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Abstract: LFAD is a novel locally- and feature-adaptive diffusion based method for removing additive white Gaussian (AWG) noise
in images. The method approaches each image region individually and uses a different number of diffusion iterations per region to
attain the best objective quality according to the PSNR metric. Unlike block-transform based methods, which perform with a pre-
determined block size, and clustering-based denoising methods, which use a fixed number of classes, our method searches for an
optimum patch size through an iterative diffusion process. It is initialized witha small patch size and proceeds with aggregated (i.e.,
merged) patches until the best PSNR value is attained. Then the diffusion model is modified; instead of the gradient value, we use the
inverse difference moment (IDM), which is a robust feature in determining the amount of local intensity variation in the presence of
noise. Experiments with benchmark images and various noise levels showthat the designed LFAD outperforms advanced diffusion-
based denoising methods, and it is competitive with state-of-the-art block-transformed techniques; block and ring artifacts inherent to
transform-based methods are reduced while PSNR levels are comparable.
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1 Introduction

Over the past decade, nonlinear anisotropic diffusion has
drawn considerable attention and experienced significant
developments, as it effectively diffuses noise in the
intra-regions while inhibiting inter-region smoothing.
First introduced by Perona and Malik (PM diffusion) [1],
the diffusion process is mathematically described by the
following equation:

∂
∂ t

I(x,y, t) = ∇• (c(x,y, t)∇I) (1)

where I(x,y,t) is an image, t is the iteration step and
c(x,y,t) is the monotonically decreasing function of the
image gradient called diffusion function. Two diffusivity
functions that have been proposed are:
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where λ is referred to as the diffusion constant.
Depending on the choice of the diffusivity function,
Equation (1) covers a variety of filters. The discrete
diffusion structure is translated into the following form:
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(4)
Subscripts N, S, E, and W (North, South, East, and West)
describe the direction of the local gradient, and the local
gradient is calculated using nearest-neighbor differences
as

∇NIi, j = Ii−1, j − Ii, j ;∇SIi, j = Ii+1, j − Ii, j
∇EIi, j = Ii, j+1− Ii, j ;∇WIi, j = Ii, j−1− Ii, j

(5)

The model in [1] has several practical and theoretical
limits. It needs a reliable estimate of image gradients
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because with an increase in noise level, the effectiveness
of the gradient calculation degrades and thus deteriorates
the performance of the method. Furthermore, an equal
number of iterations in the diffusion of all pixels in the
image lead to blurring of textures and fine edges while the
smooth regions benefit. For demonstration, let us apply
PM diffusion to two different image patches, each
representing a certain structural content, e.g., a texture
and a smooth region. Fig. 1 indicates significant
differences in PSNR values versus iteration numbers for
the provided examples. The examples in Fig. 2 show how
image quality varies between images denoised using two
different iteration numbers, i.e., 22 and 30. In the left
image, pixels are corrupted in a smooth region, and in the
right, details are severely blurred.

Fig. 1: Denoising results for two different structural
contents.

Generally, the effectiveness of the anisotropic
diffusion is determined by (a) the efficiency of the edge
detection operator to distinguish between noise and
edges; (b) the accuracy of an ”edge-stopping” function to
promote or inhibit diffusion; and (c) the adaptability of a
convergence condition to terminate the diffusion process
automatically. Research on diffusion-based denoising
targets one or more of the above factors. Catte et al. [2]
used a smoothed gradient of the image, rather than the
true gradient. Let Gσ be a smoothing kernel; then

∂
∂ t

I(x,y, t) = ∇• (c(‖∇Gσ ∗ I‖)∇I) (6)

The smoothing operator removes some of the noise that
might have deceived the original PM filter. In this case,
the scale parameterσ is fixed. In [3], the authors have
proposed inhomogeneous anisotropic diffusion that
includes separate multiscale edge detection. Yu et al. [4]
have incorporated the SUSAN edge detector into the

model:

∂
∂ t

I(x,y, t) = ∇• (SUSAN(c(‖∇Gσ ∗ I‖))∇I) (7)

Due to noise suppression, the SUSAN can guide the
diffusion process in an effective manner. Li et al. [5]
proposed a context-adaptive anisotropic diffusion via a
weighted diffusivity function. It is represented by the
equation

∂
∂ t

I(x,y, t) = ∇• (w(x,y, t)c(x,y, t)∇I) (8)

where the combined termw(x,y,t)c(x,y,t)is referred to as
the weighted diffusivity function andw(x,y,t) is a pixel-
wise feature dependent weight function.

Fig. 2: PM denoised ”Lena” image for two different
iteration numbers (left = 22 iterations, PSNR = 29.37 dB;
right = 30 iterations, PSNR = 28.52 dB) for AWG noise
level,σ =20.

Chao and Tsai [6] proposed a diffusion model which
incorporates both the local gradient and gray-level
variance. High levels of noise produce larger magnitudes
of variance and gradients than those by objects and
textures. Thus, the method becomes inefficient for high
noise levels. Wang et al. [7] studied a local variance
controlled scheme wherein the spatial gradient and
contextual discontinuity of a pixel are jointly employed to
control the evolution. However, a solution to estimating
the contextual discontinuity requires an exhaustive search
procedure, which causes the algorithm to be too
computationally expensive. Yu and Acton [8] proposed
speckle-reducing anisotropic diffusion (SRAD), which
integrated spatially adaptive filters into the diffusion and
provided considerable improvement in speckle
suppression over other conventional diffusion methods.
Abd-Elmoniem et al. [9] devised a coherence-enhancing
nonlinear coherent diffusion (CENCD) model for speckle
reduction. This method combines isotropic diffusion,
anisotropic coherent diffusion, and mean curvature
motion. The aim is to maximally filter those regions
which correspond to fully developed speckle while
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preserving information associated with object structures.
Zhang et al. [10] presented a Laplacian pyramid-based
nonlinear diffusion (LPND) method where a Laplacian
pyramid was utilized as a multiscale analysis tool to
decompose an image into sub-bands. Then, anisotropic
diffusion of a variable flux is applied to different
subbands was used to suppress noise in each sub-band.
LPND tries to introduce sparsity and multiresolution
properties of multiscale analysis into anisotropic
diffusion. Another approach to context-based diffusion
was researched in [11]. Multi-scale stationary wavelet
analysis of the local neighborhood across the scales
provides edge information partially free of noise and thus
makes tunable diffusion possible. As a result, due to the
shift invariance property of the stationary wavelet
transform, the PSNR has been improved, compared to
Shih’s diffusion [12].

State-of-the art denoising techniques all rely on
patches, whether for dictionary learning [13,14],
collaborative denoising of blocks of similar patches [15],
or non-local sparse models [16]. Regularization with
non-local patch-based weights has shown improvements
over classical regularization involving only local
neighborhoods [17,18,19]. The shape and size of patches
should adapt to anisotropic behavior of natural images
[20,21]. In spite of the high performance of patch-based
denoising methods, they generally produce artifacts even
at comparatively moderate noise levels.

Fig. 3: Results of two patch-based denoising methods:
a) KLLD[14] denoising forσ = 25 and b) BM3D[15]
denoising forσ = 60.

Examples of such visual artifacts are presented in Fig.
3 for two state-of-the-art methods, i.e., KLLD [14] and
BM3D [15]. The size of the patch has a significant impact
on the PSNR value even for similar or identical contents.
Fig .4 shows that equal-size regions of the same structural
content from different parts of the image could be
diffused differently. Thus, both the structural content and
the location of the patch are to be taken into account.
Unlike block-transform based methods such as BM3D,
which perform with a pre-determined optimum block
size, and clustering-based denoising methods, such as

KLLD, which use a predetermined optimum number of
classes, our method searches for an optimum patch size
through iterative diffusion starting with a small patch size,
and proceeds with aggregating patches until a best PSNR
is attained. We use superpixel segmentation [22] because
it produces an over-segmented image of almost
equally-sized patches, and thus is the best choice for
initializing the method. We explain the selection of the
initial number of patches, or, alternatively, the initial size
of the patch for different noise levels. To determine the
amount of diffusion, we use the inverse difference
moment (IDM) feature [23]. We demonstrate that the
feature is robust in estimating local intensity variation in
the presence of noise. Overall, the diffusion process
converges to PSNR levels comparable to those reported
by state-of-the-art methods with less visible
blocking/patching artifacts. The method is called locally-
and feature-adaptive diffusion (LFAD). In Section 2 we
introduce the method and provide implementation details.
Section 3 presents experimental results; thereafter we
conclude in the last section.

2 LFAD: Locally- and Feature-Adaptive
Diffusion

The method performs as follows: a) image is
over-segmented to k approximately equally-sized patches;
b) each patch (region) is diffused individually until a best
PSNR is attained; c) adjacent regions are merged based
on a similarity metric; d) diffusion repeats for merged
regions until PSNR shows improvement or only two
regions are left covering the whole image. Subsections
below discuss each of the above steps.

2.1 Superpixel Segmentation

As discussed above, we need to start with an
over-segmented image. For this purpose, we use the
superpixel segmentation method with a parameterk
which is a desired number of approximately equally-sized
superpixels. The procedure begins with an initialization
step in whichk initial cluster centersCi are sampled on a
regular S- pixel grid space. To produce roughly equally

sized superpixels, the grid interval, S is set:S=
√

N/
k.

The centers are moved to seed locations corresponding to
the lowest gradient position in a 3x3 neighborhood, and
thus avoid centering a superpixel on an edge. This
reduces the chance of seeding a superpixel with a noisy
pixel. Next, in the assignment step, each pixel i is
associated with the nearest cluster center whose search
region overlaps its location. The distance measure D,
determines the nearest cluster center for each pixel. Since
the expected spatial extent of a superpixel is a region of
approximate size SxS, the search for similar pixels is
carried in a region of size 2Sx2S around the superpixel
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(a) Noisy Imageσ = 20

(b) Inside the square (c) Diffusion outcome
(PSNR = 73.54 dB)

(d) Outside the square (e) Diffusion outcome
(PSNR = 65.71 dB)

Fig. 4: Diffusion results of structurally identical patches.

center. Once each pixel has been associated with the
nearest cluster center, an update step adjusts the cluster
centers to be the mean vector of all the pixels belonging
to the cluster. The L2 norm is used to compute a residual
error E between center locations of the new and previous
clusters. The assignment and update steps can be repeated
iteratively until convergence. Experimentally, twenty
iterations are sufficient for most images, therefore, in the
rest of the paper we use this value.

2.2 Region (patch) Merging

If imageI is partitioned into sub-regionsR1, R2,. . . , Rn. ,the
following properties must hold true:

1.R1∪ R2∪. . .∪Rn = I;
2. Ri is connected;
3. Ri∩ Rj is empty.

The regions are merged based on the similarity metric
which is chosen to be the intensity variance. Let us denote
a pair of adjacent regionsRi ˜ Rj and merged regionsRi ∪
Rj . The region merging algorithm performs according to
the following steps:

1.For∀ Ri ˜ Rj , if σ j
2 = α*σ i

2 thenRm=Ri ∪ Rj
2. If Rm 6= I, Incrementα. Goto Step 1; otherwise
3. Stop.

2.3 Modified Diffusion

The normalized inverse difference moment (IDM)
characterizes both coarse and fine structures. The IDM
has small contributions from homogenous region and
larger values from non-homogenous regions. Ranging
between 0 and 1, a value of IDM equal to 0 indicates a
pixel being part of a homogenous neighborhood. A value
equal to 1 indicates that the pixel is a part of texture or an
object boundary. The visualized IDM feature is contrasted
with the gradient image in Fig. 5. IDM is calculated in
9x9 windows centered at pixel (i,j). Fig. 6 shows the line
profile plots for both IDM and gradient values across the
hat area of the ”Lena” image with AWG noiseσ=40. The
figures show that IDM is a robust indicator of the object
boundary and texture edges. The diffusivity function of
Eq. 2 and 3 is modified to the following:

cp = exp

(

−

(

IDM(I)
λ

)2
)

, p= N,S,W,E

and

cp =
1

1+
(

IDM(I)
λ

)2 , p= N,S,W,E

(9)

where

IDM = 1−
G−1

∑
i=0

G−1

∑
j=0

1
1+(i − j)2 P(i, j) (10)

Given an MxN neighborhood containing G gray levels, let
f(m,n) be the intensity at sample m, line n of the
neighborhood. Then

P(i, j|∆x,∆y) =W ·Q(i, j|∆x,∆y)

where
W = 1

(M−∆x)(N−∆y) ;

Q(i, j|∆x,∆y) = ∑N−∆y
n=1 ∑M−∆x

m=1 A

and

A=

{

1,
0,

i f f (m,n) = i and f(m+∆x,n+∆y) = j
elsewhere

}
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Fig. 5: First column: Gradient image for AWG noiseσ
=20, 40 for ”Lena”; Second column: IDM image for AWG
noiseσ=20, 40.

Fig. 6: Left: ”Lena” image with AWG noiseσ =40; Right:
IDM and gradient values along a line (red) segment in the
”Lena” image.

2.4 Parameter Selection: Patch Size and
Diffusion Constant

Levin and Nadler [24] derive bounds on how well any
denoising algorithm can perform. The bounds are
dependent on the patch size, where larger patches lead to
better results. For large patches and low noise, tight
bounds cannot be estimated. The result suggests a novel
adaptive variable-sized patch scheme for denoising.
Chatterjee [25] found that smaller patches can lead to

performance degradation from the lack of information
captured by each patch, and large patches might capture
regions of widely varying information in a single patch
and also result in fewer similar patches being present in
the image. It was shown also that clusters with more
patches are denoised better than clusters with fewer
patches, and the bound on the predicted MSE increases at
different rates as the patch size grows from 5x5 to 19x19.
Thus, it was concluded that a patch size of 11x11 can
capture the underlying patch geometry while offering
sufficient robustness in the search for similar patches. The
BM3D uses blocks of 8x8 for low noise levels,
i.e.,σ<=40 and 11x11 for the Wiener filter at the post
processing step, and 12x12 patches for hard thresholding
of transform coefficients for noise levels withσ>40.

Fig.7 displays the relationship between PSNR versus
patch area size for noise levelsσ=20 andσ=50 for the
”Lena” image. It clearly shows that for the low noise level
σ=20, PSNR reaches its maximum around a patch area
size of 50-80, and for the high noise levelσ=50, PSNR
reaches its maximum around a patch area size of 110-140.
In our work, we calculate the bounds with a patch area of
64 pixels for low noise levels, i.e.,σ<=40, and a larger
patch of 120 pixels for high noise levels, i.e.,σ>40. To
make an automatic selection of the patch size, one can use
one of several available methods for estimation of the
noise standard deviation. For example, one can suppress
the image structure using the Laplacian mask such that
the remaining part of the image is noise [26].

Fig. 7: PSNR versus patch size (area in pixels) with AWG
noiseσ=20 andσ=50 for the ”Lena” image.

The diffusion equation needs the value of the diffusion
constant,λ . Fig. 8 displays PSNR values of the outcomes
of IDM based diffusion for a fixed noise level (σ=50) with
different values ofλ (i.e., λ = 5, 10, 15, 25, and 50) for
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1000 iterations for the ”Lena” image. The plot indicates
thatλ=10 is the best choice.

Fig. 8: PSNR obtained using IDM withλ=5, 10, 15, 25,
and 50 with AWG noiseσ=50 for the ”Lena” image.

2.5 LFAD Algorithm

Let us denote I - input image, k - number of regions, m
- number of merging steps, Var -intensity variance and n -
number of diffusion steps. The method performs according
to the following steps:

1.Initialize m=0,α = 1.1, λ =10. Segment image into k
(k6=1) regions.

2. Initialize n=0. Calculate PSNR for each region of
initial partition, i.e.,[PSNRk

(0)]0 .
3. Iteration step: Diffuse image pixel Ii, j using Eq.(4).
4. For ∀Ri : if [PSNRk

(n+1)]m > [ PSNRk
(n)]m, Goto

Step 3; else Goto Step 6.
5. While Rm 6= I, for ∀ Ri ˜ Rj, if Var(Rj ) = α* Var(Ri),

then Ri ∪ Rj ; m=m+1; update k;, Goto Step 2, else
Repeat Step 5 withα = α+0.1.

6. Stop.

3 Experimental Results

The LFAD is tested on a number of benchmark images
degraded by AWG noise ofµ=0 andσ = 10, 20, 30, 50,
and 100. The comparison is made to other diffusion
models such as PM[1], Catte[2], Li[ 5], LVCFAB[7],
GSZFAB[27], and RAAD[28]. We also compare the
method to the state-of-the-art denoising BM3D method.

The evaluation is performed first based on PSNR
calculated as follows:

PSNR= 10log
I2
max

MSE
(11)

where MSE is a mean square error. Additionally, we
evaluate the method using the universal image quality
index (UIQI) given by

Q=
4σxyxy

(

σ2
x +σ2

y

)

[

(x)2+(y)2
] (12)

where x, y are the means;σx , σy are the standard
deviations;σxy is the covariance. As mentioned in [29],
the average quality index UIQI reflects the mean
subjective ranks of observers.

The above specified parameters were used to obtain
Table 1, which shows PSNR values by the LFAD for
benchmark images. Next, in Table 2, the LFAD is
compared to the six diffusion based methods. The
improvement by LFAD for the given noise levels ranges
from 1.3 dB for low noise to 1.59dB for AWG noise
σ=100. It is interesting to note that, compared to the
reference PM method, the use of the IDM feature helped
with improving PSNR by 0.65db for low noise levels to
1.03 dB for higher noise.

The comparison to the state-of-the-art denoising
method, i.e., BM3D, shows that the performance of
LFAD is 0.35 dB lower compared to that of the BM3D
for noise levelσ=10 and 0.39 dB lower for noise level
σ=100. Results for BM3D are publicly available at
http://www.cs.tut.fi/˜foi/GCF-BM3D/index.html and
therefore are not reproduced here. Table 3 provides UIQI
values by the LFAD and BM3D, and Table 4 provides
UIQI values by the LFAD and state-of-the-art diffusion
models for same benchmark images. It follows from
Tables 3 and 4 that according to this metric the proposed
method outperforms the state-of-the-art diffusion models.
Only for the ”Cameraman” image with AWG noise,σ=10
it shows lower performance. The proposed method shows
similar as to BM3D. For high noise, i.e.σ=10 in
”Peppers” image, the proposed method outperforms
BM3D. Fig. 9 shows that fewer blocking/ringing artifacts
are introduced by LFAD than by the BM3D. The
denoising performance of the LFAD is further illustrated
in Fig. 10 and Fig. 11, where we show fragments of noisy
(i.e.,σ=10, 20, 30, and 50) test images and corresponding
denoised fragments. It is notable that in the regions of
smooth intensity transition, the quality of denoising is
higher, and lesser or no ringing is observed around
contours of extended objects.
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Fig. 9: First row: ”Lena” image and that with AWG noise,σ =100; Second row: Results by BM3D and LFAD. Arrows
show areas where LFAD performs comparatively better than BM3D.
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Fig. 10: First column: ”Lena” image with AWG noise,σ =10, 20, 30, and 50; Second column: corresponding results by
the LFAD.
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Fig. 11: First column: ”Peppers” image with AWG noise,σ =10, 20, 30, and 50; Second column: corresponding results
by LFAD.
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4 Conclusion

We have proposed a new locally- and feature-adaptive
diffusion based method of image denoising from AWG
noise. The high performance of the method stems from
the following properties: a) patch-based optimization of
PSNR; b) region merging and repetitive iteration of the
process; and c) modification of the diffusion function, i.e.
usage of the IDM feature instead of the gradient value.
The method has attained the highest performance in the
class of advanced diffusion based methods. It is also
competitive with the state-of-the-art BM3D method.
Visible blocking and ringing artifacts generally inherent
to block- and transform-based methods are reduced.
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