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Abstract: This paper presents chaos synchronization between two identical chaotic systems via nonlinear control technique. The

used system is complex Rössler system. The maximal Lyapunov exponent and the sensitivity on initial conditions are calculated of

such system and they emphasis its chaotic behavior. The nonlinear control method has been applied successfully to synchronize the

proposed system. Based on Lyaponov function the control input vectors are selected and activated to achieve synchronization. Finally,

the numerical simulation are used to show the robustness and effectiveness of proposed method.
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1. Introduction

Since the original papers by Pecora and Carrol’s of
chaotic synchronization [1,2], this topic has attracted the
interest of many researchers and is still an important
problem in the modern theory of nonlinear oscillator. This
interest is related to the fact that the phenomenon of chaos
synchronization is a key of secret communication [3,4,5,
6] and also for its application of numerous problems in
biology , chemistry, physics, electrical and automation
engineering [7,8,9,10,11,12,13], etc. Generally the
synchronized systems usually consists of two parts: the
master (drive) system and slave (response) system. The
idea of synchronization is to use the signal generated by
the master system as an input in the slave system, so that
the trajectory of the slave system asymptotically
approaches that of the master system and the error signal
is zero [14].

Some techniques have been made recently to solve the
problem of chaos synchronization, such as active control,
generalized active control, backstepping design, nonlinear
control [15,16,17,18,19] and so on. The nonlinear
control technique is the one of these important methods,
where it is effective method for making two identical
chaotic systems or two different chaotic systems be
synchronized. However, this method usually assumed that
the Lyapunov function of error dynamic of
synchronization is formed as: v(e) = 1

2
expT e [15].

Nonlinear dynamical systems of complex nonlinear

oscillators constitute some of the most fascinating
development in physics and mathematics. A natural way
to obtain complicated dynamical system is to couple
several identical simple oscillators is rather rich and can
display properties which are not observed in the behavior
of the individual oscillator. The complex variable are a
more convenient way to study these coupled oscillators.
The advantage of introducing complex variables is that
the reduction of the dimensions of phase aces to the half
and equation of motions become easier to study.

Several researchers have used the chaotic and
hyperchaotic Rössler system as a standard examples of
chaos synchronization and control strategy [17]. If we
replace the variables (x,y,z) of Rössler system by
complex variables x1 + ix2,x3 + ix4,x5 + ix6 respectively,
we will obtain the new system called the complex Rössler
system which exhibit chaotic behavior. Here, we will
apply the nonlinear control technique to synchronize two
identical complex Rössler chaotic system and determine
the controller based on Lyapunov function.

The rest of this paper is organized as follows: In
section 2, complex Rössler system is introduced. The
maximal Lyapunov exponent and the sensitivity of initial
conditions of the system are calculated and plotted to
show the chaotic behavior of proposed system. In section
3, theory of nonlinear control is presented. In section 4,
the theory of nonlinear control is applied to study the
chaos synchronization of two identical complex Rössler
system. Also, we calculate the Lyapunov function to drive
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the expression of the control input vectors. The numerical
simulations are presented in section 5 to show the
robustness and effectiveness of the method. Finally, the
present work is concluded in section 6.

2. System description

In 1976, Rössler [20] first introduced Rössler system
which has a standard chaotic system to verify the
effectiveness of the chaos control strategy. The so called
Rössler system is arose from work in chemical kinetics.
The system is described with 3 coupled nonlinear
differential equations.

ẋ = −y− z,

ẏ = x+a y, (1)

ż = b+ z(x− y).

For the parameter values ( a = b = 0.2 and 5.7 ) system
(1) exhibit the well known chaotic attractor. Here, if we
replace the real variables (x,y,z) of system by complex
variables x = x1 + i x2, y = x3 + i x4 and z = x5 + i x6 we
will get the complex Rössler system of the form:

ẋ1 = −x3 − x5,

ẋ2 = −x4 − x6,

ẋ3 = x1 +a x3, (2)

ẋ4 = x2 +a x4,

ẋ5 = b− c x5 + x1 x5 − x2 x6,

ẋ6 = −c x6 + x2 x5 + x1 x6.

It easy to check that the system (2) has two nontrivial fixed
points at

x̄1 = {c+ s

2
, 0,

−c− s

2a
, 0,

c+ s

2a
, 0},

x̄2 = {c− s

2
, 0,

−c− s

2a
, 0,

c+ s

2a
, 0}, (3)

where s =
√
−4ab+ c2, Also the Jacobian of system (2) is

A =















0 0 −1 0 −1 0
0 −1 0 −1 0 0
1 0 a 0 0 0
0 1 0 a 0 0
x5 −x6 0 0 x1 − c −x2

x6 x5 0 0 x2 x1 − c















For the parameter values (a = b = 0.2 and 5.7) the fixed
points becomes:

x̄1 = {0.0070262, 0, −0.035131, 0,0.035131, 0}
x̄2 = {5.69297, 0, −28.4694, 0,28.4694, 0}
The value of x̄2 makes the Trac A < 0, then system (2) is
dissipative and exhibit chaotic attractor as shown in

Figure 1: Chaotic behavior of system (2.2) for For the
parameter values (a = b = 0.2 and 5.7) and x(0) =
(0.1,0,0.1,0,0.1,0)T .

Figure 1(a-c) with: x(0) = (0,1,0,0,1,0,0,1,0)T .

The maximal Lyapunov exponent of system (2) with
the same parameter values and initial conditions of Figure
1 is calculated and it is positive as shown in Figure (2a).
Also Figure (2b) displays two solutions of system (2)
with two close initial conditions:
x1(0) = (0,1,0,0,1,0,0,1,0)T
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x2(0) = (0.1+0.001,0+0.001,0.1,0,0.1,0)T

Despite the slight change in the terms of the primary, but
the solutions separated after a short time, as shown in
Fig.2.

Figure 2: (a) Maximal Lyapunov exponent of system (2)
with the same parameter values and initial conditions of
Figure 1. (b) Two closed solution of system (2) with
the same parameter values of Figure 1 and the initial
conditions are: solid line:x(0) = (0.1,0,0.1,0,0.1,0)T and
dashed line: x(0) = (0.1+0.001,0,0.1,0,0.1,0)T .

3. Design of nonlinear control method

Consider a chaotic system described by the following
relation:

ẋ1 = A1 x1 +h1(x1) (4)

Where x1(t) is the n-dimensional state vector of the
system,is the matrix of the system, A1 ∈ R

n×n parameters,
and h1(x1) : Rn → R

n is the nonlinear function of the
system.

The equation (4) is considered as the master system
and the slave system is obtained by adding the control
input vector u ∈ R

n to the master system (4), so the slave
system is described as follows:

ẋ2 = A2 x2 +h2(x2)+u (5)

Where x2(t) ∈ R
n is the state vector of the system,

A2 ∈ R
n×n is the matrix of the slave system parameters,

and h2(x2) : Rn → R
n is the nonlinear part of the slave

system. A1 = A2 and h1(x1) = h2(x2) for two identical

chaotic systems, A1 6= A2 and h1(x1) 6= h2(x2) for two
different chaotic systems.

The considered synchronization problem is to design
an appropriate controller such that the trajectory of the
slave system asymptotically approaches the one of the
master system. We subtract equation (4) from equation (5)
to get the dynamics of synchronization errors as follows:

ė = A2 x2 +h2 (x2)+u−A1 x1 +h1(x1) (6)

Where e = x2 − x1 is the function of the error vector. The
aim of synchronization is to make the error vector e
converges to zero as time goes to infinity.
We suppose the following Lyapunov error function:

v(e) =
1

2
expT e (7)

Where v(e) is a positive definite function. Assuming that
the parameters of the master and slave systems are known
and the states of both system are measurable. The
synchronization is achieved by selecting the controller u
to make the first derivative of (7) is negative i.e. v̇(e) < 0.
Then the master system and the slave system are
synchronized with each other.

4. Synchronization of two identical complex

Rössler system

In this section we will use the nonlinear control method to
synchronize two identical complex Rössler chaotic
system. We consider the equation (2) is a master system
and the slave system is given by:

ẏ1 = −y3 − y5 +u1,

ẏ2 = −y4 − y6 +u2,

ẏ3 = y1 +a y3 +u3,

ẏ4 = y2 +a y4 +u4, (8)

ẏ5 = b− c y5 + y1 y5 − y2 y6 +u5,

ẏ6 = −c y6 + y2 y5 + y1 y6 +u6.

Where u = [u1,u2,u3,u4,u5,u6]
T is the control input

vector to be determined and T is the transpose. We wish
to estimate an appropriate nonlinear controller
ui, i = 1, ....,6 such that the trajectory of the slave system
asymptotically approaches the trajectory of the master
system. Hereby, the two systems are synchronized. To do
that let us consider the error equation is :
ei = yi − xi, i = 1, ....,6.
According to the nonlinear control method we subtract
system (8) from system (2) to give:

ė1 = −e3 − e5 +u1,

ė2 = −e4 − e6 +u2,

ė3 = e1 +a e3 +u3, (9)

ė4 = e2 +a e4 +u4,

ė5 = −c e5 +(y1 y5 − x1 x5)− (y2 y6 − x2 x6)+u5,

ė6 = −c e6 +(y2 y5 − x2 x5)+(y1 y6 − x1 x6)+u6.
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System (9) can be considered as a control problem with
control input vector vi which is a function of the error
vector ei. Consider a Lyapunov function candidate of the
form:

v(e) =
1

2
eT e. (10)

In order to make the time derivative of is negative, we must
select the controller ui as follows:

u1 = e3 + e5 − e1,

u2 = e4 + e6 − e2,

u3 = −e1 −2a e3, (11)

u4 = −e2 −2a e4,

u5 = u5 a +u5 b,

u6 = u6 a +u6 b.

Where :

u5 a = (y2 y6 − x2 x6)− (y1 y5 − x1 x5),

u5 b = (c−1) e5, (12)

u6 a = −(y2 y5 − x2 x5)− (y1 y6 − x1 x6),

u6 b = (c−1) e6.

With this choice of the controller ui the time derivative of
(10) becomes:

v̇(e) = −e2
1 − e2

2 −a e2
3 −a e2

4 − e2
5 − e2

6 < 0. i f a > 0 (13)

Since v̇(e) is a negative-definite function, the error states
limt→∞ ‖e(t)‖ = 0, implying synchronization of
master-slave systems.By using the equations (11) and
(12) the final form of the slave system is :

ẏ1 = x1 − x3 − x5 − y1,

ẏ2 = x2 − x4 − x6 − y2,

ẏ3 = x1 +2a x3 −ay3, (14)

ẏ4 = x2 +2a x4 −ay4,

ẏ5 = b− y5 + x1 x5 − x2 x6 +(1− c)x5,

ẏ6 = −y6 + x2 x5 + x1 x6 +(1− c)x6.

5. Simulation results

The two systems (1) and (13) are solved numerically by
using the software Mathematica 5.1.The parameters are
selected as a = b2 and c = 5.7 the initial conditions are:

x(0 = (0,1,0,0,1,0,0,1,0)T

y(0) = (−3.9,−4,−1.9,−2,−1.9,−1.4)T

The results are illustrated in Figures 3 and 4 that the
trajectories of the slave system y = (y1,y2,y3,y4,y5,y6)

T

asymptotically approach the ones of the master system
y = (x1,x2,x3,x4,x5,x6)

T as shown in Figure 3(a-c).
Figures 3(a-c) show the time series of signals xi and
yi(i = 1,3,5) respectively. While Figure 4(a-c) displays
the synchronization error ei(i = 1,3,5) versus time. From
these Figures, we can see that the synchronization error ei

eventually converges to zero after short time and the two
identical complex Rössler chaotic systems are
synchronized.

Figure 3: Synchronization of two identical complex
Rössler systems using nonlinear control method (a)
Signals x1 and y1 versus t (b)x3 and y3 versus t (c)x5 and
y5 versus t .

6. Conclusion

In this paper, nonlinear control technique has been used to
synchronize two identical complex Rössler systems. The
maximal Lyapunov exponent and the sensitivity on initial
conditions are calculated to emphasis the chaotic behavior
of that system. The proposed technique is effective and
convenient for synchronization where it has been
successfully applied to synchronize various systems like:
Lorenz, Rössler, Lu and four-scrol attractor. The
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Figure 4: Dynamics of synchronization error for two
identical complex Rössler chaotic systems (a)e1 and e2

versus t (b)e3 and e4 versus t (c) e5 and e6 versus t .

numerical results are presented to show the effectiveness
of this approach. A good agreement is found between the
analytical and numerical calculation.
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