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Abstract: The aim of this work is to use the power series expansion with collocation method to approximate the solution of integral
equations (IE) of the second kind on real axis. The techniqueof this method is based on transforming the IE to a matrix equation which
corresponds to a system of linear equations with unknown coefficients. Two examples are presented to illustrate the performance of this
method.
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1 Introduction

Integral equation is an equation in which the unknown
function appears within an integral sign. Such equations
occur widely in diverse areas of applied mathematics,
physics and engineering, and also it has a powerful
technique to solve more practical problems. Singular
integral equation is an integral equation, if either the
limits of integration are infinite, or the kernel has
singularity, in other words the kernel is unbounded within
its domain of definition and which has a great role in
variety fields for different applications, for example,
mathematical physics, engineering, hydromechanics,
etc.,(see [3] amd [4]).

In 2002, approximate methods for multi-dimensional
weakly singular integral operators with operator-valued
kernels are investigated and a polynomial collocation
method also used for finding the numerical solution of a
singular integral equation over the interval by [7]. Hassan
[3] studied Cauchy-type singular integral equation by
different numerical techniques. In 2009, the numerical
schemes of collocation methods and mechanical quadratic
methods to approximate the solutions of the singular
integral equations are investigated by [1].

In this paper we try to solve singular integral equations
of the second kind of the form

u(x) = f (x)+
∫ ∞

−∞
k(x, t)u(t)dt x∈ (−∞,∞) (1)

where f and k are given continuous functions, andu is
unknown to be determined by collocation method.
Throughout the paper, we assume that the equation (1) is
integrable on(−∞,∞), that is

sup
x∈R

∫ ∞

−∞
|k(x, t)u(t)|dt < ∞

whereR denoted to the set of all real numbers, see ([2,4,
6]).

This paper is organized as follows: in section 2 the
technique of the approximate solution is considered.
Section 3 consists some illustrate examples. Conclusions
of the presented work are given in the final section.

2 Approximate Technique

In equation (1) we assume thatu(x) = w(x)g(x), where
w(x) = e−x2

is a weight function defined on(−∞,∞) [5],
then equation1 becomes

w(x)g(x) = f (x)+
∫ ∞

−∞
w(x)k(x, t)g(t)dt. (2)

Now, the unknown functiong(x) can be represents by a
power series as follows:

g(x) =
∞

∑
r=0

crx
r
. (3)
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If the infinite series in (3) is truncated, then (3) can be
written as

g(x)≈ gn(x) =
n

∑
r=0

crx
r
. (4)

where cr(r = 0,1, ...,n) are unknown coefficients to be
determined. By substituting (4) in (2) we get:

w(x)
n

∑
r=0

crx
r = f (x)+

∫ ∞

−∞
w(t)k(x, t)

n

∑
r=0

crt
rdt,

and this implies that

n

∑
r=0

cr(w(x)x
r −∆r(x)) = f (x), (5)

where the integral operator∆ is defined by
∆r(x) =

∫ ∞
−∞ w(t)k(x, t)trdt . Choose{xi}n

i=0 to be a
sequence of distinct points and collocate it in equation (5)
we obtain the following:

n

∑
r=0

cr(w(xi)x
r
i −∆r(xi)) = f (xi), (6)

wherei = 0,1, ...,n , then (6) is a system ofn+ 1 linear
equations withn+1 unknownsc0,c1, ...,cn, which can be
represents as a matrix notation as follows:

AC= F, (7)

whereA is a matrix whose elements are defined by
ai, j = w(xi)x

j
i −∆ j(xi) , C = (c0,c1,c2, ...,cn)

T andF =

( f (x0), f (x1), ..., f (xn))
T .

3 Illustrate Examples

In the following example, we try to apply the above
technique to obtain an approximate solution on(−∞,∞).

Example 1: We conceder the IE as the follows:

u(x) = x3e−x2 − 3
√

π
4

+

∫ ∞

−∞
(x+ t)u(t)dt.

The theoretical solution isg(x) = x3, and the approximate
solution obtained by proposed method for different values
of and the results showed in Figures1, 2 and3.

Example 2: We conceder the IE as the follows:

u(x) = x2e−x2 −
√

π
2

+

∫ ∞

−∞
u(t)d(t).

The theoretical solution isg(x) = x2 , and the
approximate solution obtained by proposed method and
the results which is showed in Figures4 and5.

Fig. 1: presents the exact and approximate resultsg1(x) =
0.09246+1.60433x for n=1.

Fig. 2: presents the exact and approximate resultsg2(x) =
0.06386+1.57206x0.10974x2 for n=2.

Fig. 3: presents the exact and approximate resultsg3(x) = x3 for
n=3, which is coincide to the exact solution.

Fig. 4: presents the exact and approximate resultsg1(x) =
0.1472+2.9713x for n=1.

Fig. 5: presents the exact and approximate resultsg2(x) = x2 for
n=2, which is coincide to the exact solution.

4 Conclusion

Power series with the collocation method were applied to
find approximate solution of equation (1), the method was
tested by two examples. A good approximation results
depends on increase the number of terms taken in a power
series (2), and sometimes, coinciding with the exact
solution.
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