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Abstract: The current study is intended to investigate the applicability of a special class of time series models; 
autoregressive integrated moving-average (ARMIA) for the estimation of temperature distribution forecast model. 
Different transformations of ARMIA models such as differencing and smoothing are investigated, in addition to study the 
effect of each model parameters on the accuracy of the derived model. This study is applied at a temperature time series 
data of Riyadh city in KSA. By investigating a number of smoothing techniques, simple exponential smoothing (with � = 
0.2) is found to be the most adequate forecasting model for the case under study as it yields highest correlation factor (R2= 
0.9337).  
Keywords: Time series analysis, ARIMA, Transformation, Smoothing.  
 
 
1 Introduction 
 
Quantitative models are very useful in forecasting and have become essential in many applications. As the findings of 
several types of research pointed to the fact that integrating different models can improve their predictive performance. 
Khashei et al.[1] presented a hybrid model of "ARIMA" and "Probabilistic Neural Network" (PNN), in order to reach more 
exact results. In their proposed model, the authors modified ARIMA model's estimated values using ARIMA residuals 
trend, which are respectively obtained from PNN and optimum step length.  
In a study to forecast the capacity of electricity generation in Malaysia, Haigeset at [2] deployed ARIMA approach to 
model and forecast about 50 years data [2]. The authors evaluated different models using the Schwarz Bayesian Criterion 
(SBC). Models accuracy was calculated using Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). 
Degerine and Lambert-Lacroix [3], characterized the partial autocorrelation function of a non-stationary time series using 
the auto-covariance function. Kumar and Jain [4] also used ARIMA to model the time series of traffic noise [4]. A new 
forecast methodology that combines Gray Model (GM(1,1)) and (ARIMA) was developed by Jia et al [5] to predict UT1-
UTC earth orientation parameters after the removal of the leap second and Earth’s zonal harmonic tidal.  
Vector Autoregressive Moving- Average (VARMA) is one of the main conventional multivariate time series forecasting 
models. A new framework for predicting the online VARMA time series was proposed [5]. The results of experimental 
work validated the efficacy and of the proposed algorithms [6]. 
 

2 Time-Series Models 
 

One of the most significant quantitative models is time-series forecasting. Time-series analysis includes methods to analyze 
data series in order to reach significant statistics and other data characteristics.  
Methods for time-series analysis may be categorized as either frequency-domain methods; which comprise spectral and 
wavelet analyses, or time-domain methods that include autocorrelation and cross-correlation analysis.  
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The first method refers to analyzing mathematical functions with respect to frequency, instead of time. A function can be 
converted from one domain to the other by means of mathematical operators transforms. One of these transforms 
is "Fourier transform", which change a time function into a sum of different frequency sine waves, each of which represents 
a frequency component [7]. 
Time-series techniques may also be categorized as parametric and non-parametric methods. In parametric methods, the 
stationary process could be described by a small number of parameters using "autoregressive or moving average" model.  
Chris Chatfield and Mohammed Yar [8] suggested an approach for predicting intervals for the "additive Holt-Winters" 
forecasting procedure extending the results to the "multiplicative seasonal" case [8]. The multiplicative prediction showed a 
contrasting behavior to the "additive" case. 
 
2.1 Auto-Regressive Moving Average Models (ARMA): 
 
AR models; first introduced by Yule [9] were complemented by MA schemes. The combined ARMA processes can be 
used to model all stationary time series if the suitable number of AR and MA terms (p, q) are appropriately specified [10]. 
This means that any series xtcan be modeled as a group of precedent xt values and/or precedent et errors, as in equation (1). 
 

X" = ϕ%X"&% + ϕ(X"&( +⋯+ϕ*X"&* + e" − θ%e"&% − θ(e"&( −⋯− θ.e"&.                           (1) 

Where ∅%, ∅(, …∅2are the AR coefficients and 𝜃%, 𝜃(, …𝜃4are the MA coefficients. The value of these parameters are 
estimated using some non-linear optimization procedure that minimizes the sum of square errors or some other appropriate 
loss function [11]. 
 
A general "ARIMA model" of order (p, d, and q) symbolizing the time series as: 
 
                            𝜙(𝐵)∇:𝑥< = 𝜃(𝐵)𝑒<                                      (2) 

Where: "xt and et" represent variable and random error at time t respectively. B is a backward operator defined by; 
 
                              									Bx" = x"&%                                          (3) 

                 ∇= 1 − 𝐵, ∇:= (1 − 𝐵):;  d is the order of differencing                                                                   (4) 

                           ϕ(B)and		θ(B)                                                                                                                             (5)                                                

and …B† are autoregressive (AR) and moving averages (MA) operators of p and q orders, respectively, given by: 

                            𝜙(𝐵) = 1 − 𝜙%𝐵 − 𝜙(𝐵 −⋯−𝜙2𝐵2                                               (6) 
  and 
                              𝜃(𝐵) = 1 − 𝜃%𝐵 − 𝜃(𝐵 −⋯− 𝜃4𝐵4                                            (7) 
 

2.1.1 Steps of ARIMA Time Series Modeling 
 

ARIMA model is prevalent for their statistical properties and due to the modeling process using Box–Jenkins methodology 
[11]. In addition, ARIMA models can employ a number of exponential smoothing models.  

Once the series patterns, trends, cycles, and seasonality, are visualized, to use Box & Jenkins methodology for ARIMA 
modeling, it is essential firstly to determine whether the time series is stationary or non- stationary. Dickey-Fuller is one of 
the tests used to check stationarity [12].If the series is nonstationary; it should be stationarized (transformed) using one of 
the transformation techniques. 

Three techniques are normally used to transform a time series [13]: 
- Detrending 

- Differencing: through modeling the differences between series data points  

- Seasonality which is easy to incorporate in the "ARIMA model"  
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 Following the transformation step, optimal parameters of the resulting "stationary time series" are to be defined. The 
parameters p,d,q can be found using autocorrelation function (ACF) and partial autocorrelation function (PACF) plots. If 
both "ACF and PACF" decrease regularly, this is an indication that the time series should be stationarized introducing 
value to "d". Once the optimal parameters are determined ARIMA model is built. 

 
2.1.2 Autocorrelation and Partial Autocorrelation Function 
 

There are several autocorrelation coefficients, corresponding to each panel in the lag plot. For example, r1 and r2 

measure the relationships between (yt and yt−1), and (yt  yt−2), respectively and so on[14].The value of rk can be written 
as: 
 

                      𝒓𝒌 = 	
∑ (𝒚𝒕K&𝒚)(𝒚𝒕K𝒌&𝒚)LLL𝑻
𝒕N𝒌O𝟏

∑ (𝒚𝒕K&𝒚)𝟐𝑻
𝒕N𝟏

			 	 	 	 	 																																												(8)	

 
 Where: 

rk is the autocorrelation coefficient of lag k, k<R
S
, T is the sample size 

Time series that show no autocorrelation is called white noise.  

Partial correlation was presented long time ago [14, 15], but the parameterization of a stationary time-series through the 
partial autocorrelation function (PACF) is relatively recent. This was recognized by Nielsen and Schou [16] for 
"autoregressive processes" and by Ramsey [17] for the "general stationary" case. The partial autocorrelation coefficients 
are [11] 

																	𝑔UU =	{
VW

%&∑ XWKY,ZWKY
ZNY

∑ XWKY,ZVWKZ
WKY
ZNY

VZ
}U\(,],…                                                                                         (9) 

																		𝑔U^ = {𝑔U&%,^ − 𝑔UU𝑔U&%,U&^}^\%,(,…,U&%                                  (10) 
  
Where: 
gkk	is	the	kth	PAC	in	an	autoregressive	process	of	order	k	
	

gkj	is	the	jth	recursive	computational	coefficient	in	the	autoregressive	process	
 
2.2 Time-Series Transformation 

Transformations are used to improve time series statistical analysis, through determining a right scale 
for a model (of known class) having the best performance. 

2.2.1 Box-Cox Transformation 

An important group of proper transformations for time-series measured was proposed by Tukey [18],to achieve a simple 
structured model with normal errors, and constant error variance. This was then modified by Box and Cox [19].This 
transformation method is regarded as parametric pre-processing technique intended to make the distribution of a set of data 
approximately Gaussian [19]. Bicego and Baldo indicated that the technique is also useful in Pattern Classification, in case 
that Gaussianity of datasets is not so critical. They also showed that; probably as a result nonlinear nature of the Box-Cox 
transformation, class separability can be improved. 
 
The Box-Cox transformation has the following mathematical form [20] 

																																																																	𝑌 = (𝑋 + 	)    																																																																																																																																															(11)	

Where λ is the exponent (power) and δ is a shift amount that is added when X is zero or negative. When λ is zero, the 
above definition is replaced by: 
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																																							𝑌	=	ln(X	+	δ)		 	 	 	 	 	 																																												(12)	

Usually, the standard λ values of -2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, and 2 are investigated to determine which, if any, is most 
suitable.  

Decompositions "additive and multiplicative" can be reached by means of "Box-Cox transformation" of data with (0 <λ< 
1). A value of λ = 0 corresponds to "multiplicative decomposition" while λ=1 is equivalent to an "additive 
decomposition". 

Box-Cox transformation which is used to improve time series normality is defined by the equation: 

																																𝑌< = v
wx
y&%
z
,									(X" > 0, λ ≠ 0)or(X" ≥ 0, λ > 0)

ln(X"),								X" > 0, λ = 0
                                                                             (13)   

 

2.2.2 Differencing 

Differencing is used to remove non-stationarity by modeling the differences. For instance, 
 
														x	(t)	–	x(t-1)	=	ARMA	(p,		q)                                     (14) 

The differencing equation is: 

																															𝑌< = 	 (1 − 𝐵):(1 − 𝐵�)�𝑋<                                                      (15) 
 

where d is the order of the first differencing component, s is the seasonal component period,  is the order of  the seasonal 
component, and B is the lag operator defined by: 
 

BXt=	Xt-1	
 

Typical values of (d, D, s) are (1,1,s), (2,1,s). s equals (12) for monthly data with an annual  seasonality and it equals 0 in 
case of  no seasonality". 
 

This differencing is called as the integration part in ARIMA. Hence, there are three parameters: p which expresses the AR 
factor, d is the differencing (I) and q is the moving average factor MA. 
 
2.2.3 Seasonal Decomposition 

As mentioned above, there are two forms of classical decomposition: "additive and multiplicative decomposition". In 
additive decomposition, the seasonal component is assumed to be constant from year to year. For "multiplicative 
seasonality", “seasonal indices” are the m values that form the seasonal component. 
Detrending and deseasonalizing using the classical decomposition model could be written as: 
 
																																																																	Xt	=	mt	+	st	+	Ît	 																																																																																																																														(16)	 	
	 	 where mt is the trend component and st the seasonal component, and et is a N(0,1) white noise component. Using 
XLSTAT software allows to fit this model in two separate and/or successive steps: 
	
																																																							𝑋< = 	𝑚< +	𝜖< = 	∑ 𝑎�𝑡�U

�\� + 𝜖<																																																																									                                (17) 
    
1 – Detrending model: 
  
																																																							𝑌< = 	 𝜖< = 	𝑋< − ∑ 𝑎�𝑡�

2
�\�                                                                  (18) 

where k is "the polynomial degree". The ai parameters are obtained by fitting a"linear model to the 
data. The "transformed time series writes [21]: 
	
																																																		Xt	=	st	+	Ît	=	µ	+	bi	+	Ît,		i=	t	mod	p	 	 																																											 (19) 
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1 – Deseasonalizing model: 
	

																																			Xt	=	mt	+	st	mod	p	+Ît                             (20) 
 

where p is the period. The bi parameters are obtained byfitting the data using a linear regression model too. The 
transformed time series is: 

                                  𝑚< = 	∑ 𝑤�𝑋<��
�/(
�\	&�/(                                 (21) 

 
where P /2 is the integer division of P by 2 and the coefficients (wi) are : 
 

                                   𝑤� v
%
(�
𝑠𝑖|𝑖 = 𝑃/2

%
�
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                            (22) 

Each seasonal index si is calculated from st = Xt - mt as the average of the elements of st for which 
t mod P = i. Their values are then centered as: 

 
𝑆�� = 	 𝑠�� −

%
2
∑ 𝑆 �
2
^\% 																																																																																																																	        (23)	

The random component is estimated as : 
 

	𝜖�¡ = 𝑋< −𝑚�< − 𝑆¢<£¤:�	 	 	 	 	 	 																											(24)	
 
If the "multiplicative type of decomposition" is chosen, the model is given by: 
 
																																		Xt	=	mt×	stmodp×	Ît	 	 	 	 	 																																																											(25)	
	
The trend component is estimated in the same way as indicated for the "additive decomposition". 
 
The seasonal indices si are computed as the average of the elements of st = Xt / mt for which (tmod P= i). 
 
The normalized form is: 

																															𝑆¢� = 	 �̂�� 	× (∏ �̂̂� )2
^\%

&% �¨ 	 	 	 	 	 																																							(26)	
 

2.3 Smoothing 

If {Y t}, (t=1,…,n), the time series of interest, is defined by PtYt+h the forecaster of Yt+h with minimum "mean square 
error", and et a N(01) white noise. The smoothing methods are as follows. 
 
2.3.1Moving Average Smoothing 

The first step in a classical "time series decomposition" is to use a "moving average method" to estimate the trend-
cycle. A "moving average" of order m can be written as [22]: 

                              𝑇< = 	
%
£
∑ 𝑦<�^U
^\&U                                                                       (27) 

 

Where: m=2k+1, which means that the "estimate of the trend-cycle" is obtained by taking the average of the time 
series for k periods of t. Consequently, averaging reduces data randomness, leading to a smooth trend-cycle 
component. This is called an m-MA, i.e. a moving average of order m. 
 
2.3.2 Simple Exponential Smoothing (SES) 
 

This is the simplest of the exponentially smoothing methods and it is appropriate if the forecasted data has no obvious 
trend or seasonal pattern. Sometimes this model is referred to as brown's simple exponential smoothing, or "exponentially 
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weighted moving average model", as the weights decrease exponentially thus, the smallest weights are assigned to the 
oldest observations. The equations of the model are written as [23]: 
Forecast equation                            𝒴¬<�­|< = ℓ<                                                                                                         (28) 
Smoothing equation               ℓ< = 𝛼𝒴< + (1 − 𝛼)ℓ<&%,                                 (29) 
 
Where 𝑙< is the smoothed series value; level, at a time. Substituting h=1provides the fitted values, but if t is set to be equal 
to T, true forecasts beyond the training data are obtained. 
 

To estimate unknown parameters and initial values of any exponential smoothing method SSE are minimized. The 
residuals are defined as 𝑒< = 	𝑦< − 𝑦±<|<&%  for t=1,…, T. Thus, minimize: 
 

                    SSE=∑ ²𝓨𝒕 − 𝓨�𝒕|𝒕&𝟏´
𝟐𝑻

𝒕&𝟏 = ∑ 𝒆𝒕𝟐𝑻
𝒕\𝟏 																																																																																										                    (30) 

 
As mentioned above, higher weight is given to the more recent observation [21]. 
 

2.3.3 Double Exponential Smoothing (Holt’s linear trend method) 

This model is also called "Brown's Linear Exponential Smoothing" and the method extended "simple exponential 
smoothing" to permit forecasting data with a trend. The method employs a forecast equation in addition to a smoothing 
equation for the level and another one for the trend; taking into consideration its variation with time [23]. 

                      Forecast equation: 𝒚𝒕�𝒉|𝒕 = 	 𝒍𝒕 + 𝒉𝒃𝒕                                                                         (31) 

                    Level equation:𝒍𝒕 = 	𝜶𝒚𝒕 + (𝟏 − 𝜶)(𝒍𝒕&𝟏 + 𝒃𝒕&𝟏)                                                                               (32) 

                 Trend equation: 𝒃𝒕 = 	𝜷∗(𝒍𝒕 − 𝒍𝒕&𝟏) + (𝟏 − 𝜷∗)𝒃𝒕&𝟏                                                                (33) 

where ℓt represents series level estimate at time t, bt indicates the series trend estimate at time t, α is the "smoothing 
parameter", (0 ≤ α ≤ 1), and β*	is the "trend smoothing parameter", (0≤ β*≤ 1).  

 
Similar to "simple exponential smoothing", equation (32) shows that (ℓt) is observation (yt) "weighted average" and the 
training forecast one-step-forward of time t is given by (ℓt−1+bt−1). Equation (33) indicates that bt is the "estimated 
trend weighted average" at time t based on (ℓt−ℓt−1) and bt−1, the previously-estimated trend. 
 
As the h-step-ahead forecast is equal to the last estimated level plus h times the last estimated trend value, the 
forecasts are  linear functions of h. 
 
2.3.3.1 Holt-Winters Seasonal Additive Model 

This method permits the predictions to take into considerations both "trend" and "seasonality". The model was called 
"additive" due to the stable nature of the seasonality effect. The additive method is formulated as [24]: 

𝒚𝒕�𝒉|𝒕 = 	 𝒍𝒕 + 𝒉𝒃𝒕 + 𝒔𝒕�𝒉&𝒎(𝒌�𝟏)                                                                                                                                 (34) 

𝒍𝒕 = 	𝜶(𝒚𝒕 − 𝒔𝒕&𝒎) + (𝟏 − 𝜶)(𝒍𝒕&𝟏 + 𝒃𝒕&𝟏)                                                           (35) 

𝒃𝒕 = 	𝜷∗(𝒍𝒕 − 𝒍𝒕&𝟏) + (𝟏 − 𝜷∗)𝒃𝒕&𝟏                                                                                                                         (36) 

𝒔𝒕 = 	𝜸(𝒚𝒕 − 𝒍𝒕&𝟏 − 𝒃𝒕&𝟏) + (𝟏 − 𝜸)𝒔𝒕&𝒎                                           (37)  

Where: k is the integer part of (h−1)/m.lt equation showing a "weighted average" between the "seasonally adjusted 
observation" (yt−st−m) and the "non-seasonal forecast" (ℓt−1+bt−1) for time t. Trend equation is the same as "Holt’s 
linear method". Similarly, "seasonal equation" shows a "weighted average" between the "current seasonal 
index", (yt−ℓt−1−bt−1), and the "seasonal index" of last year's same season. 
 
The seasonal component equation is written as: 
 
																												st	=	γ∗(yt−ℓt)+(1−	γ∗)	st−m                            (38) 
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Substituting ℓt from equation (29), then: 

																																				st	=	γ∗(1−α)(yt−ℓt−1−bt−1)+[1−γ∗(1−α)]	st−m	 				 																																																																	(39)	
 
which is the same as the seasonal component smoothing' equation with γ=γ∗(1−α).  
 
2.3.3.2 Holt-Winters Seasonal Multiplicative Model 

This method considers the case of a trend; varying with time, and a seasonal component with a period p, which is the 
reason of name "multiplicative model". As the discrepancies between the observations increase, the seasonal component 
also increases. The model equations are as follows: 

The component form for the multiplicative method is [23]: 
 

𝑦<�­|< = 	 𝑙< + ℎ𝑏< + 𝑠<�­&£(U�%)                     (40) 
𝑙< = 	𝛼 ÆÇ

(�ÇKÈ)
+ (1 − 𝛼)(𝑙<&% + 𝑏<&%)                  (41) 

𝑏< = 	𝛽∗(𝑙< − 𝑙<&%) + (1 − 𝛽∗)𝑏<&%                                            (42) 
𝑠< = 	𝛾 ÆÇ

(ËÇKY&ÌÇKY)
+ (1 − 𝛾)𝑠<&£                  (43) 

 

3 Results and Discussion 

Three years data sets of Riyadh, KSA temperature (°F) obtained from the website https://www.wunderground.com/ are 
used to define the time series model that best fit the data using XLSTAT software package. ARIMA modeling of the time-
temperature series is shown in Figure 1. The series ACF (a) and PAC (b) plots are shown in Figure.2. 

 

 

Fig. 1: Temperature ARIMA model of Riyadh, KSA. 
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Fig. 2: Autocorrelation (a) and partial autocorrelation (b) of temperature time series. 

ACF and PACF plots are used to identify the proper ARMA model by comparison with the identification characteristics 
method. 
 
Different investigated smoothed models are tested for Goodness of fit calculating the coefficients, SSE, MSE, and 
R2where: 

SSE is the Sum of Squares of Errors: This statistic is minimized if the Least Squares option has been selected for the 
optimization.  

MSE is the Mean Square Error and R2 is the correlation factor. Data summary statistics are shown in Table 1. 
 

Table 1: Data summary statistics. 
 

Variable Observations Minimum Maximum Mean Std. deviation 
Series1 1096 43.000 104.000 79.375 15.244 

 

3.1 Moving Average Results 

Table 2: exhibit the results of using the moving average method. 
 

Table 2: Moving average results. 
Model parameter 

k (Temp. ° F) 
DF SSE MSE RMSE MAPE MPE MAE R² 

2 1096 8147.7 7.434058 2.726547 2.774814 -0.195 1.999103 0.96798 
4 1096 13235 12.07591 3.475041 3.602905 -0.292 2.560795 0.94798 
6 1096 15907 14.51375 3.809692 3.977352 -0.349 2.811272 0.93748 
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8 1096 16959 15.47348 3.933635 4.145084 -0.370 2.924862 0.93335 
 
From Table 2 it clear that Goodness of Fit test results indicate that minimum errors (SSE, MSE, and RMSE)  obtained for 
the parameter value (k =2). The correlation factor (R2) in this case is 0.96798. 

3.2 Exponential Smoothing Results 

Table 3, exhibits the results of using simple and double exponential smoothing for the 1096 observations time series, for 
different values of a (0 <a < 1). 
 
The temperature data series is first testes for stationarity and appeared to be nonstationary. Hence, it is stationarized 
investigating different transformation techniques; differencing, detrending and seasonality. Figure 3(a, b, c, d, e) illustrates 
the original time series and the data series transformation using each of these methods.  
 

Table 3: Exponential smoothing results 

Smoothing Method Model parameters a 
Temperature (° F) 

DF SSE MSE RMSE R2 

Simple exponential  0.2 21115 19.28304 4.391246 4.68667 0.916881 
Simple exponential  0.4 18387 16.79186 4.097788 4.30566 0.927619 
Simple exponential  0.6 17304 15.80287 3.975282 4.14126 0.931882 
Simple exponential  0.8 16850 15.38858 3.922827 4.03124 0.933668 
Double exponential  0.2 175993 160.7245 12.67772 6.28982 0.307204 
Double exponential  0.4 33206 30.3249 5.506805 4.90302 0.869286 
Double exponential  0.6 24895 22.73479 4.768101 4.82119 0.902003 
Double exponential  0.8 27699 25.29593 5.029506 5.15803 0.890963 

 
From Table 3 it could be seen that the goodness of fit test results indicate that minimum errors (SSE, MSE, and RMSE) are 
obtained for a = 0.8 using simple exponential smoothing. The correlation factor (R2) in this case is 0.9337. 
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Fig. 3: Original data (a), Differencing (b), Trend(c), Seasonal (d), and Random component (e) of the fitted series 
 

3.3 Double Exponential Smoothing with Linear Trend (Holt-Winters) 

Using smoothing with trend adjustment (Holt) method with different values of (a) and (b), the output results are shown in 
Table 4. 

Table 4: Double exponential smoothing for different values of (a) and (b), 

Model parameters (Temp.° F)) DF SSE MSE RMSE MAPE R² 

a b 
0.2  0.2 1092 23828 21.82023 4.671212 4.907857 0.906063 
0.4  0.2 1092 21845 20.00448 4.472637 4.63389 0.91388 
0.6  0.2 1092 20500 18.77306 4.332789 4.480055 0.919181 
0.8  0.2 1092 19886 18.21059 4.267387 4.353577 0.921603 
0.2  0.4 1092 28217 25.83949 5.083256 5.334534 0.88876 
0.2  0.6 1092 32776 30.01486 5.478582 5.701223 0.870785 
0.2 0.8 1092 36944 33.83151 5.816486 6.048816 0.854354 

 
From table 4, it is clear that minimum errors are obtained for smoothing parameter (a = 0.8) and trend parameter (b =0.2). 
The correlation factor in this case (R2 = 0.9216). 

 
         3.3.1 Results of Holt-Winters Seasonal Multiplicative Model 

55

65

75

85

95

0 200 400 600 800 1000 1200

Tr
en

d

Observations

Trend component

0.96

1.01

0 200 400 600 800 1000 1200

Tr
en

d

Observations

Seasonal component

0.7

0.8

0.9

1

1.1

1.2

0 200 400 600 800 1000 1200

R
an

do
m

Observations

Random component

(c) 

(e) 

(d) 



J. Stat. Appl. Pro. 8, No. 2, 141- 154 (2019) / http://www.naturalspublishing.com/Journals.asp                                                         151 
   

 
 
         © 2019 NSP 
           Natural Sciences Publishing Cor. 

 

 
Using smoothing while taking into account both trend and the seasonality; Holt seasonal additive method, with different 
values of the model parameters (a,b, and g) the output results are shown in Table 5. 
 

Table 5: Results of Holt-Winters seasonal multiplicative model. 

Model parameters  DF SSE MSE RMSE MAPE MPE R² 
a b g 

0.2 0.2 0.2 1080 27763 25.7068 5.070187 5.240485 -0.349 0.887509 
0.2 0.2 0.4 1080 30521 28.25985 5.315999 5.4728 -0.397 0.876337 
0.2 0.2 0.6 1080 35231 32.62124 5.711501 5.885435 -0.471 0.857252 
0.2 0.2 0.8 1080 42900 39.72219 6.302554 6.492011 -0.582 0.826178 

        
 

From Table 5 it is clear that minimum errors are realized for the model parameters (a,b, and) each equals 0.2. In this case 
R2 = 0.8875 
 
 

3.3.2 Holt-Winters Additive Model 
Table 6: Results of Holt-Winters seasonal additive model. 

Model parameters  DF SSE MSE RMSE MAPE MPE R² 

a b g 
0.2 0.2 0.2 1080 26983 24.98385 4.998384 5.161299 -0.269 0.890672 
0.2 0.2 0.4 1080 30003 27.78016 5.270689 5.430159 -0.278 0.878436 
0.2 0.2 0.6 1080 34457 31.90504 5.648455 5.826373 -0.285 0.860386 
0.2 0.2 0.8 1080 41182 38.13172 6.175088 6.366483 -0.291 0.833138 

 
From table 6 it is clear that minimum errors are realized for the model parameters (a,b, and g) each equals 0.2. In this case 
R2 = 0.89067 
 
To sum the above-mentioned results, the obtained parameter values for each smoothing method and the correlation factor 
are exhibited in Table 7. 

 
Table 7: Summary of the results 

Model Parameters R2 
a b g 

Simple exponential smoothing 0.8 -- -- 0.9337 
Double exponential smoothing 0.8 0.2 -- 0.9216 
Holt-Winters seasonal multiplicative model 0.2 0.2 0.2 0.8875 
Holt-Winters seasonal additive model 0.2 0.2 0.2 89067 

 
It is clear that simple exponential smoothing is the best forecasting model in the case under study as it results in the highest 
correlation factor (R2 = 0.9337). 

Figure 4 presents the exponentially-smoothed time series simple exponential (a) and the residuals (b) for the best-obtained 
fit with a =0.2.  
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Fig. 4: Simple exponentially smoothed time series (a) and residuals (b)  
(For the best fit with a =0.2)  

 
From Figure 4 it could be determined that the fit is adequate as the residual errors are randomly-distributed with zero 
means. 
 
 4 Conclusions   
 

Autoregressive Integrated Moving-Average" (ARMIA) models are applied for the estimation of temperature distribution 
forecast model.  

The smoothing models used to fit the time series are adequate as the residual errors are randomly distributed with almost 
zero mean.  

Based on the value of the correlation factor R2, simple exponential smoothing is the most adequate forecasting model; 
following the moving average, for the case under study (forecasting temperature distribution for Riyadh, KSA), as for this 
model R2 is found to be equal to (0.9337) which is higher than double exponential, Holt-Winters seasonal multiplicative 
and additive models value of the investigated cases.  

The models of autoregressive integrated moving-average (ARMIA)  may be applied on some  new subjects in engineering 
and applied mathematics (see Refs. [25]-[32]). 
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