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Abstract: This paper considers a numerical investigation on the solution of a one-dimensional linear space-fractional partial

differential equation with the application of an unconditionally implicit finite difference method and the Caputo’s space-fractional

derivative. We formulate the Caputo’simplicit finite difference approximation equation to form a corresponding linear system in which

its coefficient matrix is large-sized and has a great sparsity. We construct a preconditioned linear system intending to speed up the

convergence rate in computing the solutions of the linear system using the SOR iterative method. We present two examples of the

one-dimensional linear space-fractional partial differential equation problem to illustrate the effectiveness and efficiency of our

proposed PSOR iterative method. Through the investigation, the numerical results show that the proposed PSOR iterative method is

superior to the preconditioned Gauss-Seidel and Gauss-Seidel iterative methods in terms of efficiency.

Keywords: Space fractional diffusion equation, implicit finite difference, Caputo’s derivative, PSOR method.

1 Introduction, motivation and preliminaries

To the best of our literature review, many successful fractional partial differential equations or in short FPDEs have
been formulated for the best mathematical model in describing physical phenomena such as fluid mechanics, solid-state
physics, and chemical kinematics. For instance, a fractional advection-dispersion equation has been used in the modeling
of the transport of the passive tracers in the fluid flow through a porous medium [1]. Then, a fractional diffusion equation
has been applied to model the process of heat transfer in hybrid nanofluid [2]. Other than that, the theory of FPDEs has
been applied in developing an image denoising model which can suppress noise and maintain the image edge better than
the use of PDE [3]. The application of FPDEs is not limited to the science areas such as physics, biology, and chemistry.
The FPDE of parabolic type like fractional diffusion equation can also be extended to the theory of option pricing and
generalized the exponential market models [4]. From this review, it can be seen that the FPDEs able to give more realistic
results in the description of any phenomena because the fractional parameter can be adjusted to the extent it fits the
experimental data.

Since the solutions of the FPDEs are important to understand the theory or behavior of any phenomena, many
methods, either via analytical or numerical mean, have been developed. Some of the analytical methods that have been
proposed to solve the application of FPDE are the transform method [5] and the collocation method [6]. Besides that,
several researchers have proposed the finite difference methods, which can be categorized as explicit, implicit, and the
mixture of these, to solve the FPDEs numerically [7–11]. It was pointed out that the implicit method has the properties of
unconditionally stable and has a lower computational cost compared to the mixture of explicit-implicit, for instance, the
Crank-Nicolson method. Due to the properties of the implicit finite difference method, we apply an implicit finite
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difference method for the discretization of the space-fractional partial differential equation (SFPDE) with the use of
Caputo’s fractional partial derivative of order β .

From the application of the implicit finite difference method and the Caputo’s fractional partial derivative of order β ,
we formulate an approximation equation that leads to a tridiagonal linear system. The linear system’s coefficient matrix has
properties such as large-sized and has great sparsity which encourages the use of iterative methods as the alternative option
to obtain efficient solutions. As far as the iterative methods are concerned, many researchers, for instance [12–15], have
proposed and discussed several iterative method families to solve a large and sparse system of linear equations. From our
recent literature review on the numerical solution of the fractional partial differential equation, [16] proposed a circulant
preconditioner technique for the solution of the fractional diffusion equation. And then [17] used a preconditioned fast
parallel method to solve the space-time fractional diffusion equation. The preconditioning technique is widely known in
solving a large and sparse linear system of equations. It is used to transform a linear system into another form of a linear
system which is equivalent but the solutions can converge faster especially when a particular iterative method is used.

Besides that, the concept of block iteration, which was extended from single point iteration in the implementation of
an iterative method, has been introduced [18]. Due to its potential to reduce the computation cost as well as to improve the
efficiency of an iterative method, several researchers have applied the concept of block iteration in their studies [19, 20].
Other than the block iteration, the preconditioned iterative methods [13–15, 21] have also been widely known as one of
the techniques that are efficient in solving large and sparse linear systems. By utilizing the unique properties and the
potential of preconditioned type iterative methods, we propose a Preconditioned SOR (PSOR) iterative method for the
efficient solution of one-dimensional linear SFPDE with the use Caputo’s implicit finite difference approximation. Both
the effectiveness and efficiency of the PSOR method in solving the transformed linear system will be investigated by
comparing its numerical result against the Preconditioned Gauss-Seidel (PGS) method and Gauss-Seidel (GS) which acts
as the control method.

The objective of this paper is to construct the Caputo’s implicit finite difference approximation equation, let us consider
the following SFPDE of parabolic type:

∂

∂ t
u(x, t) = p(x)

∂ β

∂xβ
u(x, t)+ q(x)

∂

∂x
u(x, t)+ r(x)u(x, t)+w(x, t), (1)

The solution of (1) can be obtained subjects to the initial condition u(x,0) = u0,0 ≤ x ≤ l, and the boundary conditions
u(0, t) = g0 and u(l, t) = g1,0 < t ≤ T . We apply the following definitions from fractional derivative theory in the
construction of the Caputo’s finite difference approximation equation.

Definition 1. [22] The Riemann-Liouville fractional integral operator, Jβ of order−β can be defined as follows:

Jβ f (x) =
1

Γ (β )

∫ x

0
(x− t)β−1 f (t)dt, (2)

where β > 0 and x > 0.

Definition 2. [22] The Caputo’s fractional partial derivative operator, Dβ of order −β can be defined as follows:

Dβ f (x) =
1

Γ (m−β )

∫ x

0

f (m)(t)

(x− t)β−m+1
dt, (3)

where β > 0, m− 1 < β ≤ m, m ∈ N, and x > 0.
Using these definitions shown in (2) and (3), we can have the following properties as follows.

Dβ k = 0, and (4)

Dβ xn =

{

0, for n ∈ N0 and n < [β ],
Γ (n+1)

Γ (n+1−β )x
n−β , for n ∈ N0 and n≥ [β ],

(5)

where k is a constant, [β ] is the smallest value of an integer which is greater than or equal to β , N0 is the natural number
and Γ (.) is the gamma function.

2 Caputo’s implicit finite difference approximation equation

Now, the Caputo’s implicit finite difference approximation equation is constructed in an ordered fashion as follows. Firstly,
we define h = lM, with M is any positive integer. Then, using the implicit finite difference method, we get

∂ β

∂xβ
u(xi, tn) =

1

Γ (2−β )

∫ tn

0

∂ 2

∂x2
u(xi,s)(tn− s)1−β ∂ s (6)
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=
1

Γ (2−β )

i−1

∑
j=0

∫ ( j+1)h

jh

(

Ui− j+1,n− 2Ui− j,n+Ui− j−1,n

h2

)

(nh− s)β ∂ s (7)

=
h−β

Γ (3−β )

i−1

∑
j=0

(Ui− j+1,n− 2Ui− j,n+Ui− j−1,n)(( j+ 1)2−β − j2−β ). (8)

By letting σβ ,h = hβ/Γ (3−β ) and g
β
j = ( j+1)2−β − j2−β , then the discrete approximation equation that is shown in (8)

can be written into
∂ β

∂xβ
u(xi, tn) = σβ ,h

i−1

∑
j=0

g
β
j (Ui− j+1,n− 2Ui− j,n+Ui− j−1,n), (9)

Eventually, the approximation equation to (1) based on the application of the Caputo’s implicit finite difference method
becomes

λ (Ui,n−Ui,n−1) = piσβ ,h

i−1

∑
j=0

g
β
j (Ui− j+1,n− 2Ui− j,n +Ui− j−1,n)+ qi

(

Ui+1,n−Ui−1,n

2h

)

+ riUi,n +wi,n, (10)

for i = 1,2, ...,M− 1 and λ = 1/k. (10) can be simplified further into

λUi,n−1 =−piσβ ,h

i−1

∑
j=0

g
β
j (Ui− j+1,n− 2Ui− j,n+Ui− j−1,n)−

qi

2h
(Ui+1,n−Ui−1,n)− riUi,n−wi,n +λUi,n, (11)

and finally, we get

w∗i = q∗i Ui−1,n +(λ − r∗i )Ui,n− q∗i Ui+1,n− p∗i

i−1

∑
j=0

g
β
j (Ui− j+1,n− 2Ui− j,n+Ui− j−1,n), (12)

Each of the coefficients in (12) is denoted as w∗i = λUi,n−1 +wi,n, q∗i = qi/2h, r∗i = ri and p∗i = piσβ ,h. It is important
to point out that the approximation equation shown in (12) can be called as the Caputo’s fully implicit finite difference
approximation equation. (12) has a second-order accuracy in space-fractional. For the sake of simplicity, we rewrite (12)
for the case when n > 3 as

−ρi + aiUi−3,n + biUi−2,n + ciUi−1,n + diUi,n + eiUi+1,n = fi, (13)

where ρi = p∗i ∑i−1
j=3 g

β
j (Ui− j+1,n− 2Ui− j,n +Ui− j−1,n),ai = (−p∗i g

β
2 ),bi = (−p∗i g

β
1 + 2p∗i g

β
2 ),ci = (q∗i − p∗i g

β
2 + 2p∗i g

β
1 −

p∗i ),di = (−p∗i g
β
1 + 2p∗i +(λ − r∗i )),ei = (−p∗i − q∗i ), and fi = w∗i . Hence, the corresponding linear system from (13) can

be formed in the matrix form as follows:
AŨ = f̃ , (14)

where

A =

























d1 e1

c2 d2 e2

b3 c3 d3 e3

a4 b4 c4 d4 e4

a5 b5 c5 d5 e5

. . .
. . .

. . .
. . .

. . .

aM−2 bM−2 cM−2 dM−2 eM−2

aM−1 bM−1 cM−1 dM−1

























(M−1)×(M−1)

, (15)

Ũ =
[

U1,1, U2,1, U3,1, . . . , UM−2,1, UM−1,1

]T
, (16)

f̃ =
[

f1− c1U1,1, f2− b2U2,1, f3− a3U3,1, f4 +ρ4, . . . , fM−2,1 +ρM−2, fM−1,1− eM−1UM−1,1 +ρM−1

]T
. (17)

To find the solutions of the linear system shown in (14), we propose the PSOR iterative method which can be explained
further in the next section.
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3 Formulation preconditioned SOR method

To formulate the PSOR iterative method for computing the approximate solutions of the linear system in (14), we do the
formation of the linear system into the corresponding preconditioned linear system as follows.

A∗Ũ∗ = f̃ ∗, (18)

Each matrix components from (18) are denoted as A∗ = PAPT , f̃ ∗ = P f̃ , and Ũ = PTŨ∗. Also,we define a matrix P as the
preconditioned matrix and more details can be referred in [15, 21]

P = I+ S, (19)

where

S =

















0 −r1 0 0 0 0
0 0 −r2 0 0 0
0 0 0 −r3 0 0

0 0 0 0
. . . 0

0 0 0 0 0 −rM−1

0 0 0 0 0 0

















(M−1)×(M−1)

, (20)

Now, to formulate the PSOR iterative method, we let the coefficient matrix A∗ in (18) be expressed in the form of
summation of the three-component matrices,

A∗ = D−L−V, (21)

Each component D,L, and V represent the diagonal, lower triangular, and upper triangular parts of the matrix A∗

respectively. Then, using the preconditioned shown in (19) and the decomposition matrix in (21), the PSOR iterative
method is constructed in the form of iterative formula as [13, 15],

Ũ∗
(k+1)

= (D−ωL)−1[ωV +(1−ω)D]Ũ∗
(k)

+(D−ωL)−1 f̃ ∗, (22)

where Ũ∗
(k+1)

represents an unknown vector at (k+ 1)th iteration. We accompany the PSOR iterative formula with the
following algorithm to facilitate the implementation of the formula to solve the one-dimensional linear SFPDE. Below is
the following algorithm.

Algorithm 1: PSOR iterative method
i. Set the initial guess Ũ∗← 0 and the tolerance ε ← 10−10,
ii. For j = 1,2, ...,n, do
For i = 1,2, ...,M− 1, compute formula (22)

then Ũ (k+1) = PTŨ∗
(k+1)

iii. Check convergence ||Ũ (k+1)−Ũ (k)|| ≤ ε . If it is satisfied, return to Step (ii).
iv. Show approximate solutions.

4 Numerical experiment

In this section, we investigate both the effectiveness and efficiency of the PSOR method using the comparison analysis
against the Preconditioned Gauss-Seidel method (PGS) and Gauss-Seidel method (GS). To do so, we have selected two
examples of the one-dimensional linear SFPDE. Below are the following examples to be tested.

Example 1 [15]: In this example, based on (1), we use p(x) = Γ (β )x0.5 as the diffusion term and
w(x, t) = (x2 + 1)cos(t + 1)− 2xsin(t + 1) as the source function. The remaining functions are let to be q(x) = r(x) = 0.
This example will be solved subjected to the initial condition u0 = (x2 + 1)sin(1) and the boundary conditions
g0 = sin(t + 1) and g1 = 2sin(t + 1). The provided exact solution is u(x, t) = (x2 + 1)sin(t + 1).

Example 2 [15]: For the second example, we consider the space-fractional diffusion equation

∂

∂ t
u(x, t) = Γ (1.2)xβ ∂ β

∂xβ
u(x, t)+ 3x2(2x− 1)ε−t , (23)
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with the initial condition u0 = x2 − x3 and zero Dirichlet conditions. The exact solution of this example is given by
u(x, t) = x2(1− x)ε−t .

For the comparison analysis, we observe the three criteria such as the number of iterations, the execution time
(seconds), and maximum error.The numerical results from the implementation of Algorithm 1 and the developed
algorithms for PGS and GS methods are recorded and tabulated in Tables 1and 2.

Table 1: Numerical results for the iterative methods using Example 1 at three different values of β

β Criteria Method 128 256 512 1024 2048

1.2 k GS 57 72 151 328 1547

PGS 36 67 129 278 608

PSOR 34 60 68 80 92

seconds GS 1.19 7.23 58.11 492.56 1227.21

PGS 1.09 5.45 41.43 472.35 1219.76

PSOR 0.84 5.33 25.31 115.89 557.00

max error GS 2.37e-02 2.44e-02 2.47e-02 2.49e-02 2.50e-02

PGS 2.37e-02 2.44e-02 2.47e-02 2.49e-02 2.50e-02

PSOR 2.37e-02 2.37e-02 2.37e-02 2.37e-02 2.37e-02

1.5 k GS 150 272 723 1935 8320

PGS 104 225 566 1514 4052

PSOR 80 211 331 477 679

seconds GS 3.77 27.00 276.20 945.20 4348.68

PGS 2.83 21.61 182.83 898.29 4299.73

PSOR 1.90 17.84 124.05 714.51 4259.31

max error GS 6.20e-04 5.69e-04 5.36e-04 5.13e-04 5.02e-04

PGS 6.20e-04 5.69e-04 5.36e-04 5.13e-04 5.02e-04

PSOR 6.20e-04 5.69e-04 5.36e-04 5.13e-04 5.02e-04

1.8 k GS 473 1123 3659 11836 47322

PGS 345 890 2635 11829 47289

PSOR 246 806 1635 2937 5171

seconds GS 11.36 111.98 1398.43 4448.83 55209.81

PGS 9.48 85.00 843.91 2138.11 8979.18

PSOR 5.76 67.75 619.64 2099.87 8852.28

max error GS 3.99e-02 3.97e-02 3.96e-02 3.95e-02 3.93e-02

PGS 3.99e-02 3.97e-02 3.96e-02 3.95e-02 3.93e-02

PSOR 3.99e-02 3.97e-02 3.96e-02 3.95e-02 3.93e-02

Using five different values of mesh size which are M = 128,256,512,1024, and 2048 and three different values
of β which are 1.2,1.5, and 1.8, we found that the PSOR iterative method required the least number of iterations in
solving the two tested examples among the three iterative methods. At β = 1.2, PSOR needs 18.69% to 74.30% lesser
number of iterations than GS and 4.71% to 48.80% lesser number of iterations than PGS. While at beta = 1.5 and 1.8
respectively, PSOR needs 24.61% to 70.54% and 25.20% to 63.79% lesser number of iterations than GS. Then, when
PSOR is compared against with PGS, PSOR needs 3.28% to 50.29% and 6.80% to 59.32% lesser number of iterations
than PGS at β = 1.5 and 1.8 respectively.

In correspondence to this, the execution time of the developed algorithm for the PSOR iterative method is much faster
than the PGS and GS iterative methods. At β = 1.2, the PSOR algorithm is faster than GS by 45.20% and faster than
PGS by 28.96%, on average. Then, at β = 1.5, the PSOR algorithm is faster than GS and PGS by 35.49% and 13.76%
respectively. Last but not least, for β = 1.8, the PSOR algorithm is faster than GS by 45.54% and it is faster by 12.22%
when compared to PGS.

From this numerical finding, we show that through the transformation of an original linear system to a
preconditioned linear system, the solution of the SFPDE can be computed numerically with better efficiency.Moreover, a
further improvement in terms of efficiency can be made by the implementation of SOR iteration which enhances the rate
of convergence of the solution. It is also important to mention that the accuracy of the three iterative methods (PSOR,
PGS, and GS) shows a good agreement.
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Table 2: Numerical results for the iterative methods using Example 2 at three different values of β

β Criteria Method 128 256 512 1024 2048

1.2 k GS 55 67 142 280 738

PGS 27 55 116 250 518

PSOR 25 48 102 222 498

seconds GS 0.90 7.29 50.90 375.79 750.90

PGS 0.72 4.72 37.86 322.55 413.21

PSOR 0.50 2.88 30.90 310.79 395.90

max error GS 1.80e-01 1.84e-01 1.86e-01 1.89e-01 1.88e-01

PGS 1.80e-01 1.84e-01 1.86e-01 1.89e-01 1.88e-01

PSOR 1.80e-01 1.84e-01 1.86e-01 1.89e-01 1.88e-01

1.5 k GS 92 224 838 2211 8098

PGS 75 197 522 1435 4125

PSOR 62 164 438 1391 4111

seconds GS 2.46 28.66 245.79 880.99 908.32

PGS 1.83 17.11 170.92 443.81 713.64

PSOR 1.66 14.66 163.79 432.99 688.32

max error GS 5.44e-02 5.59e-02 5.66e-02 5.69e-02 5.85e-02

PGS 5.44e-02 5.58e-02 5.65e-02 5.69e-02 5.85e-02

PSOR 5.44e-02 5.58e-02 5.65e-02 5.69e-02 5.85e-02

1.8 k GS 250 842 2856 3801 6314

PGS 213 686 2213 3452 5127

PSOR 166 542 1756 2431 4914

seconds GS 9.49 95.40 930.62 999.74 4699.38

PGS 5.27 59.48 737.50 820.62 3173.73

PSOR 4.64 51.40 694.62 809.74 3167.38

max error GS 8.88e-04 4.09e-04 1.55e-04 1.49e-04 1.20e-04

PGS 8.88e-04 4.09e-04 1.54e-04 1.49e-04 1.20e-04

PSOR 8.88e-04 4.09e-04 1.54e-04 1.49e-04 1.20e-04

5 Conclusion

To conclude this paper, we presented the formulation of the Caputo’s implicit finite difference approximation equations for
the one-dimensional linear SFPDE of parabolic type. We show the formation of a linear system using the approximation
equation and transformed it into a preconditioned linear system. The solution of the preconditioned linear system is then
solved using the proposed PSOR iterative method. From the numerical finding and observation, the PSOR iterative method
requires a lesser number of iterations and execution time compared with PGS and GS iterative methods. It is also found
that the accuracy of the three iterative methods is in good agreement.
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