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Abstract: The synchronization speed, quality, robustness and cost ofthe controller design are the four important factors in chaotic
synchronization phenomena. This paper presents improved results when two identical hyperchaotic systems are synchronized using a
modified active control approach. The complete synchronization objective is achieved by means of only two stabilizing controllers with
a single feedback linear controller gain that reduce the controller and synchronization cost significantly, and guarantee the globally
exponential stability of the closed-loop in a short transient time. The advantages of the proposed modified active control approach
are revealed by analytically and numerically comparing theamplitude of the synchronized error signals, synchronization transient
speed and cost of the designed controller with the past published works in the literature concerned. The robust synchronization of two
Lorenz-Stenflo hyperchaotic systems is taken as an example to verify the theoretical findings.
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1 Introduction

The concept of synchronization between two nearly
identical chaotic systems under different initial conditions
was proposed by Pecora and Carroll [1]. Since, then, the
chaos synchronization phenomenon has been extensively
developed in the last two decades. Many possible
applications of the chaos synchronization have been
discussed theoretically as well as practically [2-4], among
others. To this end, certain effective control methods and
techniques have been developed to achieve chaotic
synchronization. For example, the linear state feedback
control [5], sliding mode control [6], active control [7],
adaptive control [8], projective synchronization [9], lag
synchronization [10] and nonlinear control techniques
[11] etc. Among the reported techniques, the active
control algorithm has been widely accepted as one of the
effective control strategy in synchronizing chaotic
systems. In recent decades, the active control method has
been applied successfully for synchronization of various
physical systems, such as the electric circuit that exhibits
chaos [12], nonlinear gyros [13], RCL-shunted Josephson
junction [14], and recently the problem of Enceladus [15],
etc. Using the active control algorithm and the

Routh-Hurwitz criterion, [16] studied the complete
synchronization (CS) of two identical Lorenz-Stenflo
hyperchaotic (LSH) systems. Using the active control
method based on the Lyapunov direct method, the CS of
two identical LSH systems is further investigated [17].

However, in the finding of these results [16-17], there
are three main limitations. Firstly, the CS problem on
hyperchaotic systems with control inputs numerically
equal to the number of error states is addressed. This
imposes an extra burden on the controller design and
somehow difficult to implement in practical applications.
Secondly, the closed-loop stability [16-17] has been
achieved by simply assigning the eigenvalues of the
coefficient matrix to the left half of the complex plane,
which obeys the Routh-Hurwitz criterion. In selecting the
high controller gain(s) for fast synchronization transient
speed may create signal saturation and the coupled
systems may loss the synchronization stability. Thirdly,
the CS objective is achieved without considering the
effect of unknown external disturbance due to the
environmental changes. These results [16-17] would have
been more interesting if it had come up with less control
effort and fast synchronization speed with the presence of
unknown time varying external disturbance. Likewise, the
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computation of suitable linear controller gain(s) is (are)
still of great interest, both from a theoretical as well a
practical viewpoint.

To address the aforesaid issues, a modified active
control approach is focused. Using the active control
strategy and Routh-Hurwitz criterion [18], a
corresponding frame work for the computation of a
suitable linear controller gain is set up to achieve the
globally exponential synchronization between two
identical LSH [16] systems. The feedback controllers are
designed in a way that it minimize the number of
controllers, synchronization cost and ensure the globally
exponential stability of the closed-loop. In comparison
with the known results [16-17], the presented study does
not only improved the synchronization speed and quality
but also reduced the number of controllers significantly.
Effects of the feedback controllers, synchronization
transient speed and quality with the presence of unknown
time varying external disturbance are the key features of
this paper.

The rest of the paper is organized as follows. In
Section 2, problem statement and a frame work for the
active controller design are given. In Section 3,
description of the LSH system is given and solved the CS
problem of two identical LSH systems. Finally, the
concluding remarks are given in Section 4.

2 A theory of the active control strategy

2.1 Problem statement

Consider a general class of hyperchaotic (chaotic) system
is described by:

Ẋ(t) = AX(t)+F(X(t)), (1)

where X(t) = [x1(t), . . . ,xn(t)]T ∈ Rn, represents the
state vectors,A(n×n) is the constant matrix that contains
the parameter vector andF is the nonlinear continuous
function of the system (1).

In order to discuss the CS behavior of two identical
hyperchaotic (chaotic) systems (1), let us consider a
master-slave system synchronization for the two coupled
hyperchaotic (chaotic) systems (1) that is described by:

{

Master system : Ẋ(t) = A1X(t)+F1(X(t))
Slave system : Ẏ (t) = A2Y (t)+F2(Y (t))+ u(t),

(2)

where X(t) = [x1(t), . . . ,xn(t)]T ∈ Rn and
Y (t) = [y1(t), . . . ,yn(t)]T ∈ Rn are the states vectors,
A1(n×n) andA2(n×n) are the constant systems matrices,
which contain the parameter vectors, andF1 and F2 are
the nonlinear continuous functions in the master and slave
systems (2), alternatively, whereu(t) ∈ Rn represents the
control input, which will be determined later.

Mathematically, the synchronization error dynamics
can be defined as the difference between the master and
slave systems (2), given as follows:

e(t) = Y (t)−X(t),e(t) ∈ Rn
.

Thus, from (2):

ė(t) = A2Y (t)−A1X(t)+F2(Y (t))−F1(X(t))+ u(t)
= A2(Y (t)−X(t))+ (A2−A1)X(t)+F2(Y (t))−

F1(X(t))+ u(t)
= A2e(t)+A3X(t)+H(F1(X(t)), F2(Y (t)))+ u(t)

,

(3)
whereH(F1(X(t)), F2(Y (t))) = F2(Y (t)) − F1(X(t))

and A3 = A1−A2.

The CS objective is accomplished in the sense that:

lim
t→∞

‖e(t)‖ = lim
t→∞

‖Y (t)−X (t)‖= 0, f or e(0) ∈ Rn
.

Remark 2.1. ‖ . ‖ denotes the Euclidian norm.

Theorem 2.1 (Sylvesters’ theorem). The necessary
and sufficient condition for a matrixA ∈ Rn×n being a
positive definite matrix (PDM), is that all of its principle
minors are strictly positive.

Remark 2.2. The proof of Theorem 2.1 can be found
in [19], and the details are omitted here.

Theorem 2.2. The CS scheme (2) is established, if the
control inputu(t) ∈ Rn×1, is synthesized by using the
following active feedback controller:

u(t) =−H(F1(X(t)), F2(Y (t)))−A3X(t)+η(t), (4)

whereη(t) ∈ Rn×1 is the sub-controller matrix which
is a function of e(t), and is defined as follows:

η(t) =−K[e(t)]T , (5)

whereK = diag[k, i = 1. . .n], is a feedback linear
controller gain matrix.

Proof. The first part of the feedback controller (4)
eliminates the nonlinear and un-common terms from (3)
and the second partη(t) ∈ Rn×1 acts as an external
impute to stabilize the error system (3) at the origin.
Using Eqs. (3), (4) and (5), the closed-loop is given by the
following:

e.(t) = A3e(t)+η(t),
e.(t) =−Ae(t), (6)

whereA = (K −A3) ∈ Rn×n.

At this stage, the problem is reduced to show that if
the linear controller gain matrix
K = diag[ki, i = 1, . . . ,n], is properly constructed such
that the coefficients matrixA(n×n) in (6), satisfies the
Routh-Hurwitz criterion, then, by the Lyapunov stability
theory [19], the closed-loop system (6) is globally
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exponentially stable and hence, the CS scheme (2) is
globally exponentially established.

Remark 2.3. According to the published works
[12-17], many possible selections for the construction of a
feedback controller gain matrixK = diag[ki, i = 1, . . . ,n],
are available such that the matrixA(n×n), must have all
of its eigenvalues with positive real parts. But with this
hypothesis, the message signal can be easily extracted
from the communications channel during the transmission
and the same signal could be reproduced with any
possible choice of the controller gain matrix
K = diag[ki, i = 1, . . . ,n]. This may lead to a security
issue. Therefore, it is necessary and typically significant
from a theoretical as well a practical point of view to
compute a suitable controller gain matrix that secure the
transmission message and guarantees the globally
exponential stability of the closed-loop system, which
will be presented in the subsection 3.2.

3 Numerical example

In this section, we apply the proposed modified active
control approach developed in Section 2, to achieve the
CS behavior between two nearly identical Lorenz-Stenflo
hyperchaotic [16] systems.

3.1 System description

A system of differential equations that describes the LSH
system [16] is given as follows:











ẋ(t) = a(y(t)− x(t))+ cw(t)
ẏ(t) = dx(t)− y(t)− x(t)z(t)
ż(t) =−bz(t)+ x(t)y(t)
ẇ(t) =−x(t)− aw(t)

(7)

where[x(t), y(t), z(t), w(t)]T ∈ R4 are the state
variables anda > 0, b > 0, c > 0, and d > 0 are the
controlled parameters of the LSH system (7). With the
parameters valuesa = 1, b = 0.7, c = 1.5, andd = 26,
the LSH system exhibits a hyperchaos as shown in Figs.
1-2.

3.2 Problem statement

To study the CS of the LSH system, let us consider two
nearly identical LSH systems, where the master LSH
system is denoted by the subscript 1 and the slave LSH is
represented by the subscript 2. Although, the initial
conditions of the two LSH systems are different. Thus,
the CS for the two coupled identical LSH systems is

Fig. 1: 3D view of the LSH hyperchaotic system in the
(x, y, z) space.

Fig. 2: 2D view of the LSH hyperchaotic system in the (x, y)
plane.

described as follows:






















































(Master system)
ẋ1(t) = a(y1(t)− x1(t))+ cw1(t)
ẏ1(t) = dx1(t)− y1(t)− x1(t)z1(t)
ż1(t) =−bz1(t)+ x1(t)y1(t)
ẇ1(t) =−x1(t)− aw1(t)
(Slave system)
ẋ2(t) = a(y2(t)− x2(t))+ cw2(t)+ u1(t)
ẏ2(t) = dx2(t)− y2(t)− x2(t)z2(t)+ u2(t)
ż2(t) =−bz2(t)+ x2(t)y2(t)+ u3(t)
ẇ2(t) =−x2(t)− aw2(t)+ u4(t)

(8)

where[x1(t), y1(t), z1(t), w1(t)]T ∈ R4 and
[x2(t), y2(t), z2(t), w2(t)]T ∈ R4 are the state variables
and a,b,c and d are the controlled parameters of the
master and slave systems (8), respectively and
u(t) = [0, u2(t), u3(t), 0]T ∈ R4 is the control input. The

c© 2018 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


4 I.Ahmad et al.: A Modified active controller for...

error dynamics for the CS scheme (8) can be described as
follows:


















ė1(t) = a(e2(t)− e1(t))+ ce4(t)+ u1(t)
ė2(t) = de1(t)− e2(t)− x2(t)z2(t)+

x1(t)z1(t)+ u2(t)
ė3(t) =−be3(t)+ x2(t)y2(t)− x1(t)y1(t)+ u3(t)
ė4(t) =−e1(t)− ae4(t)+ u4(t)

(9)

Theorem 3.1. The CS (8) will achieve the globally
exponential synchronization, if the following active
controllers are used:







u2(t) = x2(t)z2(t)− x1(t)z1(t)+η2(t)
u3(t) =−x2(t)y2(t)− x1(t)y1(t)+η3(t)
u1(t) = u4(t) = 0

(10)

where the sub-controllerηi(t), is defined as follows:
ηi(t) =−K[ei(t)]T andK = diag[ki], f or i = 2,3.

Proof. Using Eqs. (9) and (10), the closed-loop system
is given by:











ė1(t) = a(e2(t)− e1(t))+ ce4(t)
ė2(t) = de1(t)− e2(t)− k2e2(t)
ė3(t) =−be3(t)+ k3e3(t)
ė4(t) =−e1(t)− ae4(t)

(11)

The CS (8) is accomplished in a sense that:
limt→∞ ||ei(t)||= 0, (i = 1, . . . ,4).
Since,u1(t) = u4(t) = 0, and consideringk3 = 0, Eq.

(11) yields:







ė1(t)
ė2(t)
ė3(t)
ė4(t)






=−







a −a 0 −c
−d 1+ k2 0 0
0 0 b 0
1 0 0 a













e1(t)
e2(t)
e3(t)
e4(t)






(12)

ė(t) =−Ae(t), (13)

wheree(t) = [e1(t), e2(t), e3(t), e4(t)]T and

A =







a −a 0 −c
−d 1+ k2 0 0
0 0 b 0
1 0 0 a






(14)

At this stage, the problem is reduced to show thatA
is PDM. Since a > 0, b > 0, c > 0, andd > 0, thus, the
matrix A will be PDM, if the controller gaink2 satisfies
the following condition:

k2 > max(p1, p2), (15)

where

p1 = (d −1)> 0 and p2 = (d −
c

a2b
−1)> 0, (16)

then, the closed-loop (12) is globally exponentially stable.
This completes the proof of Theorem 3.1.

3.3 Numerical simulation and results discussion

Numerical simulation results are provided to verify the
efficiency and effectiveness of the proposed
synchronization approach by usingmathematica 10.0 v.
The parameters for the LSH system [16] are set as
a = 1, b = 0.7, c = 1.5, andd = 26 with initial
conditions are taken as
[x1(0), y1(0), z1(0), w1(0)]T = [0.028,0.02,0.03,0.04]T,
and
[x2(0),y2(0),z2(0),w2(0)] = [0.02,0.037,0.059,0.048]T,
respectively. According to the condition (15), the
controller gaink2 is selected ask2 = 26.

Case 1. Let us assume a particular case when two
coupled LSH systems (8) are disturbance free systems.
The corresponding numerical results are given as follows:

For the two coupled LSH systems (8), convergence of
the error signals (12) under the control action (10), are
depicted in Fig. 3, in which the dotdashed line represents
the error signale1(t), the thin line indicatese2(t), the
dotted line denotese3(t) and the thick line represents
e4(t). It is observed that the error signals reach to the
zero state in the range of[−0.02, 0.02] within t ≈ 7s,
with small amplitude of the oscillations of the error
signals. The synchronizations in [16, 17] are achieved at
t = 7s and t = 100s, in the range of[−0.02, 0.02] and
[−7, 7], respectively. Furthermore, only two feedback
controllers and a single linear controller gain are designed
to synchronize two identical LSH systems, while in [16,
17], natural controllers are utilized to achieve the
synchronization.

Fig. 4, demonstrates the time series of the control
inputs, which are dependent one2(t) ande3(t), only.

Case 2. Consider a practical environment, where the
time varying external disturbances perturb the two coupled
hyperchaotic systems (8). In order to construct the control
inputs developed in Theorem 3.1, it is assumed that the
two coupled LSH systems are perturbed by the following
external disturbances.

ψm
i (t) =−0.01cos(180t), i = 2,3

ψs
i (t) =−0.02sin(270t), i = 2,3, (17)

where,ψm
i (t) and ψs

i (t), denote the time varying
external disturbances present in the master and slave
systems (8), respectively.

Fig. 5, illustrates the time series of the synchronized
error states with the presence of time varying external
disturbances. It is observed that the effect of the external
disturbances is eliminated and the error signals are
converged to the zero state with the same rate and quality
as discussed in Case 1. This feature of the proposed
controller approach (10) shows the requirement of
ensuring robustness property against the time varying
external disturbances.
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Fig. 3: Time series of the synchronized error states without the
presence of time varying external disturbance signals

Fig. 4: Time series of the control inputs

4 Conclusion

In this paper, a modified active control strategy is
presented. Suitable area for the feedback controller gain is
identified that established the globally exponential
complete synchronization. Numerical simulation results
further verified the robustness of the proposed modified
active controller approach. The proposed controller
approach could be employed for the complete
synchronization of a class of chaotic as well as
hyperchaotic systems.
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Fig. 5: Time series of the synchronized error states with the
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