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Abstract: A progressively type-II right censored sample has been examined in this paper for the inference about parameters for

the one-parameter Akshaya distribution. As point estimates for the parameter, the maximum likelihood estimate (MLE), and Bayesian

estimate are obtained. The asymptotic distribution of MLE is obtained. Also, the approximate confidence intervals (ACIs) and bootstraps

confidence intervals for unknown parameter are obtained. Further, for symmetric loss functions such as squared error loss function,

Bayesian estimates are obtained. Gibbs within Metropolis–Hasting samplers use the Monte Carlo chain (MCMC) technique to get

the estimate of the unknown parameter from Bayes algorithm is used and the relevant credible interval (CRI) is obtained. Finally, the

proposed methods are applied a real data set.

Keywords: Akshaya distribution, Progressively type-II censoring, Maximum likelihood estimator, Bayesian method, Markov chain
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1 Introduction

Statisticians have spent much time studying the failure of components and units being the most structure of operating
systems in the industrial and mechanical engineering field. Their study concerns with observing the operating units till
failure, registering the lifetime of those units, applying the statistical inference tools to the collected data, then estimating
the reliability and the hazard functions for the entire system through the collected data. But, some experimental units
are expensive and have high reliability, this example requires reducing the number of experimental units and the time
of the lifetime experiment of these units. The progressive type-II censoring scheme satisfies obtaining good estimators
with the lifetime experiment and keeping some experimental units from failure. The progressive type-II censoring scheme
is frequently defined as follows, first, the experimenter places n independent and identical units on the measure of life.
When the first failure happens, say at time x(1), r1 units are randomly removed from remaining n− 1 surviving units.
When the second failure occurs at time x(2), r2 units are randomly removed from remaining n− r1 − 2 surviving units.

This experiment terminates when the m th failure occurs at time xm, and rm = n−m−∑m−1
i=1 ri surviving units are removed

from the test. We call R = (R1, R2, ... , Rm), the progressive Type-II censoring scheme. Progressive Type-II right censoring,
the censoring scheme R is fixed before the experiment. It are often seen that Type-II censoring may be a particular case of
progressive Type-II censoring, where the scheme is R =(0 , 0 , ... , n−m), see [1]

Let X1:m:n,X2:m:n, ....,Xm:m:n;1 ≤ m ≤ n be a progressively type-II censored sample observed from a lifetime test
involving n units and r1,r2, ...,rm being the censoring scheme. The joint PDF of a progressively type-II censored sample
is given by

f (x1:m:n,x2:m:n, ....,xm:m:n) =C
m

∏
i=1

f (xi:m:n) [1−F(x
i:m:n

)]ri , (1)

where C may be a constant defined as

∗ Corresponding author e-mail: Dinaramadan21@mans.edu.eg

c© 2022 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/jsap/110216


566 A. H.Tolba et al.: Bayesian estimation of a one parameter Akshaya...

C = n (n− r1 − 1) · · ·(n−
m−1

∑
i=1

(ri + 1)), (see [1] for details).

The focus has been on advancing progressive type II censoring for the past two to three decades. One may refer to,
among others, [1,2,3], for some useful results on this censoring scheme. In reliability analysis, [4] discussed extended
cosine generalized family of distributions for reliability modeling. [5] introduced reliability modelling of the COVID-19
mortality rate with a new versatile modification of the log-logistic distribution. [6] obtained fuzzy reliability model for
inverse Rayleigh distribution.

In almost every field of applied science, including living science, engineering, finance and insurance, the statistical
analysis and modelling of data for lifetime is important. In the statistics for modelling lifetime data, classical lifetime
distributions, respectively exponential and Lindley [7,8]. But from a theoretical and applied point of view these two classic
lifetime distributions do not fit. [9] performed a crucial comparative analysis of lifetime modelling with exponential and
lindley distributions; it was found that there are many lifetime data for their shapes, hazard rate functions and mean
lifetime characteristics, among others, do not make these typical lifetime distributions relevant. Recently, a number of one
parameter lifetime distributions are introduced by [10,11,12,13] namely Akash, Shanker, Amarendra, Aradhana, Sujatha,
Devya and Shambhu. While these distributions for a lifetime fit more well than the classical lindley and exponential
distributions, some lifetime data still do not match those distributions. [13] proposes a new lifetime distribution, better
for the modelling of lifetime data than Akash, Shanker, Amarendra, Aradhana, Sujatha, Devya and Shambhu. Also, the
Akshaya distribution is a new one parametric life-time distribution which has a better flexibility in handling lifetime
data as compared to exponential distribution. The random variable X has a one-parameter Akshaya distribution if its
probability density function (PDF) is given by

f (x) =

[
θ 4(1+ x)3

θ 3 + 3θ 2 + 6θ + 6

]
e−θx,x > 0,θ > 0, (2)

and the cumulative distribution function

F(x) = 1−
[

1+
θ 3x3 + 3θ 2(θ + 1)x2 + 3θ (θ 2 + 2θ + 2)x

θ 3 + 3θ 2 + 6θ + 6

]
e−θx, (3)

the survival rate function is

F(x) =

[
1+

θ 3x3 + 3θ 2(θ + 1)x2 + 3θ (θ 2 + 2θ + 2)x

θ 3 + 3θ 2 + 6θ + 6

]
e−θx, x ≥ 0 (4)

and the hazard rate function is

h(x) =
θ 4(1+ x)3

θ 3x3 + 3θ 2(θ + 1)x2 + 3θ (θ 2 + 2θ + 2)x+(θ 3+ 3θ 2+ 6θ + 6)
, x ≥ 0, (5)

where θ is the shape parameter.

[13] discussed statistical properties for the Akshaya distribution. He also examined the maximum probability
estimators for the uncertain parameters and assisted the complete data in their asymptotic confidence intervals. He
studied the structure, time, failure rate function and mean residual function, stochastic order, mean deviations, and curves
of Bonferroni and Lorenz. Besides another one parameter lifetime distribution the conditions under which the
distribution Akshaya is excessively dispersed, equally dispersed and undispersed. [16] introduced generalized power
Akshaya distribution and its applications.

[17] proposed the maximum product of spacing (MPS) method as an alternative to the MLE method for estimating the
parameters of continuous univariate distributions. They stated that the MPS approach possesses much of the maximum
likelihood properties by replacing the likelihood function with a product of spacings. This method is devoloped to estimate
parameter under censored sample by different authors. For complete sample see [18,19,20,14,15]. For Type-I and Type-II
censored sample see [21,22]. For Progressive Type-II see [23,24]. For adaptive progressive Type-II see [25,26,27].

The following paper is structured as follows, in Section 2, maximum likelihood and product of spacing. In Section 3,
asymptotic intervals of confidence estimates of θ are estimated, based on maximum likelihood estimates of θ and the
confidence interval of unknown parameter will be introduced by two parametric bootstrap procedures. In the 4 section,
Bayes’ estimate θ for Squared error loss function is obtained. In section 5, the real data set was analysed. Finally, in
Section 6 simulation analysis is carried out to evaluate the standard of the different estimators developed in this paper.
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2 Classical Estimation

We discussed the MLE and MPS for parameter estimator of the Akshaya distribution based on progressive type-II censored
sample. Let X1:m:n,X2:m:n, ....,Xm:m:n, 1 ≤ m ≤ n be a progressively type-II censored sample observed from a life test
involving n units taken from a population with PDF f (x) and CDF F(x) given in Equations (2) and (3), with the censoring
scheme (r1,r2, ....rm).

2.1 Maximum-likelihood estimation

From Equation (1) the likelihood function of is then given by

L(θ | x
¯
) ∝ (

θ 4

θ 3 + 3θ 2 + 6θ + 6
)m

m

∏
i=1

((1+ xi:m:n)
3e−θxi:m:n) (6)

([
1+

θ 3x3
i:m:n + 3θ 2(θ + 1)x2

i:m:n + 3θ (θ 2 + 2θ + 2)xi:m:n

θ 3 + 3θ 2 + 6θ + 6

]
e−θxi:m:n

)ri

,

where x
¯
= x1:m:n,x2:m:n, ....,xm:m:n.

The corresponding log-likelihood function for the parameters θ is

ℓ= logL(θ | x
¯
) = m(4logθ − log(θ 3 + 3θ 2 + 6))−

m

∑
i=1

xi:m:n +
m

∑
i=1

3log(1+ xi:m:n)

+
m

∑
i=1

ri log

([
1+

θ 3x3
i:m:n + 3θ 2(θ + 1)x2

i:m:n + 3θ (θ 2 + 2θ + 2)xi:m:n

θ 3 + 3θ 2 + 6θ + 6

]
e−θxi:m:n

)
. (7)

Calculating the first partial derivatives of ℓ with relation to θ and equating it to zero, we get the likelihood equations
as

4m

θ
− (3θ 2 + 6θ )m

θ 3 + 3θ 2 + 6
+

m

∑
i=1

ri

(
−xi:m:n log

[
1+

θ 3x3
i:m:n + 3θ 2(θ + 1)x2

i:m:n + 3θ (θ 2+ 2θ + 2)xi:m:n

θ 3 + 3θ 2 + 6θ + 6

])

+e−θxi:m:n
1

log
([

1+
θ 3x3

i:m:n+3θ 2(θ+1)x2
i:m:n+3θ(θ 2+2θ+2)xi:m:n

θ 3+3θ 2+6θ+6

]
e−θxi:m:n

)

(3θ 2x3
i:m:n +(9θ 2 + 6θ )x2

i:m:n +(9θ 2 + 12θ + 6)xi:m:n)(θ
3 + 3θ 2 + 6θ + 6)

(θ 3 + 3θ 2 + 6θ + 6)2

−(3θ 2 + 6θ + 6)(θ 3x3
i:m:n + 3θ 2(θ + 1)x2

i:m:n + 3θ (θ 2 + 2θ + 2)xi:m:n)

(θ 3 + 3θ 2 + 6θ + 6)2
= 0, (8)

Since, Equation (8) does not has closed-form solution, the Newton–Raphson iteration method is employed to get the
estimates. The algorithm is described in [28].

It is standard that under some regularity conditions, see [29], θ̂ is approximately distributed as multivariate normal
with mean θ and covariance matrix I−1 (θ ). Then, the 100(1− γ)% two sided confidence interval of θ , can be given by

θ̂i ±Z γ
2

√
Var

(
θ̂i

)
, i = 1,2,3, (9)

where Z γ
2

is that the percentile of the standard normal distribution with right-tail probability
γ
2
.

2.2 Maximum product of spacing method

According to [23], the MPS under progressive type-II censored sample as:

Di:m:n(θ ) =
m+1

∏
i=1

(F(xi:m:n,θ )−F(xi−1:m:n,θ ))
m

∏
i=1

(1−F(xi:m:n,θ ))
Ri . (10)
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The MPS estimators of the Akshaya distribution based on progressive type-II censored sample can be obtained by
maximizing

G(θ ) =
m+1

∏
i=1

[
1+

θ 3x3
i−1:m:n + 3θ 2(θ + 1)x2

i−1:m:n + 3θ (θ 2+ 2θ + 2)xi−1:m:n

θ 3 + 3θ 2 + 6θ + 6

]
e−θxi−1:m:n

−
[

1+
θ 3x3

i:m:n + 3θ 2(θ + 1)x2
i:m:n + 3θ (θ 2 + 2θ + 2)xi:m:n

θ 3 + 3θ 2 + 6θ + 6

]
e−θxi:m:n

m

∏
i=1

[
1+

θ 3x3
i:m:n + 3θ 2(θ + 1)x2

i:m:n + 3θ (θ 2 + 2θ + 2)xi:m:n

θ 3 + 3θ 2 + 6θ + 6

]Ri

e−θRixi:m:n .

(11)

Further, the log-MPS of the Akshaya parameter can also be obtained by solving the first partial derivatives of log-MPS
with relation to θ and equating to zero, we get the MPS estimate by using the Newton–Raphson iteration method.

2.3 Bootstrap confidence intervals

A bootstrap is an empirical approach for understanding the distributional properties of a test statistic. Also, it uses as a
method of estimating statistics and their standard errors. There are three kinds of resampling plans, parametric,
semi-parametric and non-parametric. Bootstrap methods depend on these three resampling plans. The bootstrap is called
parametric when the probability distribution f (x;θ ), from which the bootstrap data are going to be generated. Also, the
parametric θ is specified, for an example, the MLE of the parameter from a real sample X = X1,X2, ...,Xn are often

computed. During this case, the parameter θ within the distribution f (x;θ ) are going to be replaced with its MLE θ̂ and

therefore the B bootstrap samples X∗ = X∗
1 ,X

∗
2 , ...,X

∗
n are going to be generated from the estimated distribution f (x; θ̂ ).

Applications of bootstrap methods are identified for problems in real life engineering in many fields, including radar and
signal processing, geophysics, biomedical and imaging engineering, pattern, machine vision identity and image
processing. Bootstrap methods can estimate the distribution of an estimator or some of its characteristics in almost all of
these fields. The first is that the bootstrap P interval of trust based on the [30] idea. The second is the confidence interval
bootstrap-t (Boot-t), as suggested by [31]. Boot-t established supports a ”pivot” and requires an MLE and MPS variance
estimator of θ . To get the bootstrap samples for two methods, follow the algorithm:

1. From the original data X = X1:m:n,X2:m:n, ...,Xn:m:n compute the ML estimates of the parameter θ , say θ̂ .
2. Draw a sample of size n values, with replacement from Fθ̂ . We might obtain

X∗ = X∗
1:m:n,X

∗
2:m:n, ...,X

∗
n:m:n.

3. Compute the bootstrap sample estimates of θ say θ̂ ∗.
4. Repeat Steps 2 and 3 to obtain B times, and obtain θ = θ ∗

1 ,θ
∗
2 , ...,θ

∗
B .

5. To search out an approximate distribution of θ̂ , sort the bootstrap estimates to get θ̂ ∗
(1) ≤ θ̂ ∗

(2) ≤ ...≤ θ̂ ∗
(B).

2.3.1 Bootstrap-p confidence interval

Let Φ(z) = P(Ω̂ ∗ ≤ z) be cumulative distribution function of Ω̂ ∗. Define Ω̂ ∗
Boot = Φ−1(z) for given z. The approximation

bootstrap-p 100(1− ζ )% confidence interval of Ω̂ ∗
k is given by

(
Ω̂ ∗

Boot(ζ/2),Ω̂ ∗
Boot(1− ζ/2)

)
. (12)

2.3.2 Bootstrap-t confidence interval

Consider the order statistics µ
∗[1]
k < µ

∗[2]
k < ... < µ

∗[B]
k where

µ∗[ j] =

√
B(Ω ∗[ j]− Ω̂)√

Var(Ω ∗[ j])
, j = 1,2, ...,B, (13)
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where Var(Ω ∗[ j]) represent the asymptotic variances of maximum likelihood estimates which can be calculated using the
inverse of Fisher information matrix. Let W (z) = P(µ∗ < z) be the cumulative distribution function of µ∗.
For a given z, define

Ω̂ ∗
Boot−t = Ω̂ +B−1/2

√
Var(Ω ∗)W−1(ζ ). (14)

Thus, the approximation bootstrap-t 100(1− ζ )% confidence interval of Ω̂ ∗ is given by

(
Ω̂ ∗

Boot−t(ζ/2),Ω̂ ∗
Boot−t(1− ζ/2)

)
. (15)

3 Bayesian Estimation

The Bayesian approach addresses the parameters randomly and uncertainties about the parameters are represented with
a joint prior distribution, established before the failed data are collected. The flexibility to incorporate prior knowledge
into the analyses makes the Bayesian approach very valuable in assessing reliability since the limited availability of data
is one of the main challenges in terms of reliability analysis. It is assumed that the θ parameter is independent and the
gamma prior distribution behave as follows,

π (θ ) ∝ θ a−1e−b θ , θ > 0,a > 0,b > 0 . (16)

The posterior distribution of the parameter θ denoted by π∗ (θ | x
¯
) are often obtained by combining the likelihood

function (7) with the priors (16) and it can be written as

π∗ (θ | x
¯
) =

π (θ ) L(θ | x
¯
)

∞∫
0

π (θ ) L(θ | x
¯
) dθ

. (17)

The SEL, which is a symmetric loss function that assigns equal loss to over estimates and underestimations, is a common

function for losses. The Square Error Loss function is defined if θ is the parameter calculated with a θ̂ estimator, See [32]

L
(
θ , θ̂

)
=
(
θ̂ −θ

)2
. (18)

Therefore, the Bayes estimate of function of θ , say g(θ ) under the SEL function are often obtained as

ĝBS (θ | x
¯
) = Eθ |x

¯
(g(θ )) , (19)

where

Eθ |x
¯
(g(θ )) =

∞∫
0

g(θ ) π (θ ) L(θ | x
¯
)dθ

∞∫
0

π (θ ) L(θ | x
¯
) dθ

. (20)

It is noted that, the calculation of the multiple integral in (20) can not be solved analytically. Thus, the MCMC
technique is used to generate samples from the joint posterior density function in (17). To implement the MCMC
technique, we consider the Gibbs within Metropolis–Hasting samplers procedure. From (17), the joint posterior
distribution are often written as

π∗ (θ | x
¯
)L(θ | x

¯
) ∝ (

θ 4

θ 3 + 3θ 2+ 6θ + 6
)m

m

∏
i=1

((1+ xi:m:n)
3e−θxi:m:n)

([
1+

θ 3x3
i:m:n + 3θ 2(θ + 1)x2

i:m:n + 3θ (θ 2 + 2θ + 2)xi:m:n

θ 3 + 3θ 2+ 6θ + 6

]
e−θxi:m:n

)ri

×θ a−1e−b θ . (21)

It can be easily seen that the joint posterior of θ in Equation (21) do not present standard forms, so Gibbs sampling
is not a straightforward option, the use of the Metropolis–Hasting sampler is required for the implementations MCMC
technique. The algorithm of Metropolis–Hastings within Gibbs sampling is follows as:
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(1) Start with initial guess θ (0).
(2) Set j = 1.

(3) Using the following M-H algorithm, generate θ ( j) from π∗
(

θ ( j−1) | x
¯

)
with the normal proposal distribution

N
(

θ ( j−1),var (θ )
)

.

(4) Generate a proposal θ ∗ from N

(
θ ( j−1),var (θ )

)
.

(i) Evaluate the acceptance probabilities ηθ = min

[
1,

π∗
1 (θ

∗|x
¯
)

π∗(θ ( j−1)|x
¯
)

]
.

(ii) Generate a u1 from a Uniform (0,1) distribution.

(iii) If u1 < ηθ , accept the proposal and set θ ( j) = θ ∗, else set θ ( j) = θ ( j−1).

(5) Set j = j+ 1.
(6) Repeat Steps (3)− (5), N times and obtain θ , i = 1,2, ...N.

(7) To compute the CRs of θ , θ (i),

as θ (1) < θ (2)... < θ (N), then the 100(1−ϑ)% CRIs of θk is

(θ (N ϑ/2) ,θ (N (1−ϑ/2))) .

In order to ensure the convergence and to remove the affection of the selection of initial values, the first M simulated

varieties are discarded. Then the chosen samples are θ ( j) , j = M+ 1, ...N, for sufficiently large N.
Based on SEL function, the approximate Bayes estimates of θ is given by

θ̂ =
1

N −M

N

∑
j=M+1

θ ( j). (22)

4 Simulation Study

In this part, Monte Carlo simulations are provided using progressive type II censored samples to compare between MLE,
MPS and Bayesian estimates of the Akshaya parameter. The simulation results are performed in order to explore and
output in terms of bias, mean square error and confidence interval.For many individual parameters, we produce ten
thousand random samples from the Akshaya distribution. n = 50, 100 and 200 for different sample sizes, various failure
numbers m sample ratio ratio = m

n
and schemes as various as

scheme 1: R = (0(∗m−1), n−m).

Scheme 2: R = (n−m, 0(∗m−1)).

Scheme 3: R = (n− 2m, 0(∗m−2), n− 2m).

The most easy approach is often considered to be the estimate form that minimises bias, MSE and L.CI of estimates.
The results of the simulation including MSE, L.CI, B-p, B-t and MLE are described in Tables 1, 2, 5, 6, 7, 8 for different
parameters. Tables 1, 2, 5, 6, 7, 8 summarise the simulation results.

Tables 1-6 are also summarised as follows in the subsequent observations.

1. The MSE, bias and L.CI decrease as the sample size increases.

2. The bias, MSE, L.CI decrease as the number of stages (m) increases.

3. The MPS estimates are efficient than anther methods for most studied cases of the Akshaya distribution under
progressive type-II censored samples.

4. The B-t confidence intervals are more efficient than the B-p confidence intervals for most studied cases.

5 Application on Real Data

[14] discussed the following data 0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52,
1.62, 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, 2.05, which shows precipitation levels in
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Table 1: The MLE, MPS and Bayesian estimation and interval estimation of parameter of Akshaya distribution based on progressive

type-II censoring with different ratio when θ = 2.2 and n = 50 .

ratio scheme
n=50

Bias MSE L.CI B-t B-p

0.60

1

MLE 0.01507 0.04389 0.81948 0.02518 0.02659

MPS 0.00456 0.04291 0.81221 0.02565 0.02720

Bayes 0.01031 0.00563 0.29143 0.00920 0.00904

2

MLE 0.02784 0.05532 0.91597 0.02890 0.02992

MPS -0.02186 0.05174 0.88800 0.02842 0.02764

Bayes 0.01619 0.00752 0.33414 0.01069 0.01073

3

MLE 0.03062 0.04959 0.86506 0.02793 0.02687

MPS 0.01336 0.04762 0.85420 0.02620 0.02772

Bayes 0.01618 0.00658 0.31165 0.00966 0.00969

0.75

1

MLE 0.02239 0.03526 0.73117 0.02388 0.02391

MPS 0.00831 0.03410 0.72351 0.02375 0.02371

Bayes 0.01217 0.00453 0.25969 0.00799 0.00789

2

MLE 0.01983 0.04081 0.78851 0.02479 0.02536

MPS -0.02363 0.03864 0.76534 0.02379 0.02554

Bayes 0.01191 0.00518 0.27842 0.00892 0.00873

3

MLE 0.02294 0.03851 0.76437 0.02324 0.02415

MPS 0.00253 0.03689 0.75326 0.02339 0.02538

Bayes 0.01325 0.00486 0.26848 0.00867 0.00874

0.90

1

MLE 0.01844 0.03390 0.71849 0.02347 0.02264

MPS -0.00194 0.03265 0.70867 0.02322 0.02248

Bayes 0.01056 0.00425 0.25224 0.00820 0.00809

2

MLE 0.01896 0.03329 0.71167 0.02221 0.02283

MPS -0.01851 0.03181 0.69568 0.02280 0.02179

Bayes 0.01084 0.00429 0.25337 0.00792 0.00832

3

MLE 0.01821 0.03367 0.71614 0.02213 0.02480

MPS -0.00716 0.03231 0.70437 0.02323 0.02236

Bayes 0.01050 0.00422 0.25133 0.00806 0.00757

inches reworded during the month of search within the Minneapolis-St. Paul area over a 30-year period. We computed the
Kolmogorov-Smirnov (KS) distance (D) between the fitted and therefore the empirical distribution functions for the data,
where KS=0.11763 and its corresponding p-value=0.8008. Figure 1 displays the plots of estimated CDF, fitted PDF, PP-
plot and QQ-plot for the Akshaya distribution for complete data. Figure 1 indicates that the Akshaya distribution provides
better fits to the present data. For convergence see Figure 2.

The censored data when m=20: in case of scheme I, R = (0∗19,10) is 0.32 0.47 0.52 0.59 0.77 0.81 0.81 1.20 1.20
1.31 1.43 1.51 1.62 1.74 1.95 2.10 F2.20 3.00 3.09 3.37. in case of scheme II R = (10,0∗19) is 0.47 0.59 0.77 0.81 0.96
1.18 1.20 1.35 1.51 1.62 1.89 1.95 2.05 2.10 2.20 2.48 2.81 3.00 3.37 4.75. In case of scheme III R = (5,0∗18,5) is 0.47
0.59 0.77 0.81 0.81 1.18 1.20 1.31 1.35 1.43 1.51 1.62 1.87 1.95 2.10 2.20 2.81 3.00 3.09 3.37. Table 3 shows that MLE is
very similar to the Bayes estimate Complete sample. In addition, estimates obtained from the Bayes supported censored
data of progressive type II are closer to the estimates than the MLEs Complete data collected. The point estimates are
nevertheless not appropriate to determine the best estimation method, because the specific values of unknown parameters
are not well understood. Interval estimation is one of the comparison tools. The results of Table 4 show that the credible
intervals of Bayesian θ is marginally shorter than other intervals.
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Table 2: The MLE, MPS and Bayesian estimation and interval estimation of parameter of Akshaya distribution based on progressive

type-II censoring with different ratio when θ = 2.2 and n=100 .

ratio scheme
n=100

Bias MSE L.CI B-t B-p

0.60

1

MLE 0.01432 0.02144 0.57146 0.01904 0.01750

MPS 0.00896 0.02112 0.56888 0.01817 0.01874

Bayes 0.00697 0.00263 0.19907 0.00638 0.00606

2

MLE 0.02405 0.02657 0.63231 0.02001 0.02047

MPS -0.00624 0.02511 0.62101 0.01975 0.02039

Bayes 0.01092 0.00332 0.22193 0.00704 0.00687

3

MLE 0.01897 0.02355 0.59730 0.01876 0.01813

MPS 0.01013 0.02300 0.59340 0.01904 0.02038

Bayes 0.00886 0.00285 0.20665 0.00658 0.00677

0.75

1

MLE 0.00812 0.01789 0.52358 0.01606 0.01633

MPS 0.00102 0.01764 0.52092 0.01657 0.01714

Bayes 0.00505 0.00216 0.18118 0.00589 0.00571

2

MLE 0.01176 0.02093 0.56557 0.01738 0.01796

MPS -0.01373 0.02032 0.55647 0.01790 0.01759

Bayes 0.00693 0.00253 0.19530 0.00635 0.00596

3

MLE 0.01432 0.01923 0.54093 0.01740 0.01695

MPS 0.00385 0.01877 0.53710 0.01709 0.01676

Bayes 0.00764 0.00233 0.18688 0.00592 0.00590

0.90

1

MLE 0.00747 0.00874 0.36543 0.01173 0.01140

MPS 0.00389 0.00865 0.36448 0.01187 0.01204

Bayes 0.00384 0.00104 0.12563 0.00405 0.00383

2

MLE 0.00747 0.00874 0.36543 0.01173 0.01140

MPS 0.00389 0.00865 0.36448 0.01187 0.01204

Bayes 0.00384 0.00104 0.12563 0.00405 0.00383

3

MLE 0.00849 0.01010 0.39279 0.01327 0.01284

MPS 0.00317 0.00997 0.39144 0.01300 0.01234

Bayes 0.00428 0.00118 0.13367 0.00424 0.00404

Table 3: Estimates, SEs, L.CI, and U.CI using the MLE, MPS and Bayesian methods for for complete data

estimate SE CIL1 CIU1

MLE 1.5822 0.0231 1.5370 1.6274

MPS 1.5515 0.0218 1.5087 1.5942

Bayesian 1.5819 0.0221 1.5386 1.6255

Table 4: Estimates, SEs, L.CI, and U.CI using the MLE, MPS and Bayesian methods under progressive censored sample.

scheme bc1.mn bc1 CIL1 CIU1

1

MLE 1.1331 0.0140 1.1057 1.1606

MPS 1.1257 0.0136 1.0991 1.1524

Bayesian 1.1335 0.0138 1.1065 1.1602

2

MLE 1.4112 0.0257 1.3607 1.4616

MPS 1.3798 0.0241 1.3326 1.4270

Bayesian 1.4112 0.0255 1.3613 1.4611

3

MLE 1.2477 0.0183 1.2118 1.2837

MPS 1.2357 0.0177 1.2010 1.2703

Bayesian 1.2475 0.0178 1.2125 1.2827
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Fig. 1: The estimated CDF, fitted PDF, PP-plot and QQ-plot of the Akshaya distribution for complete data.

6 Conclusion

During this paper, we introduced the estimation by using three methods, the maximum likelihood, product of spacing
method and the Bayesian technique, for the one-parameter Akshaya distribution. In addition, asymptotic distribution of
MLEs is expected to be provided by estimated confidence intervals (ACIs) and bootstrap confidence intervals for the
unknown parameter. In addition, Bayesian estimates for symmetric loss, including squared error loss function, is
obtained. Gibbs within Metropolis-Hasting method of the sampler is used to obtain the Bayes estimate of the unknown
parameter and hence the corresponding credible interval of the Markov chain Monte Carlo (MCMC). Finally, the
suggested approaches for example is evaluated by a real data set.
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Fig. 2: Histogram plot and convergence of the Akshaya distribution for complete data.

Table 5: The MLE, MPS and Bayesian estimation and interval estimation of parameter of Akshaya distribution based on progressive

type-II censoring with different ratio when θ = 2.2 and n=200 .

ratio scheme
n=200

Bias MSE L.CI B-t B-p

0.60

1

MLE 0.00563 0.01108 0.41233 0.01333 0.01298

MPS 0.00295 0.01101 0.41141 0.01340 0.01344

Bayes 0.00319 0.00130 0.14099 0.00457 0.00455

2

MLE 0.00257 0.01082 0.40779 0.01336 0.01250

MPS -0.01495 0.01079 0.40317 0.01241 0.01298

Bayes 0.00239 0.00128 0.13997 0.00469 0.00454

3

MLE 0.00678 0.01017 0.39455 0.01249 0.01214

MPS 0.00230 0.01006 0.39322 0.01311 0.01211

Bayes 0.00364 0.00121 0.13541 0.00418 0.00424

0.75

1

MLE 0.00747 0.00874 0.36543 0.01173 0.01140

MPS 0.00389 0.00865 0.36448 0.01187 0.01204

Bayes 0.00384 0.00104 0.12563 0.00405 0.00383

2

MLE 0.00747 0.00874 0.36543 0.01173 0.01140

MPS 0.00389 0.00865 0.36448 0.01187 0.01204

Bayes 0.00384 0.00104 0.12563 0.00405 0.00383

3

MLE 0.00849 0.01010 0.39279 0.01327 0.01284

MPS 0.00317 0.00997 0.39144 0.01300 0.01234

Bayes 0.00428 0.00118 0.13367 0.00424 0.00404

0.90

1

MLE 0.00063 0.00796 0.34987 0.01150 0.01081

MPS -0.00468 0.00792 0.34854 0.01107 0.01088

Bayes 0.00134 0.00093 0.11934 0.00360 0.00369

2

MLE 0.00535 0.00830 0.35676 0.01047 0.01122

MPS -0.00728 0.00821 0.35414 0.01103 0.01169

Bayes 0.00283 0.00098 0.12231 0.00372 0.00382

3

MLE 0.01023 0.00840 0.35719 0.01104 0.01112

MPS 0.00331 0.00823 0.35555 0.01154 0.01196

Bayes 0.00449 0.00100 0.12259 0.00403 0.00386
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Table 6: The MLE, MPS and Bayesian estimation and interval estimation of parameter of Akshaya distribution based on progressive

type-II censoring with different ratio when θ = 0.7 and n=50 .

ratio scheme
n=50

Bias MSE L.CI B-t B-p

0.60

1

MLE 0.00379 0.00403 0.24848 0.00801 0.00773

MPS 0.00250 0.00399 0.24767 0.00790 0.00788

Bayes 0.00228 0.00048 0.08582 0.00265 0.00279

2

MLE 0.00524 0.00470 0.26798 0.00867 0.00856

MPS -0.00716 0.00455 0.26315 0.00833 0.00819

Bayes 0.00289 0.00058 0.09384 0.00275 0.00304

3

MLE 0.00459 0.00435 0.25811 0.00861 0.00865

MPS 0.00154 0.00429 0.25674 0.00814 0.00780

Bayes 0.00263 0.00053 0.08997 0.00294 0.00307

0.75

1

MLE 0.00243 0.00313 0.21916 0.00666 0.00662

MPS -0.00004 0.00309 0.21814 0.00721 0.00698

Bayes 0.00181 0.00037 0.07503 0.00235 0.00243

2

MLE 0.00761 0.00417 0.25138 0.00813 0.00766

MPS -0.00321 0.00398 0.24720 0.00820 0.00800

Bayes 0.00399 0.00051 0.08705 0.00280 0.00275

3

MLE 0.00377 0.00371 0.23834 0.00758 0.00774

MPS -0.00054 0.00364 0.23653 0.00709 0.00760

Bayes 0.00244 0.00045 0.08266 0.00265 0.00254

0.90

1

MLE 0.00372 0.00295 0.21266 0.00655 0.00655

MPS -0.00077 0.00289 0.21099 0.00672 0.00637

Bayes 0.00213 0.00034 0.07202 0.00217 0.00231

2

MLE 0.00344 0.00312 0.21880 0.00705 0.00708

MPS -0.00595 0.00306 0.21569 0.00666 0.00723

Bayes 0.00210 0.00037 0.07490 0.00255 0.00227

3

MLE 0.00489 0.00348 0.23066 0.00773 0.00714

MPS -0.00108 0.00339 0.22840 0.00728 0.00747

Bayes 0.00279 0.00041 0.07878 0.00253 0.00245
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Table 7: The MLE, MPS and Bayesian estimation and interval estimation of parameter of Akshaya distribution based on progressive

type-II censoring with different ratio when θ = 0.7 and n=100 .

ratio scheme
n=100

Bias MSE L.CI B-t B-p

0.60

1

MLE 0.00162 0.00203 0.17651 0.00584 0.00582

MPS 0.00101 0.00202 0.17624 0.00572 0.00547

Bayes 0.00105 0.00024 0.06015 0.00210 0.00198

2

MLE 0.00109 0.00248 0.19510 0.00614 0.00623

MPS -0.00644 0.00246 0.19280 0.00589 0.00621

Bayes 0.00099 0.00028 0.06594 0.00205 0.00206

3

MLE 0.00241 0.00208 0.17882 0.00579 0.00581

MPS 0.00087 0.00207 0.17830 0.00564 0.00543

Bayes 0.00127 0.00024 0.06118 0.00200 0.00195

0.75

1

MLE 0.00214 0.00167 0.15983 0.00491 0.00503

MPS 0.00090 0.00165 0.15942 0.00515 0.00506

Bayes 0.00117 0.00019 0.05431 0.00170 0.00176

2

MLE 0.00194 0.00184 0.16813 0.00535 0.00524

MPS -0.00449 0.00182 0.16649 0.00569 0.00520

Bayes 0.00133 0.00022 0.05783 0.00183 0.00188

3

MLE 0.00178 0.00189 0.17034 0.00539 0.00561

MPS -0.00037 0.00187 0.16969 0.00549 0.00558

Bayes 0.00125 0.00022 0.05839 0.00186 0.00183

0.90

1

MLE 0.00173 0.00143 0.14835 0.00468 0.00474

MPS -0.00060 0.00142 0.14769 0.00452 0.00479

Bayes 0.00101 0.00017 0.05067 0.00169 0.00160

2

MLE 0.00185 0.00162 0.15766 0.00513 0.00515

MPS -0.00378 0.00160 0.15637 0.00492 0.00500

Bayes 0.00115 0.00019 0.05400 0.00167 0.00181

3

MLE 0.00018 0.00155 0.15456 0.00505 0.00497

MPS -0.00294 0.00155 0.15378 0.00501 0.00501

Bayes 0.00048 0.00018 0.05259 0.00167 0.00162
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Table 8: The MLE, MPS and Bayesian estimation and interval estimation of parameter of Akshaya distribution based on progressive

type-II censoring with different ratio when θ = 0.7 and n=200 .

ratio scheme
n=100

Bias MSE L.CI B-t B-p

0.60

1

MLE -0.00012 0.00097 0.12190 0.00389 0.00401

MPS -0.00040 0.00097 0.12183 0.00378 0.00389

Bayes 0.00022 0.00011 0.04155 0.00132 0.00132

2

MLE 0.00272 0.00123 0.13726 0.00429 0.00432

MPS -0.00177 0.00121 0.13637 0.00421 0.00432

Bayes 0.00126 0.00015 0.04712 0.00158 0.00149

3

MLE 0.00226 0.00112 0.13072 0.00415 0.00417

MPS 0.00150 0.00111 0.13050 0.00412 0.00392

Bayes 0.00109 0.00013 0.04492 0.00142 0.00147

0.75

1

MLE 0.00119 0.00088 0.11624 0.00371 0.00375

MPS 0.00057 0.00088 0.11607 0.00377 0.00371

Bayes 0.00076 0.00010 0.03954 0.00123 0.00127

2

MLE 0.00142 0.00097 0.12212 0.00394 0.00394

MPS -0.00234 0.00096 0.12145 0.00393 0.00413

Bayes 0.00080 0.00011 0.04161 0.00133 0.00129

3

MLE 0.00141 0.00088 0.11636 0.00384 0.00360

MPS 0.00032 0.00088 0.11616 0.00352 0.00358

Bayes 0.00080 0.00010 0.03969 0.00123 0.00123

0.90

1

MLE 0.00094 0.00077 0.10863 0.00349 0.00332

MPS -0.00023 0.00076 0.10839 0.00340 0.00337

Bayes 0.00050 0.00009 0.03705 0.00119 0.00116

2

MLE 0.00135 0.00079 0.10981 0.00345 0.00365

MPS -0.00193 0.00078 0.10933 0.00355 0.00346

Bayes 0.00073 0.00009 0.03712 0.00124 0.00115

3

MLE 0.00129 0.00081 0.11180 0.00360 0.00342

MPS -0.00032 0.00081 0.11148 0.00350 0.00348

Bayes 0.00066 0.00009 0.03791 0.00121 0.00121
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