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Abstract: In this paper work, it was discussed the model of meshing gears such that the transverse load factor does not change over
time and along the line of contact in order to determine if there is some deviations from the assumed and to determine the extent of
their changes. During the optimization all factors which determine transverse load factor, according to [1], [2], [3], [4], [5] and [6]
were considered as relevant and as such varied using the genetic algorithm optimization process. Only the factors of the basic rack
were pre-approved from [5] and as such are considered to be constant input parameters. It is presented new method for finding the
optimal geometry compared to many other relevant factors based on a dynamic optimization of factors relevant to meshing of helical
and spur gears that is performed in the form of the simulation of gear meshing along the line of contact. Optimization process of 12
input parameters is performed by genetic algorithm and in addition, many important parameters were computed by linear and non linear
interpolation. Using this method, it appeared that the most affecting variable of changing the value of load transverse factor is helix
angleβ , but, despite of this, the profile shift coefficientsx1 andx2 also affected to changing the value of load transverse factor. It is
noted that for any number of teeth (from the range 18−54) and any gear ratio (from the range 1−5), this method achieves a value 1 of
the load transverse factor, which therefore corresponds to uniform load distribution.

Keywords: hybrid algorithm, ISO standard, interpolation

1. Introduction

Load or torque transmission in mechanical systems is
obtain by different kind of rotate transmission elements.
One of possible ways is load transmission by tooth pairs
(gears), which are take into the consideration here. Gear
meshing during load transmission, in general case,
characterized by non-uniform load distribution on teeth
and teeth surfaces which are currently in mesh. Many
different parameters are take influence on non-uniform
load distribution like load intensity, kind of system
actuator, machining grade (quality) of tooth contact
surfaces, rotating speed, tooth profile geometry, etc. On
the other hand, in teeth load calculations, influence of the
above parameters on non-uniform load distribution are
taken in consideration by different factors.

Metaheuristics are widely used tools in optimization.
Among them the significant role play genetic and
evolutionary algorithm [18], [19], [20], [21], [23]. There
are different approaches of occurrence of non-uniform
load distribution during gear teeth meshing with aims to

reduce negative influence, increase efficiencies and period
of exploitation of transmission systems elements.

In [15] authors were using some methods and
expressions valid for every tool geometry, standard or not.
In [17] an approximate equation for the addendum
modification factors for gears with balanced specific
sliding (which reduces wear and heavy scoring risks) is
presented using simple analytical methods.

In [22] various optimization techniques are used in
order to find a proper solution.

However, that model presented some discrepancies
with experimental results because the changing rigidity of
the pair of teeth along the path of contact produces a
non-uniform load distribution, which implies that some
load distribution factors are required to compute the
contact stress.

In this paper work, it was presumed inverse that the
model of meshing is such that the transverse load factor
does not change over time and along the line of contact
and that have the same valueKHα = KFα = 1, for both
double and single pair tooth-contact, in order to determine
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if there is still some deviations from the assumed and the
extent of their changes. In addition, the rigidity of the pair
of teeth was taken into consideration, as one very
meaningful function, influenced by a lot of input data that
are used for optimization and it is adopted that the gears
are made from steel. Also, it is presented a new approach
to calculate a best values of all relevant factors for
meshing gears, so that the load is uniform at any point of
the line of contact. During the optimization all the factors
that determine transverse load factor were considered as
relevant and as such varied until the and of the
optimization process. Only the factors of the basic rack
were pre-approved from [5] and as such are considered to
be constant input parameters. It is presented new method
for finding the optimum geometry compared to many
other relevant factors based on a dynamic optimization of
factors relevant to meshing of helical and spur gears that
is performed in the form of the simulation of gear
meshing along the line of contact. In order to optimize
process of meshing gears, many formulas and procedures
within ISO standards were used [4], [2], [3], [5], [1], [6]
but, despite of this, the values of all specific variables
were varied in order to find appropriate combination of
geometry, stiffness, application factor and the accuracy
grade for the best load transmission. Optimization process
is performed by genetic algorithm and in addition, many
important parameters were computed by other numerical
methods as will be detailed discussed below.

2. Load distribution model of helical and
spur gears

Load transmission by gear pairs, as stated in the
introduction, is followed by non-uniform load distribution
in the meshing process. As a result of load transmission,
on the teeth contact surface and root stresses are occurred.
This stresses are main parameters in gear calculations,
design procedures and period of exploitation.

Figure 1: Gear contact model.

Due to gear parameters deviations of nominal values
and depending on the number of teeth pair in contact,

stress which occurred takes non-uniform load
distributions and different values along the line of contact,
as shown in Figure1.

Maximal contact Eq.1 and tooth-root stress Eq.2 in
load distribution, which are taken into consideration for
further calculations, according to [2] and [3] are calculated
as:

σH = ZσH0

√

KAKVKHβ KHα ≤ σHP (1)

σF = σF0KAKVKFβ KFα ≤ σFP (2)

In the above equations for contact stress calculation:
ΣH0/F0 is the nominal contact/tooth-root stress, which is
the stress induced in error-free gearing by application of
static nominal torque;Z is contact factor which converts
contact stress at the pitch point to the contact stress at the
inner point of tooth pair contact (different for pinion and
wheel); KA is the application factor, which take into
account the load increment due to externally influenced
variations of input or output torque;KV is the dynamic
factor, which take into account the load increment due to
internal dynamic effects;KHβ is the face load factor for
contact stress;KHα is the transverse load factor for
contact stress;KFβ is the face load factor for tooth-root
stress;KFα is the transverse load factor for tooth-root
stress;σHP/FP is the permissible contact/bending stress.

Transverse load factor of helical and spur gears, based
on ISO standard [1], depends on many factors, and it is
assumed that is variable along the line of contact. Models
given by standardization are not in good agreement with
experimental results because the changing meshing
stiffness of the pair of teeth along the line of action
produces a non-uniform load distribution, causing some
load distribution factors to be required to compute
bending and contact stresses [16].

These factors have characterized rate of non-uniform
distribution of load and stress during the tooth meshing in
case of above parameters deviations from nominal values.
According to [1], these factors calculated by following
equations:

KHα = KFα =
εγ

2
(0,9+0,4

cγα( fpb−ya)

FtH/b
), (3)

for gears with total contact ratioεγ ≤ 2,

KHα = 0,9+0,4

√

2(εγ −1)
εγ

cγα( fpb−ya)

FtH/b
, (4)

for gears with total contact ratioεγ > 2.
For gears with helix angleβ = 0, the model is

described with the equations5 - 36.

z2 = z1u (5)
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Srn = Srmn (6)

αn =
20π
180

(7)

αpn =
20π
180

(8)

α = αn (9)

αp = αpn (10)

tan(αw)(x11,x22,z1,z2,α)

= 2(x11+x22)
tan(α)

(z1+z2)
+ tan(α)−α (11)

yf actor = cos(
(z1+z2)

2
)

cos(α)

(cos(αw)−1)(−1)
(12)

Cth= (0.04723+
0.1551

z1
+

0.25791
z2

−

−0.00635x11−0.11654
x11

z1
−0.00193x22−

0.24188
x11

z2
+0.00529x2

11+0.00182x2
22)

−1 (13)

Cr = 1+(
(log(odn))

(5(
Sr1
5mn

))
) (14)

m= mn (15)

d1 = mz1 (16)

fpb = f uncttableKv(x1,mn,d1) (17)

ya = 0.075fpb (18)

hf p = 1.25m (19)

Cb = (1+0.5(1.5−
hf p

mn
))

(1−0.02(0.348888−αpn)) (20)

Cm = 0.8 (21)

C=CthCmCrCb

i f x7 ≥ 100 (22)

C=CthCmCrCbx0.25
7

i f x7 < 100 (23)

ha1 = (1+yf actor−x22)m (24)

ha2 = (1+yf actor−x11)m (25)

a= (
(z1+z2)

2
+yf actor)m (26)

d2 = mz2 (27)

db1 = d1cos(α) (28)

db2 = d2cos(α) (29)

c1 = 0.2 (30)

c2 = 0.2 (31)

h= (2.25+yf actor− (x11+x22))mn (32)

da1 = d1+2ha1 (33)

da2 = d2+2ha2 (34)

df 1 = da1−2h (35)

df 2 = da2−2h (36)

For gears with helix angleβ > 0, the model is
described with the equations37 - 73.

z2 = z1u (37)

Srn = Srmn (38)

αn =
20π
180

(39)

αpn =
20π
180

(40)

α = atan(
tan(αn)

cos(beta)
) (41)
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αp = atan(
tan(αpn)

cos(beta)
) (42)

tan(αw)(x11,x22,z1,z2,α)

= 2(x11+x22)
tan(α)

(z1+z2)
+ tan(α)−α (43)

yf actor = cos(
(z1+z2)

2
)

cos(α)

(cos(αw)−1)(−1)
(44)

Cth= (0.04723+
0.1551

z1
+

0.25791
z2

−

−0.00635x11−0.11654
x11

z1
−0.00193x22−

0.24188
x11

z2
+0.00529x2

11+0.00182x2
22)

−1 (45)

Cr = 1+(
(log(odn))

(5(
Sr1
5mn

))
); (46)

m=
mn

cosβ
(47)

d1 = mz1 (48)

fpb = f uncttableKv(x1,mn,d1) (49)

ya = 0.075fpb (50)

hf p = 1.25m (51)

Cb = (1+0.5(1.5−
hf p

mn
))

(1−0.02(0.348888−αpn)) (52)

Cm = 0.8 (53)

C=CthCmCrCbcosβ
i f x7 ≥ 100 (54)

C=CthCmCrCbcosβx0.25
7

i f x7 < 100 (55)

ha1 = (1+yf actor−x22)m (56)

ha2 = (1+yf actor−x11)m (57)

a= (
(z1+z2)

2
+yf actor)m (58)

d2 = mz2 (59)

db1 = d1cos(α) (60)

db2 = d2cos(α) (61)

c1 = 0.2 (62)

c2 = 0.2 (63)

h= (2.25+yf actor− (x11+x22))mn (64)

da1 = d1+2ha1 (65)

da2 = d2+2ha2 (66)

df 1 = da1−2h (67)

df 2 = da2−2h (68)

εβ = 0.9 (69)

i f εα ≥ 1.2

i f β < 0.5233

cγα =C(0.75εα +0.25) (70)

i f εα < 1.2

i f β ≥ 0.5233

cγα = 0.9C(0.75εα +0.25) (71)

i f εα ≥ 1.2

i f β ≥ 0.5233

cγα = 0.9C(0.75εα +0.25) (72)

i f εα < 1.2

i f β < 0.5233

cγα = 0.9C(0.75εα +0.25) (73)
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Figure 2: Flowchart of an evolutionary algorithm.

In opposite to above procedure for contact and tooth-
root stress calculation, which include calculations of load
factors in accordance with defined geometry of gears, in
this paper inverse approach is taken. Optimal geometry is
determine in a GA, by the requirement that the transverse
load factor are equal or tends to one. This means that the
load distribution tends to uniform.

3. Numerical methods

3.1. Genetic algorithm

Nature has a wonderful and powerful mechanism for
optimization and problem solving through the process of
evolution. The important components of EAs are genetic
algorithms (GAs), genetic programming and evolutionary
strategies [13]. The evolutionary algorithm can be applied
to problems where heuristic solutions are not available or
generally lead to unsatisfactory results. As a result,
evolutionary algorithms have recently received increased
interest, particularly with regard to the manner in which
they may be applied for practical problem solving [14]. A
simple flowchart of an evolutionary algorithm is given in
Figure2.

A GA represents an iterative process where each
iteration is called a generation. A typical number of
generations for a simple GA can range from 50 to over
500 [7]. The entire set of generations is called a run. At
the end of a run, it is expected to find one or more highly
fit chromosomes. The GA techniques have a solid
theoretical foundation [8], [9], [10], [11]. That foundation
is based on the Schema Theorem. John Holland
introduced the notation of schema [8], which came from
the Greek word meaning ’form’. A schema is a set of bit
strings of ones, zeros and asterisks, where each asterisk
can assume either value 1 or 0. The ones and zeros
represent the fixed positions of a schema, while asterisks
represent ’wild cards’. For example, the schema stands
for a set of 4-bit strings. Each string in this set begins with
1 and ends with 0. These strings are called instances of
the schema. [12].

Figure 3: Funcionality of accuracy grade, standard modulus and
pitch diameter

3.2. Interpolation of three-dimensional data

In order to find a proper value of the transverse base
pitch deviation fpb, it was necessary to perform
interpolation based on the accuracy grade, standard
modulus and pitch diameter. Values of the appropriate
base pitch deviation, for the ranges of mentioned three
values are given in [4], and the three-dimensional
functionality is given in the Figure3. The accuracy grade
and standard modulus are direct input values of the main
function, and the pitch diameter is obtained by
calculation. The interpolation is performed through
separate program, and the values obtained for the
transverse base pitch are dynamically transferred in the
main program until the end of the genetic algorithm
procedure.

3.3. Newton - Raphson numerical method for
solving non-linear equationαw

It is very difficult to find a root of a non-linear
equation algebraically. Using some basic concepts of
calculus, there are ways of numerically evaluating roots
of complicated equations. In this purpose it is commonly
used the Newton-Raphson method. The idea of the
method is as follows: one starts with an initial guess
which is reasonably close to the true root, then the
function is approximated by its tangent line (which can be
computed using the tools of calculus), and one computes
the x-intercept of this tangent line (which is easily done
with elementary algebra). This x-intercept will typically
be a better approximation to the function’s root than the
original guess, and the method can be iterated. Suppose
f : [a,b] > R is a differentiable function defined on the
interval [a,b] with values in the real numbersR. The
formula for converging on the root can be easily derived.
Suppose we have some current approximationxn. Then
we can derive the formula for a better approximation,
xn+1 by referring to the diagram on the right. We know
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Figure 4: Hybrid algorithm procedure

from the definition of the derivative at a given point that it
is the slope of a tangent at that point...

In this paper, Newton - Raphson numerical method is
used to solve non-linear equation of the working pressure
angle, which is depending on the number of teeth on
pinion gearzn1, the number of teeth on wheel gearzn2,
profile shift coefficient of pinionx1 and profile shift
coefficient of wheel gearx2. All of these values are input
values of the main procedure, and as they dynamically
changing their values thanks to genetic algorithm
procedure in order to find optimum values, it is even more
complicated to calculate the appropriate value of the
working pressure angle. Solving of this non-linear
equation is performed in the separate program, and the
values obtained for the angle are dynamically transferred
in the main program until the end of the genetic algorithm
procedure.

4. Main procedure

Hybrid algorithm of this procedure, has 12 direct input
variables affecting the output function, as shown in Figure
4, where the main procedure is divided into several sub
procedures and each procedure will be explained in detail
(Figure5).

Settings of genetic algorithm during the process are
shown in Table1. According to data from Table1,
simulation was iterated three times, with different hybrid
genetic algorithm setup in order to find best convergence
of the process. Criteria for stopping hybrid genetic
algorithm process is reaching number of stall generations,
while the stall time was infinitive. A special characteristic
that leads to slow convergence of the process is migration
in both directions, which means that the accepted (good)
individuals from thenth subpopulation migrates into both

11 n
zx =

x =
2

2n
z

Figure 5: Main procedure algorithm

Table 1: Selected parameters for performing numerical operation
of genetic algorithm

Name of parameter First iteration Second iteration Third iteration

Population type Double vector Double vector Double vector

Encoding Binary Binary Binary

Scaling func. Proportional Rank Top w. q. 0.4

Selection Roulette Stochastic uniform Uniform

Elite count 4 15 30

for reproduction

Crossover func. Scattered Single point Two point

Population size 40 100 300

Mutation Uniform Adaptive feasible Gaussian

Probability Rate 0.1 - Scale 1.0,

of mutation Shrink 1.0

Max number 10000 10000 10000

of generations

Migration Forward Forward Both

direction

Migration fraction 0.2 0.2 0.2

fraction

Hybrid func. fminsearch fminsearch fminsearch

Func. tolerance 10(−15) 10(−15) 10(−15)

Stopping criteria Maximal number of generations

or number of stall generations (1000)

(n− 1)th and the(n+ 1)th subpopulation in order to
achieve the balance between generations.

In this paper we considered different parameters
which impact transverse load factor of spur and helical
gears. These parameters are related to geometry, specific
load distribution Ft

b , stiffnessC′, application factorKA
and accuracy gradeQ. When we use term geometry, we
mean optimization against the number of teeth on pinion
gearzn1, gear ratiou (which is giving us the number of
teeth on wheel gearzn2, multiplied by number of teeth on
pinion gear), standard modulusmn, face widthb and helix
angleβ . All of these factors, together with pressure angle,
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Figure 6: Geometry algorithm

Figure 7: Stiffness algorithm

normal pressure angle, transverse pressure angle and
pressure angle at the pitch cylinder, directly impact to
calculation of pitch diameters, addendum diameters, base
diameters and root diameters. To be more specific, in this
paper, calculation of geometry, in first order implies,
selection of the best solutions for the number of pinion
gear, gear ratio, helix angle, standard modulus, face
width, and profile shift coefficient using genetic
algorithm, as six of even twelve inputs and than, in
second order calculation of the pitch diametersd1,2, base
diametersdb1,b2, root diametersdf 1, f 2, and addendum
diametersda1,a2, of both, pinion and wheel, respectively.
The detailed algorithm process used for the calculation

geometry is shown in the Figure6. Other, when we use
term stiffness, we mean optimization against the basic
rack factorCB, correction factorCM, gear blank factorCR,
theoretical single stiffnessC′

th and helix angleβ . For
cases where specific load is taking values less than
100 N

mm, specific load is also one of the factors which
impact to optimization of the stiffness. In optimizing the
basic rack factorCB, it is taken into account standard
modulusmn, normal pressure angle of the basic rackαpn
and addendum of basic rackhf p. In this optimization, the
gear blank factorCR is presented as function of gear rim
thicknessSR, and ratio of central web thickness and gear
width (bs/b). c′th is appropriate to solid disc gears and to
the specified standard basic rack tooth profile.C′

th for a
helical gear is the theoretical single stiffness relevant to
the appropriate virtual spur gear [1]. According to [1], in
this paper,C′th is taken into consideration as function of
the number of teeth on pinion gearzn1, the number of
teeth on wheel gearzn2, profile shift coefficient of pinion
x1 and profile shift coefficient of wheel gearx2.
Therefore, it leads to the conclusion that specific load
distribution is one of the very significant input values for
the optimization. After finding the best value for the
stiffness, stiffness can only be taken into calculation
through formula of the mean value of mesh stiffness per
unit face widthCγα , which is used for factorsKv, KH and
KF and therefore, it is necessary to calculate the value of
total contact ratio,εγ . The detailed algorithm process used
for the calculation geometry is shown in the Figure7.
Apart to the geometry, the great influence to total contact
ratio has working pressure angle, which value is
calculated by special numerical program as it was
discussed in section for numerical methods.

Finally, after calculation (optimization) of geometry,
stiffness and specific load distribution the last and the
most important calculation is the calculation of the values
of the transverse load factors,KHα for surface stress and
KFα for tooth root stress, account for the effect of the
non-uniform distribution of transverse load between
several pairs of simultaneously contacting gear teeth.
According to [1], transverse load factors are presented as
functions of the total contact ratio, mean value of mesh
stiffness per unit face width, transverse base pitch
deviation fpb (the values may be used for calculations in
accordance with ISO 6336, using tolerances complying
with [4]), running-in allowance for a gear pairya and
tangential load in a transverse plane,FtH . Transverse base
pitch deviation is adopted using interpolation between
three values: the accuracy grade, standard modulus and
pitch diameter by special numerical program as it was
discussed in section for numerical methods. Tangential
load in a transverse plane,FtH is a function of tangential
load, and application factorKA, dynamic factorKV , face
load factorKHβ . The differences between the helical and
spur gears are taken into account through a loop in the
simulation, which takes into account the value of the helix
angle selected in the optimization (optimal value).
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5. Results

As shown in Table1, three iterations of the same
simulation were performed with different simulations of a
genetic algorithm to determine the best possible
convergence to a minimal solution. Therefore, genetic
algorithm, reached the final results in different
generations as it is shown in Table2. Final results for
each variable are shown in the Table3.

Table 2: Genetic algorithm solver simulation properties
First Second Third

iteration iteration iteration

Stopped in 1001 1001 1001

Final time 127 sec 130 sec 104 sec

of process

Convergence Yes Yes Yes

Stopp. criteria Stall Stall Stall

generations generations generations

Stall gen. 900 903 904

Stall time 21 sec 23 sec 20 sec

Optimization terminated: average change in the fitness value less than options

Convergence obtained in the first, second and third
iteration is given in the Figures8-a,8-b, 8-c, respectively.

Table 3: Final results
Variable Name First Second Third

iteration iteration iteration

x1 zn1 44 36 27

x2 u 3.5 3 4

x3 bs/b 0,34 1.048 1.109

x4 SR 1 2.9 3

x5 β 21.5◦ 28◦ 30◦

x6 mn 10 3 15

x7
Ft KA

b 1260 1410 1472

N/mm2 N/mm2 N/mm2

x8 b 69 mm 131 mm 54 mm

x9 Q 1 3 1

x10 KA 1 1.6 1

x11 x1 0.905 0.946 0.951

x12 x2 0.806 0.811 0.795

f (x) KHα 1 1 1

Optimization terminated: average change in the fitness value less than options

6. Conclusion

In this study, optimization of load transverse factor as a
function of 12 variables was done using genetic
algorithm. Although the load transverse factor could take

Figure 8: Convergence in generations

any possible value, it is always converged to the value
0.5, which also affect to distribution of load and making it
uniform, while the influential variables on the load
transverse factor are taking corresponding values. Using
this method, it appeared that the most affecting variable
of changing the value of load transverse factor is helix
angleβ . Helix angle can take any value in the range of
standard values from 0◦ − 30◦, but generally was taken
the values between 20◦ − 30◦ to make the converges of
load transverse factor to 0.5.

The profile shift coefficientsx1 andx2 also affected to
changing the value of load transverse factor and for
achieving optimal value of the load transverse factor, it
must be strongly respected conditions:x1 ≥ x2 ;
−0.5≤ x1+x2 ≤ 2.0 ; according to [1]. Higher difference
between values of profile shift coefficients of pinion and
wheel leads to a value of 0.5 for load transverse factor.

The similar situation is with the specific load
distribution: at low values of specific load distribution,
load transverse factor converges to value 1, but at higher
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values of specific load distribution, load transverse factor
is converging to value 0.5.

It is noted that for any number of teeth (from the range
18− 54) and any gear ratio (from the range 1− 5), this
method achieves a value 0.5 of the load transverse factor,
which therefore corresponds to uniform load distribution.

The idea of this method is to work closer simulation
of actual timing coupled pairs, and thereby changing the
various influential factors, it measures the change of the
load transverse factor, and in the same time, determining
the extent to which specific factors influence the change
of load transverse factor. The method was performed
according to ISO standards [1], [4], [5], [6].
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