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Abstract: In recent years, new classes of convex functions have béemiced in order to generalize the results and to obtain new
estimations. In this paper, we give generalization of thesdga’s inequality by using definition of convex functionsrestoordinates.
Results given in10] are particular cases of results given here.
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1 Introduction coordinates. A function f : [a,b] x [c,d] — R,
[a,b] x [c,d] € R? with a < b andc < d, is called convex

Jensen’s Inequality, was an inequality discovered by theon coordinates if the partial mappinds : [a,b] — R

Danish mathematician and engineer Johan L. W. V.defined asfy(u) := f(u,y) and fy : [c,d] — R defined as

Jensen (1859-1925), sed, [relates the value of a convex f,(v) := f(x,v) are convex, where defined for glE [c, d]
function of an integral to the integral of the convex gndx e [a,b]

function. The concept of convexity and its various
generalizations is very important in various fields of
mathematics as well as the area of applied mathematic%O
The origin of interest in convexity arises from areas of
application related to fixed point theory and optimization
theory (see,9,11]). Theorem 2. Suppose that
A set of inequalities in literature, are due to convex
functions see 1,2,3,4,6,7,13. One of the classical ()
inequalities is presented in the following theorem: (i) p:Q—R,pell(y)andw: Q; — R, we L (u)
are nonnegative functions such thgg, pdu # 0 and

Jensen-type inequalities for convex functions on the
ordinates were investigated ih]. In the same paper
the following two theorems were proved:

(Q1,47, ) and (Qz, A, V), are measure spaces;

Theorem 1. Let (Q,<7, ) be a measure space, let.g

Q — 1,1 CR, be afunction from £(u) and p: Q — R be Ja,Wav #0,
a nonnegative function fromt(y) such that/, pdu # 0. (i) g: Q1 —1,gel®(u)andh: Q; —1, helL®(v),
Then for any convex functiah: | — R, the inequality ,LJCR;
1 1 i : h dinates om |
‘ du) < - / d 1 (iv) ¢ :1xJ— R, are convex on the coordina
0 (Foan fopek) < oga Lpo@an @ W)

holds. This inequality is a variant of the well-known Then the following inequalities hold:
integral Jensen’s inequality (se&Z]). 171

CDE [5/91 P (g,ﬁ)du+viv/gzw¢ (g,h)dv]

In [14], S. S. Dragomir gave Hadamard'’s inequality 1
for rectangle in plane by defining convex functions on = PTN/_Ql /Qz pwe (g, h)dvdp, (2
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where (i) (Qj,,u;), are measure spaces fo= 1,...,n;

P= pdu, W= / wdv (i) pj:Qj—R,pjeL(y;), are nonnegative functions
1 Q such thathj pjdu; #0forj=1,....m;

_ = 1

9=5 1pgdu, h=— szhdv (i) 9j:Q;—1j,05€L>(y)),ljcRforj=1,....n

Theorem 3. Let ¢ be convex on the coordinates on
| xJ C R2 If x an n—tuple in 1,y an m—tuple in Jp
nonnegative n—tuple, such that 2 3{';pi # 0 andw
nonnegative m—tuple, such thaj\A# XT‘zle #0, then

%lpin_ip@(nyﬂﬁiijxyj)} @)
Ziz PiWj ¢ (X, Yi)

¢ (%y)

IN

<
~ PWhn

where

1
Pnlgip.xh and y—WmZWJyJ

In paper [?], Ghulam Farid and Atig Ur Rehman gave
generalization of the work of S. S. Dragomir (sé&d]) by
defining convex functions on-coordinates as follows:

Definiton 1. Forn> 2, let a,b;; (i = 1,...,n) be real
numbers such thatja< bj for i = 1,...,n. Consider
n—dimentional intervalA" defined aA" = [, (&, bi]. A
mapping f: A" — R is called convex on n—coordinates if

the functions Ng where
fe, ) = f(xy,. ., X1,t,%41,...,%), are convex on
[a,bj] fori=1,...,n.

Recall that a mapping fA" — R is convex iMA" if
for x = (X1,...,%),Y = (Y1,...,¥n) € A" and a € [0,1],
the following inequality holds:

fax+(1—a)y) <af(x)+(1—a)f(y).

The main objective of this paper is to introduce new
inequalities of the type of Jensen for notions of convex =
functions onn—coordinates and show that results proved

in [14] are particular case of results in this paper.

2 Main results

To obtain a generalization of Theore® we introduce

some notation. Throughout the rest of the paper we _

assume that:

¢ :Mj-1!j — R, are convex on the-coordinates on

n .
Mi=1i-

Theorem4. Let ¢.9j and p as the above, for

j =1,...,n. Then the following inequalities hold:
¢ (gla . 7Gr1

—Z P,/ P ®;du;

g iy - ditn,
ﬂj 1P]/Qn /91< ) (91,---,0n)dpg---dpn

(4)

where

o= [ mdm, g - [ pa

| = o PjaH;. 178 Jo, Pjgjal;

and

6] = ¢ (glv s 3gjflagjvgj+la s 7gn)
forj=1,...,n
Proof. Applying the one—-dimensional Jensen’s

inequality (), we get

1
¢ (91,92,.--,0n) < 5/ P1¢ (91.92.---,0n) dps.
1/0Q;

Multiplying the previous inequality byps andé and

integrating overQs. Later applying the one—dimensional
Jensen’s inequalityl§, we obtain

¢ (g17927GBa s 7gn)

P1P3¢ (91,92, - .,0n) dpzdus.

S N
P].P?: Q3.J0Qq
Doing this procedure successively, we have

¢(91792 93:---:0n)
PP Pn/ ! /93 o, (PLPe
¢ (91,9, --,9n) duadpz - fin.
S . . 1
Multiplying the above inequality byp, and 5 and

integrating overQ,. Later by Jensen’s inequalityL), we
obtain

¢(G17GZ7"'7GH)
1
< */ p2§2du

<5
/Qn /QI<E| ) (91;---,0n)dp1---din. (5)

I_IJ lPJ
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Now applying the one-dimensional Jensen’swhere
inequality (), we get

mj
¢ (915927"'aGH—lvgn) )_(j = Pi zlpjixji and
<o [ b )d e
= Pnfl _Qn,l pn—l 917927"'agn Un—l- $]I — ¢ ()_(1,---7)_(j—1,in,)_(j+1,---,)_(n)

Using a procedure similar to that which is done to obtain
the inequality §)

¢1(gl,7'”7g”) Proof. The demonstration is immediate by theordn
< —/ Pn@ndiin choose Q; = {1,...,n}, gj(i) = x;i;, pj(i) = 1,

forj=1,...,nandi=1,...,m;.

- Fhva . Hi({i}) =pj, forj=1,...,nandi=1,...,m;.
1 . .
< i dyy---dpn. (6
<L / n /Ql (ﬂp,) ¢ (91,---,Gn)du---din. (6)
Finally applying again the Jensen’s inequality, (we
have
1 Corollary 2.  Under the same conditions of Theoré&m
¢ (gla'-'7gn—17GH) S E/;) pn¢ (917927"'7gn)dun- for n= 2 Then(3) IS Valld'
n n
By a procedure similar to that which is done to obtain the
inequality 6)
¢ (gl7 s 7GI'])
<

1
P, /Ql PLé1d1y 3 Applications

1 n
< m/g/g (] 1'°‘> 6 (0r.....gn) dpy- - dpn. (7)

In this section we apply some of the above established
inequalities of Jensen type.

Thus from inequalities®)—(7), we have i ) X ] ) i
Using a functionp defined in the Section 2, we define

ng (Gy,---,Gn) a new functiorH : [0,1]" — R as,
N1
< ,lej/oj pj®idu; H(te,...,tn)

p— 1 4 .
: ﬁ/o/m (ﬁlpJ) ¢ (g1, On)dpy---dpn,  M]=1P /91/9 (ﬂp'> s

¢ (t101 +(1—11)Ts,- -, tnOn + (1 —tn)Tn) diin - - - dptg.
Therefore we obtain the desired inequalities.

Corollary 1. Under the same conditions of Theorém
for n= 2. Then(2) is valid. Theorem 6. Let ¢j,pj and g as in the Theorer, for
j=1,...,n. Then

) (i) The function H defined as above is convex on the
Theorem 5. Let ¢ be convex on the n—coordinates on  "n_coordinates oif0, 1J".

M=1lj C R X = (Xj2,.... Xjm; ) is @n m—rfyple onj, (i) We have the bound:
pj @ nonnegative f-tuple such that g = 5, pji # 0, _
for each j=1,...,n, then the following inequalities hold ! tlﬂ)fe[O 1]nH(tl,---,tn) =H(0,0,...,0)
15+t s

¢()_(1’”'7)_(n) :¢(617"'7gn)7

12 /(130 5
< - = ) Pji®ji where B andg; are defined as in Theore#) for j =

”JZL P, i; 1...n. J

1 m My

M7=1Pm, ilzl"'i,gl (ﬂlpjij> P 0y oi) - (B) Proof. (i)
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Letx,y€ [0,1], a € [0,1] and foreach = 1,...
have

H, (ax+(1-a)y)
= H(tl Sl UX+(1 a)y,tiig,....t)

- i o (f1e)

¢ (101 + (1—t)Ty,....[ax+ (1—a)ylg + [1— (ax+ (1—a)y)]T;,
o taGn + (1—1t0)Tp) din - - dpy

1 n
=—=_/ .. pj | x
HT:I Pj ‘/ﬂl -/ﬂn = !

¢ (t191+(l—t1)§1 ~~~~~ [UX+(]_7 g)y]gi + [17 (UX+(]_— a)y)]gi.’
cotnOn+ (1—t0)T,) dptn -+ - dpy

1 n
=/ .. pj | x
HT 1Pi /91 /Qn J !

¢ Lo+ (1-t)g,....axg +(1-Xg]+ (1—a)lyg + (1-y)g],
- taGn + (1—=1t0)Ty) dpn -+ ditg

a . . n
< mLE /91"'/Qn (, pj> x
¢(t191+<1 )5, [Xg + (=X, .. . thGn + (1 —tn)T) dpn -+~ dpy
|_|| 1PJ /91 /ﬂn (J
¢ (10 + (1 —t1)Tg--, [yg + (1=Y)Gis- -, taGn + (1~ tn)Tp) din - iy
= oH(ts,.. G, Xty t) +(1—a)H (tr, .. timg, Votiva, o t)

= aHl (0 +

Thus H{,
i=1,...

(1—a)H, (v).

is convex function on]0,1],
,n. HenceH is convex om—coordinates.

(i) Let(ty,...,tn) €[0,1)"
inequality (L) on then—coordinates, we get

d“n “dpy

1 . . n-1
= Snip pj | %
HT:]]:Pj /91 /Qn—l JI:L !
1

v

n
1 / / n—lp
— i X
HT;% Pj Ja, Q-1 \j= :

¢ <t191+(1*t1)§1s~~~-,— /X2 Pn [tngn + (1 t1)Ty) d“n) dpn-1---dpy
JOn

1 n-1
- ni=iP; ‘/ﬂl.”'/gn—l (Bp;) )

¢ (191 +(1—t1)Gs,- >t 1001+ (1 —th-1)Tn 1,0n) A1 -~ dps

Theorem 7. Let the functiorp : [17_; 1y — R, be convex

on[]j_ |y and let functions g pj be as in the Theorewh
for each ji=1,...,n. Then

(i) Function H is convex of0, 1]".

for each

. Using the integral Jensen’s

(i) We define the function G0,1] — R, with G(t) =

H(t,t,...,t). Then G is convex and has bound:
inf G(t) =G(0)=¢(Ty,---,0,)-
o (1) =G(0)=¢(@1,---,Tn)
Proof. (i)
Let (tz,...,tn),(t1,...,tn) € [0,1]" anda € [0,1],
H (@t )+ (1—a)(s....5))

=H(at1+(1—a)s,....,atn+(1—a)sy)

ik (fie)

¢ ([ati+(1-a)sjg +[1—(aty+(1—a)sy)] Ty,
[qtnﬂL(l*U Sn]gan[l* aty+(1—a)$y)]Ty) dpn - - diyg

s - 1P1 /ﬂl /gn (1 PJ) A (ta01+ (1—12)8y, -t + (1~ t)Tn))
dun “dpy
I_Il 1P, /g1 /ﬂn (, pJ> a($101+ (1=50)Ts, S + (1= $)Tn)) x
dptn -+~ dpg

= aH(ty,....tn) + (L—a)H (s1,....S).
SoH is convex orf0,1]".

(i) Letx,ye [0,1] anda € [0,1]. Using the convexity
of H, we obtain
Glax+(1—a)y) =H(ax+(1—a)y,...,ax+(1—-a)y)

HaX,...,x)+(2—a)(y,...,y))
aH(X,....X)+ (1—a)H(y,...,y)
aG(x) + (1—a)G(y),

therefore it is shown thas is convex on0,1].
By Theoren®, fort € [0,1], we get

G(t) =H(t,t
Thus,

inf G(t)=g(0) =
te'[%,l] (t) =9(0)

IA I

) >H(0,0).

¢(g17"'7Gn)'

4 Conclusions

The principal contribution of this paper is the study of a
new class of function of generalized convexity on
coordinates. We have shown that this class contains some
previously known classes as special cases as well as
Jensen’s inequalities type for these functions. We expect
that the ideas and techniques used in this paper may
inspire interested readers to explore some new
applications of these newly introduced functions in
various fields of pure and applied sciences.
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