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Abstract: The system under consideration has 𝑛 independent components, and its operation relies on the functioning of at 
least 𝑘 components, 1 ≤ 𝑘 ≤ 𝑛. The system experiences (𝑛 + 1) distinct shocks. Shock 𝑗 impacts the 𝑗!" component, 𝑗 =
1, 2, . . . , 𝑛, while shock (𝑛 + 1) simultaneously impacts all components. Any shock is lethal if its magnitude is below or 
above the component-designed thresholds 𝑑# or 𝑑$, respectively. A shock is characterized by its magnitude and arrival 
time, forming a bivariate random vector. The bivariate random vectors specifying the magnitudes and the arrival times of 
the shocks are assumed to be independent and follow non-identical bivariate distributions. The reliability of a 𝑘-out-of-𝑛: 𝐺 
system under the influence of this type of shocks is derived. The reliability of parallel and series systems is obtained as 
special situations. The bivariate Pareto type I distribution is applied as an example of the bivariate distribution of the 
magnitude and arrival time of the shocks. Furthermore, numerical illustrations are conducted to highlight the theoretical 
results obtained. 

Keywords: System reliability, 𝑘-out-of-𝑛: 𝐺 system, Marshall-Olkin shocks, Bivariate Pareto type I distribution, Order 
statistics. 

Notations 
𝑛: The total number of components in the system. 
𝑘: The minimum number of components that are sufficient for the system to operate. 
𝐷%: The shock's magnitude that impacts the 𝑗!" component, 𝑗 = 1,… , 𝑛. 

𝑇%: The shock's arrival time that impacts the 𝑗!" component, 𝑗 = 1,… , 𝑛. 
𝐷&'#: The shock's magnitude that impacts all components, simultaneously. 
𝑇&'#: The shock's arrival time that impacts all components, simultaneously. 

2𝐷% , 𝑇%3: Bivariate random vector specifying the magnitude and the arrival time of the 𝑗!" 
shock, 𝑗 = 1,… , 𝑛 + 1.  

𝑑#, 𝑑$: The lower and the upper thresholds for the shocks magnitudes that the system 
components can withstand, respectively. Consequently, the  𝑗!" component, 𝑗 =
1,… , 𝑛 fails only if 𝐷% < 𝑑# or 	𝐷% > 𝑑$, and simultaneous failure of all components 
occurs only if 𝐷&'# < 𝑑# or 𝐷&'# > 𝑑$. 

𝑌%: The arrival time of the 𝑗!" shock that had magnitude below 𝑑# or above 𝑑$ (lethal 
shock), i.e., 𝑌% = (𝑇%|𝐷% < 𝑑# or 	𝐷% > 𝑑$), 𝑗 = 1,… , 𝑛 + 1. 

𝑌&()'#:&: It signifies the order statistic of rank (𝑛 − 𝑘 + 1)!" within the sequence of random 
variables 𝑌#, … , 𝑌&. 

𝑅):&[𝑑#, 𝑑$; 𝑡]: Is the reliability of the 𝑘-out-of-𝑛: 𝐺 system under study. 
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1 Introduction 

Many engineering systems can be affected by different shocks that reduce their performance or cause their failure. These 
shocks can be classified as internal or external. Internal shocks arise from within the system itself, triggered by changes in 
operating conditions, internal components, or interactions between system parts. External shocks originate from outside the 
system and are caused by factors such as environmental conditions, external forces, and others. Notably, external shocks 
can cause damage to electrical devices such as lighting systems, computers, and telecommunication systems, often due to 
temperature, stress, voltage, and other external factors. Additionally, they can pose detrimental effects on both humans and 
the environment, as exemplified by the destructive impact of volcanoes, earthquakes, and floods. Numerous studies have 
been conducted by researchers investigating the lifespan of systems under shock exposure. 

In the simplest Marshall-Olkin shocks, the system contains two components exposed to shocks coming randomly from 
three distinct sources. The shock generated by the 𝑗!"	source impacts the 𝑗!" component, 𝑗 = 1, 2, while the shock 
generated by the 3+, source simultaneously impacts both components. [1] derived the joint survival function of this system 
when the shocks are lethal and non-lethal, as well as three independent Poisson processes that regulate the circumstances of 
those shocks. [2] obtained the reliability of a 𝑘-out-of-𝑛: 𝐹 system exposed to Marshall-Olkin shocks, without considering 
the magnitude of the shocks. They assumed that the shocks' arrival times are exchangeable, independent, and identical 
random variables. The mean residual life and the mean inactivity time functions of the system presented by [2] were 
investigated by [3]. [4] derived the joint survival function of a two-component system under shocks generated by three 
separate sources. Failure of each component occurs when it encounters a consecutive sequence of shocks originating from a 
single source. [5] presented the optimal preventive maintenance policy for a 𝑘-out-of-𝑛: 𝐹 system exposed to Marshall-
Olkin shocks. They considered three different types of costs. [6] obtained the reliability, average residual lifespan, and 
average time until failure of the 𝑘-out-of-𝑛: 𝐹 system under shocks sourced from (𝑛 + 1) distinct origins. The occurrence 
of component failure happens when it is exposed to a consecutive succession of shocks originating from a particular source. 
[7] conducted a study on the system introduced by [2], investigating the optimal age-based preventive maintenance 
policies. Under a nonhomogeneous Poisson process governing the arrival of shocks, [8] investigated the optimal 
replacement policy for the 𝑘-out-of-𝑛: 𝐹 system. [9] studied the reliability of a parallel system experiencing shocks 
originating from a renewal point process. [10] studied the reliability and the optimal replacement policy of a 𝑘-out-of-𝑛: 𝐺 
system exposed to shocks. They focused on the number of components that the shock can destroy. 

There are few studies that have focused on the magnitude of the shock. [11] provided the joint survival function for the 
lifetimes of 2-components exposed to Marshall-Olkin shocks. They assumed that the shock would prove lethal if its 
magnitude surpassed a predefined upper threshold. [12] derived the reliability of a 𝑘-out-of-𝑛: 𝐺 system exposed to (𝑛 + 1) 
distinct shocks, considering the magnitudes of these shocks. They assumed that the components of the system withstand 
only a specific upper threshold of the magnitudes of the shocks. 

In the present article, the system under study is exposed to (𝑛 + 1) distinct shocks. The components of the system are 
designed to withstand a certain range of magnitudes (between 𝑑# and 𝑑$). The reliability formulas of 𝑘-out-of-𝑛: 𝐺, 
parallel, and series systems are derived. The following are some examples showing the applicability of the system under 
study in engineering. 

(i) Transformers in a voltage transformer system are designed to operate within a certain voltage range, and they may 
fail if the voltage exceeds a certain level or drops below a certain level. This can happen due to electrical disturbances 
such as lightning strikes, power surges, and brownouts. The voltage transformer system can be designed as a 𝑘-out-of-𝑛: 
𝐺 system, where there are multiple transformers, and at least 𝑘 must be functional for the system to function. 
(ii) In a wind turbine system, there are multiple blades, each with its own pitch control mechanism, that are arranged 
in a 𝑘-out-of-𝑛 configuration, such that at least 𝑘 blades must be functioning properly for the turbine to generate 
electricity. The system is designed to withstand a certain range of wind speeds and other environmental factors, and if the 
magnitude of these factors remains within this range, the turbine will continue to function reliably. If the lower threshold 
for the wind speed is set too low, the turbine blades may not be able to capture enough energy from the wind, leading to a 
decrease in power output. On the other hand, if the upper threshold for wind speed is set too high, the turbine blades may 
be subjected to excessive stress, leading to premature failure of the pitch control mechanism or the blades themselves. 

The paper is arranged in the following manner: In Section 2, the derivation of the system reliability formula is based on 
assuming that the magnitudes and arrival times of distinct shocks being independent but non-identical bivariate random 
variables. The reliability of parallel and series systems is obtained as special situations. In Section 3, the reliability 
formulas are derived under the assumption of identical shocks. As an application, in Section 4, the bivariate distributions 
of the shocks' arrival times and magnitudes are assumed to be bivariate Pareto type I distributions with different 
parameters. In Section 5, numerical illustrations of the theoretical results are performed, demonstrating the effects of time, 
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shock magnitude, and bivariate distribution parameters on system reliabilities. Finally, the conclusion is presented in 
Section 6. As calculations of the system reliability exposed to non-identical shocks is not easily handled, an algorithm for 
calculating the reliability is provided in the Appendix. 

2 Formula for System Reliability under Non-Identical Shock Exposure 
The shocks influencing the system under study are depicted in the Figure 1 below. 

 
Fig.1: A system with n components designed to withstand shock magnitudes limited by two different thresholds. 

The following theorem presents the formula of 𝑅):&[𝑑#, 𝑑$; 𝑡]. 

Theorem 1 

Suppose that 𝐷% and 𝑇% are the magnitude and the arrival time of shock 𝑗, 𝑗 = 1, 2, … , 𝑛 + 1. Suppose that 2𝐷% , 𝑇%3 are 
independent and non-identically distributed, with the bivariate survival functions 𝐹-!,/!(. , . ). Suppose that 𝐹/!(. ) and 
𝐹-!(𝑡) are the marginal survival functions of 𝐷% and 𝑇%, respectively. The 𝑗!" shock impacts the 𝑗!" component, 𝑗 = 1,… , 𝑛, 
while shock (𝑛 + 1) simultaneously impacts all components. A shock is lethal if its magnitude is below or above the 
component's designed thresholds 𝑑# or 𝑑$, respectively. In such a case, 𝑅):&[𝑑#, 𝑑$; 𝑡] is given by, 

𝑅):&[𝑑#, 𝑑$; 𝑡] =
𝐹-"#$(𝑡) − 𝐹-"#$,/"#$(𝑡, 𝑑#) + 𝐹-"#$,/"#$(𝑡, 𝑑$)

1 − 𝐹/"#$(𝑑#) + 𝐹/"#$(𝑑$)

×

⎝

⎛E
𝐹-%(𝑡) − 𝐹-%,/%(𝑡, 𝑑#) + 𝐹-%,/%(𝑡, 𝑑$)

1 − 𝐹/%(𝑑#) + 𝐹/%(𝑑$)

&

01#

+FF… F E G1−
𝐹-&(𝑡) − 𝐹-&,/&(𝑡, 𝑑#) + 𝐹-&,/&(𝑡, 𝑑$)

1 − 𝐹/&(𝑑#) + 𝐹/&(𝑑$)
H

213$,…,3!

&

3!13!'$'#

&

3$1#

&()

%1#

× E
𝐹-%(𝑡) − 𝐹-%,/%(𝑡, 𝑑#) + 𝐹-%,/%(𝑡, 𝑑$)

1 − 𝐹/%(𝑑#) + 𝐹/%(𝑑$)#505&
063$6⋯63! ⎠

⎞, 

 

 

 

 

 

 

 

 

(1) 
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where, 𝑑# < 𝑑$, ∑ = 08
9 , if 𝑎 > 𝑏, and 𝑖: = 0. 

Proof 

Assuming that the components of the system are designed to withstand a specific range of magnitudes limited by lower 
threshold 𝑑#, and upper threshold 𝑑$, the arrival time of the lethal shock can be defined as follows, 

𝑌% = 2𝑇%|𝐷% < 𝑑# ∪ 𝐷% > 𝑑$3, 𝑗 = 1, 2, … , 𝑛 + 1. (2) 

The system under study fails when the (𝑛 − 𝑘 + 1)!" component fails or when it receives a lethal shock from the source 
(𝑛 + 1). Consequently, we have: 
𝑅):&[𝑑#, 𝑑$; 𝑡] 	= 	𝑝{𝑌&()'#:& > 𝑡}			𝑝{𝑌&'# > 𝑡}, (3) 
where, 𝑝{𝑌&()'#:& > 𝑡} is defined as the probability that at least 𝑘 observations in 𝑌#, … , 𝑌& are greater than 𝑡, or the 
probability that at most 𝑛 − 𝑘 observations are less than or equal to	𝑡. Thus, we have 

𝑝{𝑌&()'#:& > 𝑡} = F 		 F 		E𝑝T𝑌3& ≤ 𝑡U	 E 	𝑝T𝑌3% > 𝑡U
&

01%'#

%

21#;$,),…,"		

&()

%1:

, 
 

(4) 

see [13], where ∑ 	;$,),…," denotes all possibilities (𝑖#, 𝑖$, … , 𝑖&) of (1, 2, … , 𝑛) satisfying 𝑖# < 𝑖$ < ⋯ < 𝑖%, and 𝑖%'# < 𝑖%'$ <
⋯ < 𝑖&,  𝑗 = 0,… , 𝑛 − 𝑘. Hence, Equation (4) can be rewritten as follows: 

𝑝{𝑌&()'#:& > 𝑡} = 	E𝑝{𝑌0 > 𝑡}
&

01#

+	FF… F 		 E 		𝑝{𝑌2 ≤ 𝑡}
213$,…,3!

		 E 	𝑝{𝑌0 > 𝑡}
#505&

063$6⋯63!

&

3!13!'$'#

&

3$1#

&()

%1#

, 
 
(5) 

where, 𝑖: = 0, and ∑ = 08
9  if 𝑎 > 𝑏. Substituting (5) in (3) we get 

𝑅):&[𝑑#, 𝑑$; 𝑡] 	= 		𝑝{𝑌&'# > 𝑡}

×

⎝

⎛E𝑝{𝑌0 > 𝑡}
&

01#

+FF… F E 𝑝{𝑌2 ≤ 𝑡}
213$,…,3!

E 𝑝{𝑌0 > 𝑡}
#505&

063$6⋯63!

&

3!13!'$'#

&

3$1#

&()

%1#
⎠

⎞. 

 
 
 
(6) 

Using (2) in (6), we get 

𝑅):&[𝑑#, 𝑑$; 𝑡] 	= 	𝑝{𝑇&'# > 𝑡|𝐷&'# < 𝑑# ∪ 𝐷&'# > 𝑑$}

×

⎝

⎛E𝑝{𝑇0 > 𝑡|𝐷0 < 𝑑# ∪ 𝐷0 > 𝑑$}
&

01#

+	F 		F 		…		 F E 		𝑝{𝑇2 ≤ 𝑡|𝐷2 < 𝑑# ∪ 𝐷2 > 𝑑$}
213$,…,3!

&

3!13!'$'#

&

3$1#

&()

%1#

× E {𝑇0 > 𝑡|𝐷0 < 𝑑# ∪ 𝐷0 > 𝑑$}
#505&

063$6⋯63! ⎠

⎞, 

 
 
 
 
 
 
 
(7) 

where, 𝑝{𝑇2 ≤ 𝑡|𝐷2 < 𝑑# ∪ 𝐷2 > 𝑑$} = 1 − 𝑝{𝑇2 > 𝑡|𝐷2 < 𝑑# ∪ 𝐷2 > 𝑑$}, and the term 𝑝T𝑇% > 𝑡|	𝐷% < 𝑑# ∪ 𝐷% >
𝑑$U, 𝑗 = 1,… , 𝑛 + 1, in Equation (7) can be written as follows.  

𝑝T𝑇% > 𝑡|𝐷% < 𝑑# ∪ 𝐷% > 𝑑$U =
𝑝T𝑇% > 𝑡	 ∩	2𝐷% < 𝑑# ∪ 𝐷% > 𝑑$3U

𝑝T𝐷% < 𝑑# 	∪ 	𝐷% > 𝑑$U

=
𝑝T𝑇% > 𝑡, 𝐷% < 𝑑#U 	+ 	𝑝T𝑇% > 𝑡, 𝐷% > 𝑑$U

𝑝T𝐷% < 𝑑#U 	+ 	𝑝T𝐷% > 𝑑$U
 

 
 
 
(8) 

Since 𝑝T𝑇% > 𝑡, 𝐷% < 𝑑#U 	+ 	𝑝T𝑇% > 𝑡, 𝐷% > 𝑑#U = 𝑝T𝑇% > 𝑡U, the term 𝑝T𝑇% > 𝑡, 𝐷% < 𝑑#U in Equation (8) can be expressed 
as 
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𝑝T𝑇% > 𝑡, 𝐷% < 𝑑#U = 𝑝T𝑇% > 𝑡U − 𝑝T𝑇% > 𝑡, 𝐷% > 𝑑#U (9) 

Substituting (9) in (8), we get 

𝑝T𝑇% > 𝑡|𝐷% < 𝑑# ∪ 𝐷% > 𝑑$U =
𝐹-!(𝑡) − 𝐹-!,/!(𝑡, 𝑑#) + 𝐹-!,/!(𝑡, 𝑑$)

1 − 𝐹/!(𝑑#) + 𝐹/!(𝑑$)
, 

𝑗 = 1,… , 𝑛 + 1. 

 
(10) 

By using (10) in (7), we get (1). 

Special Situations 

Substituting 𝑘 = 𝑛 and 𝑘 = 1 in Equation (1) yields 𝑅&:&[𝑑#, 𝑑$; 𝑡] and 𝑅#:&[𝑑#, 𝑑$; 𝑡], respectively. Thus, we get. 

𝑅&:&[𝑑#, 𝑑$; 𝑡] =
𝐹-"#$(𝑡) − 𝐹-"#$,/"#$(𝑡, 𝑑#) + 𝐹-"#$,/"#$(𝑡, 𝑑$)

1 − 𝐹/"#$(𝑑#) + 𝐹/"#$(𝑑$)

×E
𝐹-%(𝑡) − 𝐹-%,/%(𝑡, 𝑑#) + 𝐹-%,/%(𝑡, 𝑑$)

1 − 𝐹/%(𝑑#) + 𝐹/%(𝑑$)

&

01#

, 

 
 

 
(11) 

and 

𝑅#:&[𝑑#, 𝑑$; 𝑡] =
𝐹-"#$(𝑡) − 𝐹-"#$,/"#$(𝑡, 𝑑#) + 𝐹-"#$,/"#$(𝑡, 𝑑$)

1 − 𝐹/"#$(𝑑#) + 𝐹/"#$(𝑑$)
X1

−EG1 −
𝐹-&(𝑡) − 𝐹-&,/&(𝑡, 𝑑#) + 𝐹-&,/&(𝑡, 𝑑$)

1 − 𝐹/&(𝑑#) + 𝐹/&(𝑑$)
H

&

21#

Y 

 
 

(12) 

The computation of 𝑅):&[𝑑#, 𝑑$; 𝑡] in (1) requires calculating all combinations that satisfy the condition 1 ≤ 𝑖# <		… 		<
	𝑖% 	≤ 𝑛, 𝑗 = 1, …	, 𝑛 − 𝑘. However, dealing with these combinations directly is complicative. To address this issue, we 
present an algorithm in the Appendix. 

3 Formula for System Reliability under Identical Shock Exposure 

Theorem 2 

Suppose that 2𝐷% , 𝑇%3, 	𝑗 = 1, 2, … , 𝑛 + 1. Suppose that 2𝐷% , 𝑇%3, 𝑗 = 1,… , 𝑛 are identically distributed with a bivariate 
survival function 𝐹-,/(. , . ). Suppose that the bivariate survival function of (𝐷&'#, 𝑇&'#) is 𝐹-"#$,/"#$(. , . ). Suppose that 
𝐹/(. ) and 𝐹-(𝑡) are the marginal survival functions of the magnitude and the arrival time, respectively of shocks 𝑗, 𝑗 =
1, 2, … , 𝑛, while 𝐹/"#$(. ) and, 𝐹-"#$(𝑡) are the corresponding marginals of the shock (𝑛 + 1). The 𝑗!" shock impacts the 
𝑗!", 𝑗 = 1,… , 𝑛 component, while shock (𝑛 + 1) simultaneously impacts all components. A shock is lethal if its magnitude 
is below or above the component's designed thresholds 𝑑# or 𝑑$, respectively. Then, 𝑅):&[𝑑#, 𝑑$; 𝑡] is given by, 

𝑅):&[𝑑#, 𝑑$; 𝑡] =
𝐹-"#$(𝑡) − 𝐹-"#$,/"#$(𝑡, 𝑑#) + 𝐹-"#$,/"#$(𝑡, 𝑑$)

1 − 𝐹/"#$(𝑑#) + 𝐹/"#$(𝑑$)
FZ

𝑛
𝑗[F

(−1)= Z
𝑗
𝑤[

%

=1:

&()

%1:

× ]
𝐹-(𝑡) − 𝐹-,/(𝑡, 𝑑#) + 𝐹-,/(𝑡, 𝑑$)

1 − 𝐹/(𝑑#) + 𝐹/(𝑑$)
^
&'=(%

, 

 
 
 

 
(13) 

where, 𝑑# < 𝑑$. 

Proof  

http://www.naturalspublishing.com/Journals.asp
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Since 2𝐷% , 𝑇%3, 𝑗 = 1, 2, … , 𝑛 are independent and identically distributed random vectors, it follows that 𝑌%>𝑠, 𝑗 = 1, 2, … , 𝑛 
are also independent and identically distributed random variables with a common cumulative function 𝐹?!(𝑡) = 𝐹?(𝑡) =
𝑝{𝑌 ≤ 𝑡}	, 𝑗 = 1,2, … , 𝑛. Therefore, we have: 

𝑝{𝑌&()'#:& > 𝑡} = F Z
𝑛
𝑗[	

[𝑝{𝑌 ≤ 𝑡}]%[𝑝{𝑌 > 𝑡}]&(%
&()

%1:

. 

Then, we have 

𝑅):&[𝑑#, 𝑑$; 𝑡] = 𝑝{𝑌&'# > 𝑡}F 	Z
𝑛
𝑗[	

[	𝑝{𝑌 ≤ 𝑡}	]% 		[	𝑝{𝑌 > 𝑡}	]&(%
&()

%1:

. 
 

(14) 

Using (2) in (14), we get 
𝑅):&[𝑑#, 𝑑$; 𝑡] 	= 	𝑝{𝑇&'# > 𝑡|	𝐷&'# < 𝑑# ∪ 𝐷&'# > 𝑑$}

×FZ
𝑛
𝑗[
[	1	 − 	𝑝{	𝑇 > 𝑡	|	𝐷 < 𝑑# ∪ 𝐷 > 𝑑$}]% 		[		𝑝{	𝑇 > 𝑡|	𝐷 < 𝑑# ∪ 𝐷 > 𝑑$}]&(%

&()

%1:

 

The above equation can be rewritten as follows, 
𝑅):&[𝑑#, 𝑑$; 𝑡] 	= 	𝑝{	𝑇&'# > 𝑡|	𝐷&'# < 𝑑# ∪ 𝐷&'# > 𝑑$}

×F 	Z
𝑛
𝑗[	F 	(−1)= 	Z

𝑗
𝑤[	

%

=1:

	[	𝑝{𝑇 > 𝑡|	𝐷 < 𝑑# ∪ 𝐷 > 𝑑$}]&'=(%
&()

%1:

 

 
 

(15) 

Using (10) with 
 𝑝T𝑇% > 𝑡|𝐷% < 𝑑# ∪ 𝐷% > 𝑑$U =

@+(!)(@+,,(!,,$)'@+,,(!,,))
#(@,(,$)'@,(,))

, 𝑗 = 1,… , 𝑛, in (15), we get (13).  
Special Situations 
Substituting with 𝑘 = 𝑛	and 𝑘 = 1	in (13), we obtain 𝑅&:&[𝑑#, 𝑑$; 𝑡] and 𝑅#:&[𝑑#, 𝑑$; 𝑡] in the case where the shocks 
impacting single components are identical, respectively as follows. 

𝑅&:&[𝑑#, 𝑑$; 𝑡] =
𝐹-"#$(𝑡) − 𝐹-"#$,/"#$(𝑡, 𝑑#) + 𝐹-"#$,/"#$(𝑡, 𝑑$)

1 − 𝐹/"#$(𝑑#) + 𝐹/"#$(𝑑$)

× ]
𝐹-(𝑡) − 𝐹-,/(𝑡, 𝑑#) + 𝐹-,/(𝑡, 𝑑$)

1 − 𝐹/(𝑑#) + 𝐹/(𝑑$)
^
&

, 

 
 
(16) 

and 

𝑅#:&[𝑑#, 𝑑$; 𝑡] =
𝐹-"#$(𝑡) − 𝐹-"#$,/"#$(𝑡, 𝑑#) + 𝐹-"#$,/"#$(𝑡, 𝑑$)

1 − 𝐹/"#$(𝑑#) + 𝐹/"#$(𝑑$)

× X1 − ]1 −
𝐹-(𝑡) − 𝐹-,/(𝑡, 𝑑#) + 𝐹-,/(𝑡, 𝑑$)

1 − 𝐹/(𝑑#) + 𝐹/(𝑑$)
^
&

Y. 

 
 

 
(17) 

Remark 
The result in (13) may be obtained directly from Equation (1), by replacing  ∑ …∑ 				∏ a	1	 −213$,…,3!

&
3!13!'$'#

&
3$1#

	𝑝T𝑇% > 𝑡|𝐷% < 𝑑# ∪ 𝐷% > 𝑑$Ub∏ 𝑝T𝑇% > 𝑡|𝐷% < 𝑑# ∪ 𝐷% > 𝑑$U#5	0	5&
063$6⋯63!

, with c&%d∏ 		[	1	 − 	𝑝{𝑇 > 𝑡|	𝐷 < 𝑑# ∪ 𝐷 >%
21#

𝑑$}] ∏ 𝑝{𝑇 > 𝑡|𝐷 < 𝑑# ∪ 𝐷 > 𝑑$}&
01%'# . 

 
Special Cases 
 
• Substituting with 𝑑# = 𝑑$ = 𝑑 in Equations (1), and (13) for non-identical, and identical cases, respectively, we obtain 

the reliability of the 𝑘-out-of-𝑛: 𝐺 system exposed to Marshall-Olkin shocks, focusing only on their arrival times as 
follows. 
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𝑅):&[𝑑, 𝑑; 𝑡] = 𝑅):&[𝑡]

= 𝐹-"#$(𝑡)

⎝

⎛E𝐹-%(𝑡)
&

01#

+FF… F E a1− 𝐹-&(𝑡)b
213$,…,3!

E 𝐹-%(𝑡)
#505&

063$6⋯63!

&

3!13!'$'#

&

3$1#

&()

%1#
⎠

⎞, 

 
 
 
 
(18) 

for non-identical shocks, and 

𝑅):&[𝑑, 𝑑; 𝑡] = 𝑅):&[𝑡] = 𝐹-"#$(𝑡)FZ
𝑛
𝑗[F

(−1)= Z
𝑗
𝑤[

%

=1:

a𝐹-(𝑡)b
&'=(%

&()

%1:

, for	identical	shocks. 
 

(19) 

• Substituting with 𝑑# = −∞, and 𝑑$ = 𝑑 in Equations (1), and (13) for non-identical, and identical cases, respectively, 
we obtain the reliability of the 𝑘-out-of-𝑛: G system exposed to Marshall-Olkin shocks, with components designed to 
withstand a certain range of magnitude specified by only an upper threshold 𝑑 as follows. 

𝑅):&[−∞, 𝑑; 𝑡] =
𝐹-"#$,/"#$(𝑡, 𝑑)
𝐹/"#$(𝑑)

⎝

⎛E
𝐹-%,/%(𝑡, 𝑑)
𝐹/%(𝑑)

&

01#

+FF… F E G1−
𝐹-&,/&(𝑡, 𝑑)
𝐹/&(𝑑)

H
213$,…,3!

E
𝐹-%,/%(𝑡, 𝑑)
𝐹/%(𝑑)#505&

063$6⋯63!

&

3!13!'$'#

&

3$1#

&()

%1#
⎠

⎞, 

 

 

 

(20) 

for non-identical shocks, and 

𝑅):&[−∞, 𝑑; 𝑡] =
𝐹-"#$,/"#$(𝑡, 𝑑)

𝐹/"#$(𝑡)
FZ

𝑛
𝑗[F

(−1)= Z
𝑗
𝑤[

%

=1:

]
𝐹-,/(𝑡, 𝑑)
𝐹/(𝑑)

^
&'=(%

,
&()

%1:

 
 

(21) 

for identical shocks, see, [12]. 

• Substituting with 𝑑$ = ∞, and 𝑑# = 𝑑 in Equations (1), and (13) for non-identical, and identical cases respectively, we 
obtain the reliability of the 𝑘-out-of-𝑛: G system exposed to Marshall-Olkin shocks, with components designed to 
withstand a certain range of magnitudes specified by only a lower threshold 𝑑 as follows. 

𝑅):&[𝑑,∞; 𝑡] =
𝐹-"#$(𝑡) − 𝐹-"#$,/"#$(𝑡, 𝑑)

1 − 𝐹/"#$(𝑑)
⎝

⎛E
𝐹-%(𝑡) − 𝐹-%,/%(𝑡, 𝑑)

1 − 𝐹/%(𝑑)

&

01#

+FF… F E G1−
𝐹-&(𝑡) − 𝐹-&,/&(𝑡, 𝑑)

1 − 𝐹/&(𝑑)
H

213$,…,3!

&

3!13!'$'#

&

3$1#

&()

%1#

× E
𝐹-%(𝑡) − 𝐹-%,/%(𝑡, 𝑑)

1 − 𝐹/%(𝑑)#505&
063$6⋯63! ⎠

⎞, 

 

 

 

 

(22) 

for non-identical shocks, and 
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𝑅):&[𝑑,∞; 𝑡] =
𝐹-"#$(𝑡) − 𝐹-"#$,/"#$(𝑡, 𝑑)

1 − 𝐹/"#$(𝑑)
FZ

𝑛
𝑗[F

(−1)= Z
𝑗
𝑤[

%

=1:

]
𝐹-(𝑡) − 𝐹-,/(𝑡, 𝑑)

1 − 𝐹/(𝑑)
^
&'=(%&()

%1:

,	 

 
 
 

(23) 

for identical shocks. 

4 Application Using Bivariate Pareto Type I Distribution 
4.1. Exact Reliability Formulas of Systems when Exposed to Non-Identical Shocks with Bivariate Pareto Type I 

Distribution 
[14] introduced the bivariate Pareto distributions of type I and II. The bivariate Pareto distributions have various 
applications in different fields such as reliability engineering, risk analysis, quality control, hydrology, environmental 
studies, modeling the lifetime of the units in a system, and others, see [15], and [16]. The joint survival distribution 
function of the bivariate Pareto type I distribution is represented by, 

𝐹tC,?(𝑥, 𝑦) = Z
𝑥
𝜃 +

𝑦
𝛽 − 1[

(D
, 𝑥 > 𝜃; 𝑦 > 𝛽; 	𝜃, 𝛽, 𝛼	 > 0.  

(24) 

𝑋 and 𝑌 have Pareto type I distributions as their marginals, with survival distribution functions, 

𝐹tC(𝑥) = c
𝑥
𝜃d

(D
, 𝑥 > 𝜃; 	𝜃, 𝛼 > 0,  

(25) 

and 

𝐹t?(𝑦) = cE
F
d
(D
, 𝑦 > 𝛽; 	𝛽, 𝛼 > 0, respectively.  

(26) 

The means of 𝑋 and 𝑌 are given respectively by. 

𝐸(𝑋) =
𝛼𝜃
𝛼 − 1, 

 

(27) 

and 

𝐸(𝑌) =
𝛼𝛽
𝛼 − 1. 

 

(28) 

The positive correlation coefficient between 𝑋 and 𝑌 is 𝜌 = #
D
, 𝛼 > 2. 

Suppose that 2𝐷% , 𝑇%3, 𝑗 = 1, 2, … , 𝑛 + 1 are independent and non-identical random vectors with joint survival distribution 
functions in (24), with parameters 𝜃%, 𝛽%, 𝛼%, 𝑗 = 1, 2, … , 𝑛 + 1. Using (24), (25), and (26), in (1), (11) and (12), we get 

𝑅):&[𝑑#, 𝑑$; 𝑡] = 𝜑(𝑑#, 𝑑$; 𝑡; 𝜃&'#, 𝛽&'#, 𝛼&'#)

⎝

⎛E𝜑(𝑑#, 𝑑$; 𝑡; 𝜃0, 𝛽0, 𝛼0)
&

01#

+FF… F E [1− 𝜑(𝑑#, 𝑑$; 𝑡; 𝜃2 , 𝛽2 , 𝛼2)]
213$,…,3!

&

3!13!'$'#

&

3$1#

&()

%1#

× E 𝜑(𝑑#, 𝑑$; 𝑡; 𝜃0, 𝛽0, 𝛼0)
#505&

063$6⋯63! ⎠

⎞, 

 

 

 

 

 

 

(29) 

𝑅&:&[𝑑#, 𝑑$; 𝑡] = 𝜑(𝑑#, 𝑑$; 𝑡; 𝜃&'#, 𝛽&'#, 𝛼&'#)E𝜑(𝑑#, 𝑑$; 𝑡; 𝜃0, 𝛽0, 𝛼0)
&

01#

, 
 

(30) 

       and  
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𝑅#:&[𝑑#, 𝑑$; 𝑡] = 𝜑(𝑑#, 𝑑$; 𝑡; 𝜃&'#, 𝛽&'#, 𝛼&'#) X1 −E[1 − 𝜑(𝑑#, 𝑑$; 𝑡; 𝜃2 , 𝛽2 , 𝛼2)]
&

21#

Y, 
 

(31) 

where, 

𝜑2𝑑#, 𝑑$; 𝑡; 𝜃% , 𝛽% , 𝛼%3 =
2𝛽%𝑡3

(D! +∑ (−1)32𝛽%𝑡 + 𝜃%𝑑3 − 𝜃%𝛽%3
(D!$

31#

𝜃%
(D! c𝛽%

(D! − 𝑑#
(D! + 𝑑$

(D!d
, 

 

(32) 

𝑗 = 1,… , 𝑛 + 1. 

Using the algorithm given in the Appendix, (29), (30) and (31) can be computed easily. 

4.2. Exact Reliability Formulas of Systems when Exposed to Identical Shocks with Bivariate Pareto Type I 
Distribution  

Suppose that 2𝐷% , 𝑇%3, 𝑗 = 1, 2, … , 𝑛, are identical and independent random vectors with common joint survival distribution 
function as in (24), with parameters 𝜃, 𝛽, 𝛼, while (𝐷&'#, 𝑇&'#) has joint survival distribution function as in (24), with 
parameters 𝜃&'#, 𝛽&'#, 𝛼&'#. Suppose that 2𝐷% , 𝑇%3, 𝑗 = 1, 2, … , 𝑛, and (𝐷&'#, 𝑇&'#) are independent. Using (24), (25), and 
(26), in (13), (16), and (17), we get 

𝑅):&[𝑑#, 𝑑$; 𝑡] 	= 	𝜑(𝑑#, 𝑑$; 𝑡; 𝜃&'#, 𝛽&'#, 𝛼&'#)FZ
𝑛
𝑗[

&()

%1:

× F(−1)= Z
𝑗
𝑤[

%

=1:

[𝜑(𝑑#, 𝑑$; 𝑡; 𝜃, 𝛽, 𝛼)]&'=(% , 

 

 

 

(33) 

𝑅&:&[𝑑#, 𝑑$; 𝑡] 	= 	𝜑(𝑑#, 𝑑$; 𝑡; 𝜃&'#, 𝛽&'#, 𝛼&'#)[𝜑(𝑑#, 𝑑$; 𝑡; 𝜃, 𝛽, 𝛼)]&, (34) 

and 

𝑅#:&[𝑑#, 𝑑$; 𝑡] 	= 	𝜑(𝑑#, 𝑑$; 𝑡; 𝜃&'#, 𝛽&'#, 𝛼&'#)(1 − [1 − 𝜑(𝑑#, 𝑑$; 𝑡; 𝜃, 𝛽, 𝛼)]&), 

 

(35) 

where, 

𝜑(𝑑#, 𝑑$; 𝑡; 𝜃, 𝛽, 𝛼), and 𝜑(𝑑#, 𝑑$; 𝑡; 𝜃&'#, 𝛽&'#, 𝛼&'#) are given by (32), with 𝜃% = 𝜃, 𝛽% = 𝛽, and 𝛼% = 𝛼 for 𝑗 = 1,… , 𝑛. 

Special Cases 

• Let 𝐹-!(𝑡), 𝑗 = 1,… , 𝑛 + 1, and 𝐹-(𝑡) have survival functions as in (25) with parameters 𝜃%, 𝑗 = 1,… , 𝑛 + 1, and 𝜃, 
respectively. Using (25) in Equations (18), and (19), we get 

𝑅):&[𝑡] = Z
𝑡

𝜃&'#
[
(D"#$

⎝

⎛EZ
𝑡
𝜃0
[
(D%

&

01#

+FF… F E ~1− Z
𝑡
𝜃2
[
(D&

�
213$,…,3!

E Z
𝑡
𝜃0
[
(D%

#505&
063$6⋯63!

&

3!13!'$'#

&

3$1#

&()

%1#
⎠

⎞, 

 

 

 

 

(36) 

for non-identical shocks, and 

𝑅):&[𝑡] = Z
𝑡

𝜃&'#
[
(D"#$

FZ
𝑛
𝑗[F

(−1)= Z
𝑗
𝑤[

%

=1:

~Z
𝑡
𝜃[

(D
�
&'=(%&()

%1:

, for	identical	shocks. 
 

(37) 

• Let 𝐹-!,/!(𝑡, 𝑑), 𝑗 = 1,… , 𝑛 + 1, and 𝐹-,/(𝑡, 𝑑) have joint survival functions as in (24) with parameters 𝜃%, 𝛽%, 𝛼%, 𝑗 =
1,… , 𝑛 + 1, and 𝜃, 𝛽, 𝛼, respectively. Using (24), and (26) in Equations (20), and (21), we get 
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𝑅):&a𝛽% , 𝑑; 𝑡b =
(𝛽&'#𝑡 + 𝜃&'#𝑑 − 𝜃&'#𝛽&'#)(D"#$

(𝜃&'#𝑑)(D"#$
⎝

⎛E
(𝛽0𝑡 + 𝜃0𝑑 − 𝜃0𝛽0)(D%

(𝜃0𝑑)(D%

&

01#

+FF… F E ]1−
(𝛽2𝑡 + 𝜃2𝑑 − 𝜃2𝛽2)(D&

(𝜃2𝑑)(D&
^

213$,…,3!

E
(𝛽0𝑡 + 𝜃0𝑑 − 𝜃0𝛽0)(D%

(𝜃0𝑑)(D%#505&
063$6⋯63!

&

3!13!'$'#

&

3$1#

&()

%1#
⎠

⎞, 

for non-identical shocks, and 

𝑅):&a𝛽% , 𝑑; 𝑡b =
(𝛽&'#𝑡 + 𝜃&'#𝑑 − 𝜃&'#𝛽&'#)(D"#$

(𝜃&'#𝑑)(D"#$

×FZ
𝑛
𝑗[F

(−1)= Z
𝑗
𝑤[

%

=1:

]
(𝛽𝑡 + 𝜃𝑑 − 𝜃𝛽)(D

(𝜃𝑑)(D ^
&'=(%

,
&()

%1:

 

 

 

(38) 

for identical shocks. 

 

• Let 𝐹-!,/!(𝑡, 𝑑), 𝑗 = 1,… , 𝑛 + 1, and 𝐹-,/(𝑡, 𝑑) have joint survival functions as in (24) with parameters 𝜃%, 𝛽%, 𝛼%, 𝑗 =
1,… , 𝑛 + 1, and 𝜃, 𝛽, 𝛼, respectively. Using (24), (25), and (26) in Equations (22), and (23), we get 
 

 

𝑅):&[𝑑,∞; 𝑡] = �
(𝛽&'#𝑡)(D"#$ − (𝛽&'#𝑡 + 𝜃&'#𝑑 − 𝜃&'#𝛽&'#)(D"#$

𝜃&'#
(D"#$2𝛽&'#

(D"#$ − 𝑑(D"#$3
�

×

⎝

⎛E�
(𝛽0𝑡)(D% − (𝛽0𝑡 + 𝜃0𝑑 − 𝜃0𝛽0)(D%

𝜃0
(D%2𝛽0

(D% − 𝑑(D%3
�

&

01#

+FF… F E ]1−
(𝛽2𝑡)(D& − (𝛽2𝑡 + 𝜃2𝑑 − 𝜃2𝛽2)(D&

𝜃2
(D&2𝛽2

(D& − 𝑑(D&3
^

213$,…,3!

&

3!13!'$'#

&

3$1#

&()

%1#

× E �
(𝛽0𝑡)(D% − (𝛽0𝑡 + 𝜃0𝑑 − 𝜃0𝛽0)(D%

𝜃0
(D%2𝛽0

(D% − 𝑑(D%3
�

#505&
063$6⋯63! ⎠

⎞, 

for non-identical shocks, and 

𝑅):&[𝑑,∞; 𝑡] =
(𝛽&'#𝑡)(D"#$ − (𝛽&'#𝑡 + 𝜃&'#𝑑 − 𝜃&'#𝛽&'#)(D"#$

𝜃&'#
(D"#$2𝛽&'#

(D"#$ − 𝑑(D"#$3

×FZ
𝑛
𝑗[F

(−1)= Z
𝑗
𝑤[

%

=1:

]
(𝛽𝑡)(D − (𝛽𝑡 + 𝜃𝑑 − 𝜃𝛽)(D

𝜃(D(𝛽(D − 𝑑(D) ^
&'=(%&()

%1:

,	 

 
 
 
(39) 

for identical shocks.  

• By substituting 𝛼&'# = 0 in Equations (29), and (33), we can get 𝑅):&[𝑑#, 𝑑$; 𝑡] without the effect of the shock (𝑛 + 1) 
that affects all components simultaneously, for non-identical, and identical shocks, respectively as follows: 
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𝑅):&[𝑑#, 𝑑$; 𝑡] =

⎝

⎛E𝜑(𝑑#, 𝑑$; 𝑡; 𝜃0, 𝛽0, 𝛼0)
&

01#

+FF… F E [1− 𝜑(𝑑#, 𝑑$; 𝑡; 𝜃2 , 𝛽2 , 𝛼2)]
213$,…,3!

&

3!13!'$'#

&

3$1#

&()

%1#

× E 𝜑(𝑑#, 𝑑$; 𝑡; 𝜃0, 𝛽0, 𝛼0)
#505&

063$6⋯63! ⎠

⎞,	 

 
 
 

 
 

(40) 

for non-identical shocks, where 𝜑2𝑑#, 𝑑$; 𝑡; 𝜃% , 𝛽% , 𝛼%3, 𝑗 = 1,… , 𝑛 is given by (32), and 

𝑅):&[𝑑#, 𝑑$; 𝑡] = FZ
𝑛
𝑗[F

(−1)= Z
𝑗
𝑤[

%

=1:

]
(𝛽𝑡)(D +∑ (−1)3(𝛽𝑡 + 𝜃𝑑3 − 𝜃𝛽)(D$

31#

𝜃(D(𝛽(D − 𝑑#(D + 𝑑$(D)
^
&'=(%&()

%1:

,	 
 

 
(41) 

for identical shocks. 

• By substituting, 𝛼&'# = 0, in Equations (36), and (37), we can get 𝑅):&[𝑡] without the effect of the shock (𝑛 + 1) that 
affects all components simultaneously, and the magnitudes of the shocks 1,… , 𝑛 are not considered, for non-identical, 
and identical cases, respectively, as follows, 

𝑅):&[𝑡] =EZ
𝑡
𝜃0
[
(D%

&

01#

+FF… F E ~1− Z
𝑡
𝜃2
[
(D&

�
213$,…,3!

E Z
𝑡
𝜃0
[
(D%

#505&
063$6⋯63!

&

3!13!'$'#

&

3$1#

&()

%1#

, 
 

(42) 

for non-identical shocks, and 

𝑅):&[𝑡] = FZ
𝑛
𝑗[F

(−1)= Z
𝑗
𝑤[

%

=1:

~Z
𝑡
𝜃[

(D
�
&'=(%&()

%1:

, for	identical	shocks. 
 

(43) 

5 Numerical Illustration  

Taking 𝑛 = 12, and 𝑘 = 5, 𝑅):&[𝑑#, 𝑑$; 𝑡], 𝑅&:&[𝑑#, 𝑑$; 𝑡], and 𝑅#:&[𝑑#, 𝑑$; 𝑡] in (33), (34), and (35) are studied, to observe 
the impact of time, shocks' magnitude, and the distributions parameters 𝜃, 𝛽, 𝛼, 𝜃&'#, 𝛽&'#, and 𝛼&'#. 

In Figure 2, we conduct a comparison between four scenarios: The first is when the system is exposed to Marshel-Olkin 
shocks while considering only their arrival times (Equation (37)). The second is when the system is exposed to Marshel-
Olkin shocks while considering both their arrival times and magnitudes (Equations (33), (34), (35) for 𝑅):&[𝑑#, 𝑑$; 𝑡], 
𝑅&:&[𝑑#, 𝑑$; 𝑡], 𝑅#:&[𝑑#, 𝑑$; 𝑡], respectively). The third is when the system is not exposed to shock (𝑛 + 1), and only the 
arrival times of the shocks 1,… , 𝑛 that affect components 1,… , 𝑛 are considered (Equation (43)). The fourth is when the 
system is not exposed to shock (𝑛 + 1), and both the magnitudes and the arrival times of the shocks 1,… , 𝑛 that affect 
components 1,… , 𝑛 are considered (Equation (41)). The purpose of these comparisons is to assess the effect of the shock 
magnitude over time on the system performance, when the system components are designed to withstand a certain range of 
the magnitudes specified by lower and upper thresholds 𝑑# and 𝑑$. Substituting 𝑘 = 1, and 𝑘 = 𝑛 in Equations (37), (41), 
and (43), we get the results for the parallel and series systems, respectively. The reliabilities are computed for specific 
values of 𝑑# = 20, 𝑑$ = 100, 𝜃 = 4.9, 𝜃&'# = 4, 𝛽 = 15, 𝛽&'# = 10, 𝛼 = 2.5, and 𝛼&'# = 2.1.  

From Figure 2, we conclude that the reliability of all systems decreases faster with time when the system is exposed to 
Marshall-Olkin shocks, and the magnitudes of the shocks is considered. The reliability reaches its maximum value when 
eliminating the effect of the shock that comes from (𝑛 + 1)!" source, and only the arrival time of the shock is considered. 
This means that the magnitude of the shock affects the value of reliability not only its arrival time. Also, we can see that the 
reliability of the series system decreases faster over time for all four scenarios, and then the reliability of the 𝑘-out-of-𝑛 
system, but the reliability of the parallel system decreases slower over time, and this is according to the structure of the 
system (this means that as	𝑘 increases, the reliability of the system decreases faster with time). 
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In Figure 3, we conduct a comparison to see the effect of the threshold on the system reliability. Using Equations (33), (34), 
(35) for 𝑅):&[𝑑#, 𝑑$; 𝑡], 𝑅&:&[𝑑#, 𝑑$; 𝑡], 𝑅#:&[𝑑#, 𝑑$; 𝑡], respectively in Figure (3, a), for the case when the components are 
designed to withstand a certain range of magnitudes specified by two thresholds (𝑑# “lower” and 𝑑$ “upper”). In Figure (3, 
b) Equation (38) is used, for the case when the components are designed to withstand a certain range of magnitudes 
specified by only an upper threshold 𝑑$. Using Equation (39) in Figure (3, c), for the case when the components are 
designed to withstand a certain range of magnitudes specified by only a lower threshold 𝑑#. Substituting 𝑘 = 1, and 𝑘 = 𝑛 
in Equations (38), and (39), we get the results for the parallel and series systems, respectively, in Figures (3, b), and (3, c). 
The reliabilities are computed for specific values of 𝜃 = 4.9, 𝜃&'# = 4, 𝛽 = 15, 𝛽&'# = 10, 𝛼 = 2.5, and 𝛼&'# = 2.1. 

From Figure 3, we can see that 𝑅):&a𝛽% , 𝑑$; 𝑡b > 𝑅):&[𝑑#, 𝑑$; 𝑡] > 𝑅):&[𝑑#, ∞; 𝑡]. The reliability of the system reaches its 
highest value when the system contains only an upper threshold, on the other hand the reliability of the system reaches its 
lowest value when the system contains only a lower threshold. Also, the values of 𝑅):&[𝑑#, 𝑑$; 𝑡], 𝑅):&[𝑑#, ∞; 𝑡] decreases 
faster than 𝑅):&a𝛽% , 𝑑$; 𝑡b over time. The same results are observed for the parallel and the series systems. 

  

(a) Reliability of the 𝑘-out-of-𝑛: 𝐺 system. (b) Reliability of the series system. 

 

(c) Reliability of the parallel system. 
Fig. 2:   The comparison between the four scenarios. 
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In Figure 4, we show the effect of the scale parameters 𝜃, and 𝜃&'# on the system reliability. The effect of 𝜃 is studied for 
specific values of 𝜃&'# = 4.9, 𝑡 = 5; 𝑑# = 20, 𝑑$ = 100; 𝛽 = 15, 𝛽&'# = 10, 𝛼 = 2.5, and 𝛼&'# = 2.1. The effect of 
𝜃&'# is studied for specific values of 𝜃 = 4.9, 𝑡 = 5; 𝑑# = 20, 𝑑$ = 100; 𝛽 = 15, 𝛽&'# = 10, 𝛼 = 2.5, and 𝛼&'# = 2.1.  

From Figure 4, we see that as 𝜃(𝜃&'#) increases, the reliability of the system increases. This is expected since we see from 
Equation (27) that 𝐸(𝑇) ∝ 𝜃. The effect of 𝜃&'# in increasing the reliability is faster than 𝜃, in the case of 𝑅):&[𝑑#, 𝑑$; 𝑡], 
𝑅&:&[𝑑#, 𝑑$; 𝑡], while the effect of both 𝜃, and 𝜃&'# in increasing 𝑅#:&[𝑑#, 𝑑$; 𝑡] appears quickly. Also, we see that at a 
certain value of 𝜃, 𝑅):&[𝑑#, 𝑑$; 𝑡], and 𝑅#:&[𝑑#, 𝑑$; 𝑡] reaches its maximum and stabilizes at this value, and 𝑅#:&[𝑑#, 𝑑$; 𝑡] 
stabilizes faster than 𝑅):&[𝑑#, 𝑑$; 𝑡], while the effect of 𝜃 in increasing 𝑅&:&[𝑑#, 𝑑$; 𝑡] appears slower and increases 
suddenly at a certain value of 𝜃.  

Figure 5 shows the effect of the scale parameters 𝛽, and 𝛽&'# on the system reliability. The effect of 𝛽 is studied for 
specific values of 𝛽&'# = 10, 𝑡 = 5; 𝑑# = 20, 𝑑$ = 100; 𝜃 = 4, 𝜃&'# = 3.5, 𝛼 = 2.5, and 𝛼&'# = 2.1. The effect of 𝛽&'# 
is studied for specific values of 𝛽 = 10, 𝑡 = 5; 𝑑# = 20, 𝑑$ = 100; 𝜃 = 4, 𝜃&'# = 3.5, 𝛼 = 2.5, and 𝛼&'# = 2.1.  

From Figure 5, we can see that the system reliability decreases as 𝛽	(𝛽&'#) increases until the value of 𝛽	(𝛽&'#) reaches 
𝑑#(𝛽 = 𝑑#(𝛽&'# = 𝑑#)), then the reliability increases. This is because when the value of 𝛽 reaches 𝑑#, the effect of the 
lower threshold 𝑑# is cancelled, and the system is affected only by the upper threshold 𝑑$. 

  
(a) 𝑅):&[𝑑#, 𝑑$; 𝑡] versus 𝑡, 𝑑# = 20, 𝑑$ = 100.  (b) 𝑅):&a𝛽% , 𝑑$; 𝑡b versus 𝑡, 𝑑$ = 100.  

 
(c) 𝑅):&[𝑑#, ∞; 𝑡] versus 𝑡, 𝑑# = 20.  

Fig. 3:  The effect of the threshold on the system reliability. 

  
 

Fig. 4: The effect of 𝜽, and 𝜽𝒏'𝟏 on the system reliability. 
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In Figure 6, we show the effect of the shape parameters 𝛼, and 𝛼&'# on the system reliability. The effect of 𝛼 is studied for 
specific values of 𝛼&'# = 2.5, 𝑡 = 5; 𝑑# = 20, 𝑑$ = 100; 𝜃 = 4, 𝜃&'# = 3.5, 𝛽 = 15, and 𝛽&'# = 10. The effect of 𝛼&'# 
is studied for specific values of 𝛼 = 2.5, 𝑡 = 5; 𝑑# = 20, 𝑑$ = 100; 𝜃 = 4, 𝜃&'# = 3.5, 𝛽 = 15, and 𝛽&'# = 10.  

From Figure 6, we see that as 𝛼	(𝛼&'#) increases, the value of the system reliability decreases. This is expected since we 
see from Equations (27), and (28), that 𝐸(𝑇) and 𝐸(𝐷) are decreasing in 𝛼. The effect of 𝛼 in decreasing the reliability is 
faster than 𝛼&'#, in the case of 𝑅):&[𝑑#, 𝑑$; 𝑡], 𝑅&:&[𝑑#, 𝑑$; 𝑡], while the effect of 𝛼&'# in decreasing 𝑅#:&[𝑑#, 𝑑$; 𝑡] is faster 
than 𝛼. 

Table 1 shows the implementation time of the algorithm provided in the appendix, for computing 𝑅):&[𝑑#, 𝑑$; 𝑡], 
𝑅&:&[𝑑#, 𝑑$; 𝑡], 𝑅#:&[𝑑#, 𝑑$; 𝑡], and 𝑅):&[𝑡] given in Equations (29), (30), (31), and (36), respectively. Also, for computing 
𝑅):&[𝑑#, 𝑑$; 𝑡] and 𝑅):&[𝑡], when not exposed to the shock (𝑛 + 1) (Equations (40) and (42), respectively). The reliabilities 
are computed for different values of 𝑛, and 𝑘. The results are computed using R-programming.  

From Table 1, we can see that the implementation time of the algorithm does not exceed few minutes even for large values 
of 𝑛 and 𝑘. Also, it is noticed that the implementation time of the algorithm decreases with the increasing the value of	𝑘, 
where the number of possibilities satisfying 1 ≤ 	 𝑖# 	< 	… 	< 	 𝑖% 	≤ 	𝑛 for 𝑗 = 1, …	, 𝑛 − 𝑘, decreases. 

 

 

 

 

 

   

   

Fig. 5: The effect of 𝜷, and 𝜷𝒏'𝟏 on the system reliability. 
 

   
Fig.6: The effect of 𝜶	and 𝜶𝒏'𝟏	on the system reliability. 
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Table 1: The implementation time of the algorithm computing the reliability with non-identical shocks. 

 𝒕 = 𝟕, 𝒅𝟏 = 𝟐𝟎𝟎, 𝒅𝟐 = 𝟓𝟎𝟎 
𝑹𝒌:𝒏[𝒅𝟏, 𝒅𝟐; 𝒕] implementation time 

 
 
 
 

 
𝒏 

 
 
 
 

 
𝒌 

𝜽 = [𝟔. 𝟗, 𝟓, 𝟔, 𝟔. 𝟓, 𝟓. 𝟓], 𝜷 = [𝟐𝟎, 𝟓𝟎, 𝟖𝟎, 𝟏𝟎, 𝟑𝟎], 𝜶 = [𝟐. 𝟏, 𝟑. 𝟓, 𝟑, 𝟑. 𝟏, 𝟐. 𝟖], 
𝜽𝒏'𝟏 = 𝟓. 𝟗, 𝜷𝒏'𝟏 = 𝟕𝟎, 𝜶𝒏'𝟏 = 𝟐. 𝟓 

 
With 

Marshall-
Olkin, 
with 

magnitude 

 
With 

Marshall-
Olkin, 

without 
magnitude 

 
Without  
(𝒏 + 𝟏)𝒕𝒉 , 

with 
magnitude 

 
Without 
(𝒏 + 𝟏)𝒕𝒉 , 

without 
magnitude 

 
With 

Marshall-
Olkin, 
with 

magnitude 

 
With 

Marshall-
Olkin, 

without 
magnitude 

 
Without 
(𝒏 + 𝟏)𝒕𝒉 , 

with 
magnitude 

 
Without 
(𝒏 + 𝟏)𝒕𝒉 , 

without 
magnitude 

 
 
 
5 

1 0.6383017 0.651705 0.9991955 0.9992315 0.169982 
secs 

0.116076 
secs 

0.159764 
secs 

0.1223972 
secs 

3 0.4946693 0.5088916 0.7743538 0.7802618 0.136452 
secs 

0.0846839 
secs 

0.1324241 
secs 

0.0920789 
secs 

4 0.2427931 0.2526416 0.3800676 0.3873646 0.1157091 
secs 

0.0839109 
secs 

0.1124251 
secs 

0.0756741 
secs 

5 0.0470700 0.0496526 0.0736833 0.0761302 0.060941 
secs 

0.0164809 
secs 

0.0607791 
secs 

0.0157671 
secs 

 𝜽 = [𝟔. 𝟗, 𝟓, 𝟔, 𝟔. 𝟓, 𝟓. 𝟓, 𝟔. 𝟖, 𝟓. 𝟕, 𝟒, 𝟒. 𝟗, 𝟓. 𝟔], 𝜷 = [𝟐𝟎, 𝟓𝟎, 𝟖𝟎, 𝟏𝟎, 𝟑𝟎, 𝟒𝟎, 𝟔𝟎, 𝟒, 𝟏𝟏𝟎, 𝟏𝟎𝟎] 
𝜶 = [𝟐. 𝟏, 𝟑. 𝟓, 𝟑, 𝟑. 𝟏, 𝟐. 𝟖, 𝟒. 𝟓, 𝟒, 𝟑, 𝟑. 𝟕, 𝟐. 𝟖],  

𝜽𝒏'𝟏 = 𝟓. 𝟗, 𝜷𝒏'𝟏 = 𝟕𝟎, 𝜶𝒏'𝟏 = 𝟐. 𝟓 
 
 
 
 

10 

1 0.638805 0.6521967 0.9999833 0.9999854 3.678222 
secs 

3.422815 
secs 

3.639734 
secs 

3.379294 
secs 

4 0.593810 0.6102148 0.9295485 0.9356164 3.030626 
secs 

3.095459 
secs 

2.958277 
secs 

2.917818 
secs 

7 0.1385986 0.1517597 0.2169618 0.2326867 0.790718 
secs 

0.641908 
secs 

0.742292 
secs 

0.641892 
secs 

10 0.0004218 0.0005115 0.0006602 0.0007842 0.062266 
secs 

0.016026 
secs 

0.059339 
secs 

0.0147779 
secs 

 𝜽 = [𝟔. 𝟗, 𝟓, 𝟔, 𝟔. 𝟓, 𝟓. 𝟓, 𝟔. 𝟖, 𝟓. 𝟕, 𝟒, 𝟒. 𝟗, 𝟓. 𝟔, 𝟔. 𝟗, 𝟓, 𝟓. 𝟓, 𝟒. 𝟓, 𝟑] 
𝜷 = [𝟐𝟎, 𝟓𝟎, 𝟖𝟎, 𝟏𝟎, 𝟑𝟎, 𝟒𝟎, 𝟔𝟎, 𝟒, 𝟏𝟏𝟎, 𝟏𝟎𝟎, 𝟑𝟎, 𝟒𝟎, 𝟗𝟎, 𝟐𝟎, 𝟓] 

𝜶 = [𝟐. 𝟏, 𝟑. 𝟓, 𝟑, 𝟑. 𝟏, 𝟐. 𝟖, 𝟒. 𝟓, 𝟒, 𝟑, 𝟑. 𝟕, 𝟐. 𝟖, 𝟓, 𝟐. 𝟓, 𝟐. 𝟗, 𝟑. 𝟏, 𝟐. 𝟏], 
𝜽𝒏'𝟏 = 𝟓. 𝟗, 𝜷𝒏'𝟏 = 𝟕𝟎, 𝜶𝒏'𝟏 = 𝟐. 𝟓 

 
15 

1 0.6388155 0.6522061 0.9999998 0.9999999 2.724808 
mins 

2.588358 
mins 

2.705587 
mins 

2.581221 
mins 

5 0.6246283 0.6394762 0.9777912 0.9804816 2.605901 
mins 

2.425495 
mins 

2.598685 
mins 

2.453441 
mins 

10 0.08728927 0.0978385 0.1366424 0.1500116 26.5475 
secs 

25.28616 
secs 

25.52465 
secs 

24.66994 
secs 

15 0.00000339 0.00000437 0.0000053133 0.00000671 0.0642641 
secs 

0.015699 
secs 

0.0609760 
secs 

0.01484203 
secs 

6  Conclusion 

In this paper, we obtain the reliability of a 𝑘-out-of-𝑛: 𝐺 system exposed to Marshall-Olkin shocks, and its components are 
designed to withstand a certain range of shocks' magnitudes specified by two thresholds (lower “𝑑#”, and upper “ 𝑑$”). The 
reliability of the system is obtained when the shocks are non-identical and identical. The following situations are obtained 
as special cases: 
• The system's reliability when exposed to Marshall-Olkin shocks, and only their arrival times are considered. 
• The system's reliability when not exposed to a shock (𝑛 + 1), while the magnitudes and arrival times of shocks 1,… , 𝑛 

are considered.  
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• The system's reliability when not exposed to a shock (𝑛 + 1), while only the arrival times of shocks 1,… , 𝑛 are 
considered. 

• The reliability of the system when its components are designed to withstand a certain range of magnitudes specified by 
an upper threshold only.  

• The reliability of the system when its components are designed to withstand a certain range of magnitudes specified by 
a lower threshold only. 

The reliability of the parallel and the series systems are presented for all situations. As an application, the bivariate Pareto 
type I distribution is applied to highlight the theoretical results. An algorithm is introduced to calculate 𝑅):&[𝑑#, 𝑑$; 𝑡] 
where the shocks are non-identical, which is not straightforward to handle directly. From the numerical illustration we see 
that, the magnitude of the shock affects the value of reliability not only its arrival time as well as the presence of the 
(𝑛 + 1)!" source. It is observed that 𝑅):&a𝛽% , 𝑑$; 𝑡b > 𝑅):&[𝑑#, 𝑑$; 𝑡] > 𝑅):&[𝑑#, ∞; 𝑡]. Also, we see that the system 
reliability increases with increasing 𝜃, 𝜃&'#, as well as decreasing 𝛽, 𝛽&'#, 𝛼, and 𝛼&'#. The implementation time of the 
algorithm that calculates 𝑅):&[𝑑#, 𝑑$; 𝑡] when exposed to non-identical shocks does not exceed few minutes. Our 
forthcoming work involves a study on the reliability of the consecutive k-out-of-n system, considering different 
assumptions in the presence of shocks. 

Appendix 

In constructing the algorithm, the following notations are utilized: 
𝑗: Denotes the count of defective components, 𝑗 = 1,… , 𝑛 − 𝑘. 
𝑀: Represents the total count of available combinations satisfying the condition 1 ≤ 	𝑖# 	< 	… 	< 	 𝑖% ≤ 𝑛, 𝑗 =

1,… , 𝑛 − 𝑘. 
𝑃: Represents a matrix with 𝑗 columns, and 𝑀 rows. Each row in this matrix represents one of the possible 

combinations satisfying 1 ≤ 𝑖# 	< 	… 	< 	 𝑖% ≤ 𝑛, 𝑗 = 1,… , 𝑛 − 𝑘. 
 

 
Algorithm: Compute the value of system reliability where the shocks are non-identical. 
1: 
 
 
 
2: 
 
3: 
 
 
 
 
 
 
4: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5: 

Input: Insert the following set of values. 
            𝒌, 𝒏: Integers 
       𝒅𝟏, 𝒅𝟐; 	𝒕: Numeric 
 
Output: The value of the system reliability 
 
Initialize: Set all product terms and all sum terms in Equation (1) by 1 and 0, respectively. 
    Set   the product term L ←1      
    Set   the product term u ←1      
    Set   the product term L by term u ←1      
    Set   the sum over all possibilities ← 0       
    Set   the sum over all 𝑗 ← 0 
 
Function Conditional Probability (𝑗)	 // Now we define function that compute the term  
                                                                 𝑝2𝑇% > 𝑡|𝐷% < 𝑑# ∪ 𝐷% > 𝑑$3, 𝑗 = 1,… , 𝑛 + 1 // 
  𝑆𝑢𝑟𝐹𝐷1[𝑗] ← survival distribution function of the magnitude of the shock 𝑗 at 𝑑#  
  𝑆𝑢𝑟𝐹𝐷2	[𝑗] ← survival distribution function of the magnitude of the shock 𝑗 at 𝑑$ 
  𝑆𝑢𝑟𝐹𝑇	[𝑗] ← survival distribution function of the time of the shock 𝑗 at 𝑡  
  𝐽𝑠𝑢𝑟𝐹1	[𝑗] ← joint survival distribution function of the magnitude and the time of the shock j at 𝑑#   
                        and t. 
 𝐽𝑠𝑢𝑟𝐹2	[𝑗] ←	joint survival distribution function of the magnitude and the time of the shock j at 𝑑$  
                       and t. 
𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙	[𝑗] ← M0+@-	[%](	PQ0+@#	[%]'	PQ0+@$	[%]

#(M0+@/#[%]'	M0+@/$	[%]
 

return 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙	[𝑗]  
End Function 
Conditional probability of shock (𝑛 + 1) ← Conditional Probability (𝑛 + 1)	 
 
Set no component failed product ← 1 // Compute the first product in (1) // 
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6: 
 
 
 
 
 
7: 
 
8: 
 
 
9: 
 
 
 
 
10: 
 
 
11: 
 
 
 
 
 
12: 
 
 
 
13: 
 
 
 
 
 
 
 
14: 
 
 
 
 
 
 
15: 
 
 
 
16: 

 
  For 𝒖 ← 1 to 𝑛 do 
    at current 𝑢	the component is survived ← Conditional Probability (𝑢)	             
   no component failed product ← no component failed product * at current u the component is  
                                                         survived 
 End For 
 
vector: vector (𝑛) // Generate a vector with size n // 
 
For 𝑗 ← 1 to 𝑛 − 𝑘 do // Given a vector containing n elements, produce and display all feasible   
                                           combinations with size j	within matrix P // 
 
     Function Combinations (𝑛 , 𝑟, 𝑣𝑒𝑐, repeats. Allowed = False) 
     𝑃 ← Combinations (𝑛 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑣𝑒𝑐𝑡𝑜𝑟), 𝑟 = 𝑗, 𝑣𝑒𝑐 = 𝑣𝑒𝑐𝑡𝑜𝑟, repeats. Allowed= 𝐹𝑎𝑙𝑠𝑒) 
                                     // Generate matrix ‘P’ to store all outputs sequentially // 
    𝑀 ← 𝑛𝑢𝑚_𝑟𝑜𝑤𝑠(𝑃) 
 
    For 𝑤 ← 1 to 𝑀 do // Perform a step-by-step movement across each element within every row of  
                                       matrix P, calculating the product term L as defined in Equation (1)."// 
 
        For 𝑖 ← 1 to 𝑗 do 
             𝐿 ← 𝑃[𝑤, 𝑖] 
            at current 𝐿	the component is failed ← 1 − Conditional Probability (𝐿)	             
            𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝐿 ← 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝐿 ∗ at current 𝐿	the component is failed 
        End For 
 
        For 𝑢 ← 1 to 𝑛 do // Verify each row of matrix P for the existence of values between 1 to n. If   
                                          any of these values are not found in a row, they are considered survival  
                                          components. // 
 
            If (𝑢 NOT IN 𝑃[𝑤, ]) then 
             at current 𝑢 the component is survived ← Conditional Probability (𝑢)	  
            	𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑢 ← 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑢* at current 𝑢 the component is survived 
           End IF 
        End For 
        𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝐿𝑢 ← 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝐿 ∗ 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑢 
       𝑠𝑢𝑚𝑝 ← 𝑠𝑢𝑚𝑝 + 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝐿𝑢 
 
       Set   𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝐿   ← 1 
       Set  	𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑢   ← 1 
       End For 
     total sum ←  total sum + sump 
     Set sump ← 0 
End For 
 
Obtain the reliability value for the system: 
     The reliability value for the system ← Conditional probability of shock (n+1) * (no component  
                                                                                                   failed product + total sum) 
 
 Print (System reliability) 

References 

[1] Marshall, A. W, and Olkin, I, A multivariate exponential distribution,  Journal of the American Statistical Association, 
62, 30-44 (1967). 

[2] I. Bayramoglu and M. Ozkut, The reliability of coherent systems subjected to Marshall–Olkin type shocks, IEEE 
Transactions on Reliability, 64, 435-443 (2014). 

http://www.naturalspublishing.com/Journals.asp


1232                                                                                                              S. Bakry et al. : Reliability Analysis of a System… 
 

 
 
© 2024 NSP 
Natural Sciences Publishing Cor. 
 

[3] I. Bayramoglu and M. Ozkut, Mean residual life and inactivity time of a coherent system subjected to Marshall–Olkin 
type shocks, Journal of Computational and Applied Mathematics, 298, 190-200 (2016). 

[4] M. Ozkut and S. Eryilmaz, Reliability analysis under Marshall–Olkin run shock model, Journal of Computational and 
Applied Mathematics, 349, 52-59 (2019). 

[5] S. Ashrafi, R. Rostami, and M. Asadi, Preventive Maintenance for Systems Subject to Marshal-Olkin Type Shock 
Models, in Proceeding of Reliability Seminar on th 5 The Theory and its Applications, 38, (2019).  

[6] M. Ozkut and K. Cihangir, On the coherent systems subject to Marshall-Olkin type shocks, Mathematical Sciences and 
Applications E-Notes, 8, 185-192 (2020). 

[7] S. Ashrafi, M. Asadi, and R. Rostami, On preventive maintenance of k-out-of-n systems subject to fatal shocks, 
Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, (2023). 

[8] S.-H. Sheu and C.-T. Liou, "Optimal replacement of a k-out-of-n system subject to shocks, Microelectronics 
Reliability, 32, 649-655 (1992). 

[9] G. Skoulakis, A general shock model for a reliability system, Journal of applied probability, 37, 925-935, (2000). 

[10] S. Eryilmaz and Y. Devrim, Reliability and optimal replacement policy for a k-out-of-n system subject to shocks, 
Reliability Engineering & System Safety, 188, 393-397 (2019). 

[11] M. Ozkut and I. Bayramoglu, On Marshall–Olkin type distribution with effect of shock magnitude, Journal of 
computational and applied mathematics, 271, 150-162 (2014). 

[12] S. Bakry and N. Mokhlis, Reliability of a k-out-of-n: G System Subjected to Marshall-Olkin Type Shocks Concerning 
Magnitude, Journal of Statistics Applications & Probability, 12, no. 3, 1143-1153 (2023). 

[13] H. A. David and H. N. Nagaraja, Order statistics. John Wiley & Sons, (2004). 

[14] K. V. Mardia, Multivariate pareto distributions, The Annals of Mathematical Statistics, 1008-1015 (1962). 

[15] P. Sankaran and N. U. Nair, A bivariate Pareto model and its applications to reliability, Naval Research Logistics 
(NRL), 40, 1013-1020 (1993). 

[16] J. Navarro, J. M. Ruiz, and C. J. Sandoval, Properties of systems with two exchangeable Pareto components, Statistical 
Papers, 49, 177-190 (2008). 

 

 

 


