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Abstract: In the present paper, the main theorems of the classical Laplace transform are generalized in the non-conforming Laplace

transform with nucleus et−α

. We calculate the Laplace transform of non-conforming agreement of this kernel from some elementary

functions and establish the non-conforming version of the transform of the successive derivative, the integral of a function and the

convolution of fractional functions. In addition, the bounded and the existence of the non-conforming Laplace transform is presented.

Finally, we show the application of N1− Transform to solving fractional differential equations.

Keywords: Laplace fractional transform, fractional calculus

1 Introduction

What we know today as Fractional Calculus is the
compendium of results found as a product of research and
application developed from the answer given by
L’Hopital to a question asked by Leibinitz [1–3]. In this
context, derivatives and integrals of arbitrary order are
defined. In some goodbooks and important research
articles the contributions of the fractional calculus to
science, engineering, applied mathematics, economics
and biomechanics are explored [4–10].

The Riemann–Liouville, Caputo, Hadamard,
Caputo–Hadamard, Erdélyi–Kober, Weyl, Marchaud and
Riesz fractional derivative operator have been introduced
to date [11]. All of them satisfy the property of linearity,
but unfortunately the product rule of two functions, the
chain rule and other properties are dissatisfying. Khalil et
al. [12] proposed the so-called conformable fractional
derivative of order α,0 < α < 1, to generalize classical
properties of integer–order calculus and proved the
conformable fractional Leibniz rule. Furthermore,
Abdeljawad in [13] generalized the conformable
operators to higher orders, presented for instance the

chain rule, integration by parts and Taylor series
expansion. Consequently, the conformable derivative
satisfies almost all the classical properties that the
derivative holds. Some other works make refer to this
conformable fractional derivative.

2 Preliminaries

Now, we present the definition of the non conformable
derivative with its important properties which are useful
for obtaining our main results, explained in the following
definition [14, 15]:

Definition 1. Given a function h : [0,∞)→ R. Then, the

non conformable fractional derivative Nα
1 h(t) of order

α ∈ (0,1) of h at t ∈ [0,∞] is defined by

Nα
1 h(t) = lim

ε→0

h
(

t + εet−α
)

− h(t)

ε
. (1)

We will say that h is Nα
1 −differentiable in a point t of

(0,∞) if the limit (1) exists. Also, h is Nα
1 −differentiable
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on A, where A ⊂ (0,∞) if h is Nα
1 −differentiable in every

point of A. If h is Nα
1 −differentiable in some (0, t), and

limt→0+ Nα
1 h(t) exists, then define

Nα
1 h(0) = lim

t→0+
Nα

1 h(t).

Remark. In addition, note that if h is differentiable, then

Nα
1 h(t) = et−α

h′(t), (2)

where h′ is the ordinary derivative.

We can write h(α)(t) for Dα(h)(t) or dα

dα t
(h(t)) to

denote the non conformable derivatives of h of order α at
t. In addition, if the non conformable derivative Nα

1 of h

of order α exists, then we simply say h is
N-differentiable.

We list some basic properties related to the Nα
1

derivative [15, Theorem 2.3].

Theorem 1.Let α ∈ (0,1] and f ,g be Nα
1 −differentiable

at a point t > 0. Then,

1. Nα
1 (u f + vg) = uNα

1 ( f )+ vNα
1 (g) for all u,v ∈ R,

2. Nα
1 ( f g) = f Nα

1 (g)+ gNα
1 (h),

3. Nα
1

(

f
g

)

=
f Nα

1 (g)−gNα
1 ( f )

g2 ,

4. Nα
1 (λ ) = 0 , λ ∈ R,

5. Nα
1 (t p) = et−α

pt p−1,

6. If f is differentiable, then Nα
1 f (t) = et−α

f ′(t)

Also some results for classical functions are found
using the property 6 in the previous
theorem. [15, Theorem 2.7].

Theorem 2. We have

1. Nα
1 (1) = 0

2. Nα
1 (ect) = cectet−α

3. Nα
1 (sin(bt)) = bet−α

cos(bt)

4. Nα
1 (cos(bt) =−bet−α

sin(bt)

Some important properties with respect to this
definition of non-conformable fractional derivative have
been proved in [14, 15]. Among them are the following:
the determination of the monotony of the function from
the sign of the fractional derivative [14, Theorem 2.2], the
Racetrack type principle [14, Theorem 2.3], Rolle’s
theorem [14, Theorem 2.6], the mean value
theorem [14, Theorem 2.7], the determination of the
uniform continuity of a function from the boundedness of
the fractional derivative [14, Theorem 2.10], the
representation of a function by Taylor series [14, Theorem
2.13], the chain rule [15, Theorem 3.1]

The following function will play an important role in
our work.

Definition 2. Let α ∈ (0,1) and c a real number. We
define the fractional exponential in the following way

E
n1
α ,c(t) = ec

∫ t
0 e−u−α

du.

Now, we give the definition of non conformable
fractional integral:

Definition 3. Let α ∈ (0,1] and 0 ≤ u ≤ v. We say that a

function h : [u,v]→ R is α-fractional integrable on [u,v],
if the integral

N1
Jα

u h(x) =

∫ x

u
e−t−α

h(t)dt

exists and is finite.

The following statement is analogous to the one known
from the Ordinary Calculus (see [17]).

Theorem 3. Let f be N-differentiable function in (t0,∞)
with α ∈ (0,1]. Then for all t > t0 we have

a)If f is differentiable N1
Jα

t0
(Nα

1 f (t)) = f (t)− f (t0).

b)Nα
1

(

N1
Jα

t0
f (t)

)

= f (t).

Proof.

a) From definition we have

N1
Jα

t0
(Nα

1 f (t)) =

∫ t

t0

e−s−α

Nα
1 f (s)ds

=

∫ t

t0

e−s−α

es−α

f ′(s)ds

= f (t)− f (t0).

b) Analogously we have

Nα
1

(

N1
Jα

t0
f (t)

)

= et−α d

dt

[

∫ t

t0

e−s−α

f (s)ds

]

= f (t).

The proof is complete.

An important property in our work is established in the
following result:

Theorem 4. [Integration by parts] Be the functions u,v
N-differentiable functions in (t0,∞) with α ∈ (0,1]. Then
for all t > t0 we have

N1
Jα

t0
((uNα

1 v)(t)) = [uv(t)− uv(t0)]−N1
Jα

t0
((vNα

1 u)(t))

Proof. It is sufficient to use Theorem 1 and Theorem 3.

In this paper we establish the first results to formalize
a new version of a Laplace Transform which will allow its
application to a wide class of fractional differential
equations. In the conformable case, there are some
attempts that can be consulted in [18–23].

3 Main Results

Definition 4. (Exponential order) A function f is said to
be of generalized exponential order if there exist constants
M and a such that | f (t)| ≤ ME

n1
α ,a(t) for sufficiently large

t.
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We are now in a position to define the non conformable
fractional Laplace Transform.

Definition 5. Let α ∈ (0,1) and c be a real number. Let
f be a real function defined for t ≥ 0 and consider s ∈ C.
If the integral

N1
Jα

0,+∞

(

E
n1
α ,−s f

)

=
∫ +∞

0
e−t−α

E
n1
α ,−s(t) f (t)dt

converge for the given value of s, you can define the

function F given by the expression

F(s) =N1
Jα

0,+∞

(

E
n1
α ,−s f

)

, (3)

and we will write F = LN1
( f ).

To the operator LN1
we will call it the N1-Transformed

of Laplace and we will say that F is the N1-Transformed
of f . In turn, f is the N1-Inverse transform function of F
and we will write it as f = L

−1
N1

{F}, where L
−1
N1

is the

N1-transformed inverse Laplace operator.
As in the classic case, we must impose conditions to

(3), so the previous definition makes sense. If f satisfies
the following two conditions:

1. f is a piecewise continuous in the interval (0,T ] for
any T ∈ (0,+∞).

2. f is of generalized exponential order; that is, there
are positive constants M and a, satisfying Definition 4
with Re(a− c)< 0 and | f (t)| ≤ ME

n1
α ,a(t) for all t and

α ∈ (0,1],

then the N1-Transformed of Laplace F(s) of f exists for
s > a. Indeed, since f is of generalized exponential order,
there exists constants T > 0, K > 0 and a ∈ R such that
| f (t)| ≤ KE

n1
α ,a(t) for all t ≥ T and α ∈ (0,1]. Now we

write

I =N1
Jα

0,+∞

(

E
n1
α ,−s f

)

=N1
Jα

0

(

E
n1
α ,−s f

)

(T )+N1
Jα

T,+∞

(

E
n1
α ,−s f

)

= I1 + I2.

Since f is a piecewise continuous, I1 exists. For the
second integral I1, we note that for t ≥ T we have
∣

∣E
n4
α (−s, t) f (t)

∣

∣ ≤ KE
n1

α ,−(s−a)
(t). Thus

N1
Jα

T,+∞

(

E
n1
α ,−s f

)

≤ KN1
Jα

T,+∞

(

E
n1

α ,−(s−a)

)

=
K

s− a
, s > a.

Since the integral I2 converges absolutely for s > a, I2

converges for s > a. Thus, both I1 and I2 exist and so I
exists for s > a. Then we will say that f is an
N1-transformable function.

Theorem 5. Let α ∈ (0,1] so we have

1. LN1
(1) = 1

s
, from here we have LN1

(c) = cLN1
(1)

for any c ∈ R.

2. LN1
(En1

α ,c(t)) =
1

s−c
, c any real number and s− c >

0.

3. LN1
( f (t)En1

α ,c(t)) = F(s − c), with
LN1

( f (t)) = F(s), c any real number and s− c > 0.

4. LN1

(

sin
(

c
∫ t

0 e−u−α

du
))

= c
s2+c2 .

5. LN1

(

cos
(

c
∫ t

0 e−u−α

du
))

= s
s2+c2 .

6. LN1

(

sinh
(

c
∫ t

0 e−u−α

du
))

= c
s2−c2 .

7. LN1

(

cosh
(

c
∫ t

0 e−u−α

du
))

= s
s2−c2 .

Proof. (1) From definition directly.

(2) Consider f (t) = E
n1
α ,c(t) with c ∈ R then

N1
Jα

0,+∞

(

E
n1
α ,−s(t)E

n1
α ,c(t)

)

=N3
J

α ,∞
0 E

n1

α ,−(s−c)(t)

=
1

s− c
.

(3) Suppose LN f (t) = F(s) for s > k. Hence we have

N1
Jα

0,+∞

(

E
n1
α ,−s(t)E

n1
α ,c(c, t) f (t)

)

=N1
Jα

0,+∞

(

E
n1

α ,−(s−c)(t) f (t)
)

= F(s− c), s− c > k.

(4) Using the definition of the N1−transform we have

∫ +∞

0
e−t−α

E
n1
α ,−s(t)sin

(

c

∫ t

0
e−u−α

du

)

dt

=

∫ +∞

0
e−t−α

e−s
∫ t

0 e−u−α
du sin

(

c

∫ t

0
e−u−α

du

)

dt

=

∫ +∞

0
e−su sin(cu)du,

using integration by parts we obtain the desired result.
(5) Similar to previous one.
(6) and (7). Using the definition of sinh and cosh; the
Definition 2 and the linearity of the N1−transform we
obtain the desired results.
The proof is complete.

Analogously, the following propositions can be
proved from the definition of N-Transformed and the
non-conformable integral.

Proposition 1. If the functions f and g are

N1−transformable, then there exists the transform of the
sum and is equal to the sum of the transforms, that is

LN1
( f + g) = LN1

( f )+LN1
(g).

Proposition 2. If the function f is N1−transformable
and λ is a real number, then there exists the
N1−transform of product of λ by f and is equal to the

product of λ by the transform of f , i.e.

LN1
(λ f ) = λLN1

( f ).
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Remark. Considering the two previous propositions, we
say that LN is a linear operator.

Proposition 3. If f is a N1−transformable function, then
so is its N1-derivative and you have

LN1
(Nα

1 f ) = sLN1
( f )− f (0). (4)

Proof. LN1
(Nα

1 f ) exists because f is of non
conformable exponential order and continuous. On an
arbitrary interval [a,b] where Nα

1 f is continuous,
integrating by parts in (4) gives

∫ b

a
e−t−α

E
N1
α ,−s(t)N

α
1 f (t)dt

= f (b)EN1
α ,−s(b)− f (a)EN1

α ,−s(a)

+ s

∫ b

a
e−t−α

E
N1
α ,−s(t)N

α
1 f (t)dt.

Without loss of generality, we can consider an interval of
the type [0,K] where Nα

1 f is continuous. So

∫ K

0
e−t−α

E
N1
α ,−s(t)N

α
1 f (t)dt

= f (K)EN1
α ,−s(b)− f (0)

+ s

∫ K

0
e−t−α

E
N1
α ,−s(t)N

α
1 f (t)dt.

Taking the limit K → +∞ across this equality, we obtain
the desired result.

The proof is complete.

Analogously we have

Proposition 4. If the k consecutive derivatives

Nα
1 (N

α
1 (· · · (Nα

1 f ))) are N-transformable, then we have

LN1
[Nα

1 (Nα
1 (· · · (Nα

1 f )))]

= sk
LN1

( f )− sk−1 f (0)−sk−2Nα
1 f (0)

− sk−3Nα
1 (N

α
1 f (0))−·· ·−Nα

1 (N
α
1 (· · · (Nα

1 f (0)))).

Proposition 5. Let g(t) be of non conformable
exponential order and continuous for t ≥ 0. Then

LN1

(

∫ x

0
e−t−α

g(t)dt

)

=
1

s
LN1

{g(x)} .

Proof. Let f (x) =
(

∫ x
0 e−t−α

g(t)dt
)

. Then f is of

exponential order and continuous. So using (4) and
considering f (0) = 0, we obtain the desired result.

The proof is complete.

The following result establishes the relationship
between the classic Laplace Transform and the
N1-transform defined above.

Theorem 6. Let α ∈ (0,1) and f be a N-transformable
function, then we have

LN1
( f ) = L

[

f
(

ln−1/α(z)
)]

,

where L is the classical Laplace transform defined by
L (g) =

∫ +∞

0 e−stg(t)dt.

Proof. With the change of the variables z= et−α

the proof
follows.

One of the most important results of the classic
Laplace Transform is the Convolution Product of two
L -transformable functions. We are already in a position
to provide an analogous result for the N1-transform
defined in (3).

Definition 6. Let f and g be two functions which are
piecewise continuous at each interval [0;T ] and of

generalized exponential order. We define the
N1−convolution of f and g by

( f ∗ g)N1
(t) =

∫ T

0
f (u)g

(

ln1/α(et−α − eu−α

)
)

du

Proposition 6. Let f and g be two functions which are
piecewise continuous at each interval [0;T ] and of

generalized exponential order, then

( f ∗ g)N1
= (g ∗ f )N1

Proof. From definition 6 and the change er−α

= et−α −
eu−α

we establish the desired result.

Theorem 7. Let f and g be two functions which are
piecewise continuous at each interval [0;T ] and of

generalized exponential order, then

LN( f ∗ g)(s) = LN1
( f ).LN1

(g).

Proof. It is sufficient to change the variables

er−α

= et−α − eu−α

and apply the properties of the LN1

operator.

3.1 Existence of non Conformable Laplace

Transform

In this subsection, the bounded and existence of non
conformable Laplace transform are presented.

Theorem 8.Let f be piecewise continuous on [0,∞) and
non conformable exponentially bounded, then

lim
s→∞

LN1
( f )(s) = 0.
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Proof. Since f is generalized order exponential, there
exists t0,M1,c such that | f (t)| ≤ M1E

n1
α ,c(t) for t ≥ t0.

Also, f is piecewise continuous on [0, t0] and so f is
bounded. Accordingly, there exists M2 such that
| f (t)| ≤ M2 for t ∈ [0, t0]. Choosing M = max{M1,M2},
so | f (t)| ≤ ME

n1
α ,c(t) for t ≥ 0. Now we have‘

∣

∣

∣

∣

∫

τ

0
E

n1
α ,−s(t) f (t)dα t

∣

∣

∣

∣

≤
∫

τ

0

∣

∣E
n1
α ,−s(t) f (t)

∣

∣dt

≤ M

∫ τ

0
E

n1

α ,−(s−c)
(, t)dt

=
M

s− c
−

E
n1

α ,−(s−c)
(t)

s− c
.

This gives

lim
τ→∞

∣

∣

∣

∣

∫

τ

0
E

n1
α ,−s(t) f (t)dt

∣

∣

∣

∣

≤ M

s− c
.

This completes the proof.

4 Examples and applications

Example 1.Consider the nonconformable differential
equation:

Nα
1 x(t) = λ x(t), x(0) = x0,α ∈ (0,1]. (5)

Clearly, if α = 1 the equation above is just one of the
simplest classical ordinary differential equations which
are defined by the hypothesis that the rate of growth of a
given function x(t) is proportional to the current value
(e.g. Maltius’s population model), i.e.
x′(t) = λ x(t), x(0) = x0. The exact solution of this is

x(t) = x0eλ t .
Applying the non-conformable Laplace Transform to

both sides of the equation (5), we get

LN1
(Nα

1 x(t)) = λLN1
(x(t)) ,

sXα(s)− x0 = λ Xα(s).

Simplifying this we get

Xα(s) =
x0

s−λ
. (6)

Taking the inverse non conformable Laplace transform
to (6), we get

x(t) = x0E
N1

α ,λ
(t) = x0eλ

∫ t
0 e−u−α

du.

Example 2.Consider the non-conformable fractional
Bertalanffy-logistic differential equation

Nα
1 x(t) = x

2
3 (t)− x(t), x(0) = x0, α ∈ (0,1). (7)

The solution of the classic Bertalanffy-logistic differential

equation x′(t) = x
2
3 (t) − x(t), x(0) = x0 is

x(t) =

[

1+

(

x
2
3
0 − 1

)

e−
t
3

]3

. Using the change variable

z = 3x
1
3 in equation (7), we find

Nα
1 z(t) = 1− 2

3
z(t),z0 = 3x

1
3
0 . (8)

Applying the non conformable Laplace Transform L to
both sides of the equation (8) we obtain

LN(z(t)) =
3

s
+

z0 − 3

s+ 1
3

.

Finally, applying the inverse Laplace Transform we have
the solution of (7) in the form

x(t) =

[

1+

(

x
2
3
0 − 1

)

e
− t1+α

3(1+α)

]3

.

Example 3. Consider the non-conformable fractional
differential equation

Nα
1 (Nα

1 x(t))+ cx(t) = 0, α ∈ (0,1], (9)

with the initial conditions x(0) = x0, Nα
1 x(0) = 0.

Clearly, if α = 1 the previous differential equation
approximates the characterization of small oscillations of
a pendulum, i.e. x′′(t) + cx(t) = 0, x(0) = x0, x′(0) = 0
where c = g

L
with g the gravity acceleration an L the

length of the pendulum rod. The exact solution to this

problem is x(t) = x0cos
√

ct = x0cos
√

g
L

t. Applying the

non-conformable Laplace Transform to both sides of the

equation (9) we get (s2 + c)X(s) − sx0 = 0. Thus
X(s) = sx0

(s2+c)
. Taking the inverse non-conformable

Laplace transform we obtain x(t) = x0cos
(√

g
L

tα+1

α+1

)

.

Example 4. Now consider the circuit consisting of a
voltage source v(t) in series with a resistor (R), a
capacitor (C) and an inductor (L), as well as a switch that
can be in the open or closed position. The circuit equation
in the time domain is
Rx(t) + 1

c

∫ t
0 x(u)du+ vC(0)+Lx′(t) = v(t). We assume

that x(0) = 0 (i.e. the switch is open until t = 0, allowing
the capacitor to maintain its initial condition vC(t) before
that moment), and v(t) = A. The corresponding
non-conformable fractional differential equation is

Rx(t)+
1

c NJα
0 (x)(t)+ vC(0)+LNα

1 x(t) = A,α ∈ (0,1].

Applying the non-conformable Laplace Transform to

both sides of above equation, we get X(s) = A−vC(0)

L(s2+ R
L s+ 1

LC )
.

The poles of the characteristic equation can be obtained

as s = − R
2L

± i

√

1
LC

−
(

R
2C

)2
= −σ ± iw. Assuming the
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radicand is positive we have X(s) = A−vC(0)

L((s+σ)2+w2)
. Taking

inverse N1−transform and reorder we get

x(t) = A−vC(0)
wL

E
N1
α ,−σ (t)sin

(

w tα+1

α+1

)

.

5 Conclusion

The present paper aimed to generalized the main
theorems of the classical Laplace Transform into the
non-conformable Laplace Transform. The goal has been
achieved and the non-conformable derivative definition
has been used to construct some of these theorems and
relations. We calculated the non-conformable Laplace
Transform from some elementary functions and
established the non-conformable version of the transform
of the successive derivative, the integral of a function and
the convolution of the fractional functions. In addition,
the bounded and the existence of the non-conformable
Laplace Transform were presented. The findings of this
study indicate that the results obtained in the fractional
case are adjusted to the results obtained in the ordinary
case. Finally, we showed the application of the
N1−Transform to the resolution of fractional differential
equations.
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de Catalunya under the
supervision of Tere M-Seara.
His main research interest
are in the areas of dynamical
systems, differential
equations, numerical methods
and applied mathematics. He

has published research articles in reputed international
journals of mathematics. He has also been a visiting
professor at universitat Politécnica de Catalunya
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