison for example 1.

Fig. 2: The graph of absolute error E20 for example 1.

By equating the corresponding coefficients of powers of p

in equation (15), we get the following iterates vn(x) for

n = 0,1,2, . . .:
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Table 1: Numerical results for example 1.

x Exact value Approx. value Absolute errors

0.10 0.0100 0.0100 0

0.25 0.0625 0.0625 0

0.47 0.2209 0.2209 0

0.58 0.3364 0.3364 0

0.92 0.8464 0.8464 0

1.20 1.4400 1.4400 0

1.28 1.6384 1.638399999 1.0×10−9

1.38 1.9044 1.904399998 2.0×10−9

1.44 2.0736 2.073599995 5.0×10−9

1.50 2.2500 2.249999990 1.0×10−8

p0 : v0(x) = x+
4

3
x

3
2 ,

p1 : v1(x) =−L−1

[
√

π

s
L [v0]

]

=−4

3
x

3
2 − 1

2
πx2

,

p2 : v2(x) =−L−1

[
√

π

s
L [v1]

]

=
π

30
(15x2 + 16x

5
2 ),

p3 : v3(x) =−L−1

[
√

π

s
L [v2]

]

=− 8

15
x

5
2 π − 1

6
π2x3

,

p4 : v4(x) =
π2

210
(35x3 + 31x

7
2 ),

p5 : v5(x) =− 16

105
π2x

7
2 − 1

24
π3x4

,

p6 : v6(x) =
π3

7560
(315x4 + 256x

9
2 ),

Now, an approximate solution of the analytical

solution u(x) is obtained by the shortened series, i.e.,

u(x) =
n

∑
i=0

vi(x)→ x as n → ∞. (16)

We show the graphical comparison between the exact

solution and approximate solutions in Figure 3, and the

graph of absolute error at level n = 30 shown in Figure 4.

The numerical results are given in Table 2 with absolute

errors due to the approximation, which show that the

approximate solution is strongly agreed with the exact

solution.

Table 2: Numerical results for example 2.

x Exact value Approx. value Absolute errors

0.20 0.20 0.20 0

0.40 0.40 0.40 0

0.60 0.60 0.60 0

0.80 0.80 0.7999999943 5.7×10−9

1.00 1.00 0.9999997469 2.531×10−7

Fig. 3: Graphical comparison for example 2.

Example 3 [34] We consider the weakly singular

Volterra integral equation of second kind

u(x)−
∫ x

0

1
√

x− ξ
u(ξ ) dξ = x7

(

1− 4096

6435
x

1
2

)

, (17)

with exact solution is u(x) = x7. Using the HPM to
equation (17), we have the following approximate
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Fig. 4: The graph of absolute error E20 for example 2.

Fig. 5: Graphical comparison for example 3.

solutions:

For n = 15, u(x) =
n

∑
i=0

vi(x)

= x7 − π8x15

259459200
,

For n = 20, u(x) =
n

∑
i=0

vi(x)

= x7 − π10x
35
2

703628874529205625
,

For n = 25, u(x) =
n

∑
i=0

vi(x)

= x7 − π13x
41
2

41628795103771392391875
,

As n → ∞ u(x) =
n

∑
i=0

vi(x)→ x7
.

Fig. 6: Absolute error at level n = 15 for example 3.

Fig. 7: Absolute error at level n = 20 for example 3.

Using HPM, we have the numerical results in Table 3.

From Table 3, the error decreases when the integer n

increases until n = 25. The Figure 5 gives the graphical

comparison between the approximate solution and the

exact solution at different levels, n = 15,20,25, and the

corresponding absolute errors are also shown in

Figure 6, 7, 8 for n = 15,20,25 respectively.

Example 4Consider a second kind Abel’s integral

equation [33]

u(x) = x2 +
16

15
x

5
2 −

∫ x

0

u(ξ )
√

x− ξ
dξ , (18)

with exact solution 1
x+1

.
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Fig. 8: Absolute error at level n = 25 for example 3.

Now apply the homotopy perturbation method to (18),
we have the following convex homotopy

∞

∑
n=0

pnvn(x) = x2 +
16

15
x

5
2 − p

(

L−1

[

√

π

s
L

[

∞

∑
n=0

pnvn(x)

]])

.

(19)

By equating the corresponding coefficients of powers of p

in equation (19), we get the following iterates vn(x) for

n = 0,1,2, . . .:

p0 : v0(x) =x2 +
16

15
x

5
2 ,

p1 : v1(x) =− 16

15
x

5
2 − 1

3
πx3

,

p2 : v2(x) =
1

105
π(35x3 + 32x

7
2 ),

p3 : v3(x) =− 32

105
πx

7
2 − 1

12
π2x4

,

p4 : v4(x) =
1

3780
π2(315x4 + 256x

9
2 ),

p5 : v5(x) =− 64

945
π2x

9
2 − 1

60
π3x5

,

p6 : v6(x) =
1

41580
π3(690x5 + 512x

11
2 ),

Now, the approximate solution of u(x) for n = 30 is

obtained by the shortened series, as follows

u(x) =
30

∑
i=0

vi(x) = x2 − π6x18

3201186852864000
≈ x2

.

Therefore, we have

u(x) =
n

∑
i=0

vi(x)→ x2 as n → ∞.

Table 3: Absolute errors at different levels for example 3.

x
Absolute errors

for n = 15
Absolute errors

for n = 20
Absolute errors

for n = 25

0.10 3.65×10−20 1.76×10−24 7.40×10−30

0.20 1.19×10−15 3.27×10−19 1.09×10−23

0.30 5.24×10−13 3.94×10−16 1.46×10−20

0.40 3.92×10−11 6.06×10−14 1.62×10−17

0.50 1.11×10−9 3.01×10−12 1.57×10−15

0.60 1.71×10−8 7.31×10−11 6.62×10−14

0.70 1.73×10−7 1.08×10−9 1.56×10−12

0.80 1.28×10−6 1.12×10−8 2.41×10−11

0.90 7.52×10−6 8.83×10−8 2.69×10−10

1.00 3.65×10−5 5.58×10−7 2.34×10−9

4 Conclusion

In this paper, we presented a new homotopy perturbation
method via Laplace transformations to obtain
approximate and accurate solution of the generalized
Abel’s integral equations of the second kind. We
discussed several numerical examples; and comparisons
of the results, obtained by the proposed method, reveals
that the proposed method is very effective and convenient.
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