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Abstract: The present paper investigates stability analysis and numerical treatment of chaotic fractional differential system in
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1 Introduction

The study of fractional calculus, which has more than 300 years of history, is not new in the pieces of literature [1–3].
Fractional calculus is mostly considered as the generalization of integer-order derivatives and integrals to equivalent
fractional order cases. Because of its different appearance in the fields of science and engineering with various
applications in biological systems, feedback amplifiers, finance, fluid mechanics, groundwater process, generalized
voltage dividers, capacitor theory, electrode-electrolyte interface models, fractional order predator-prey systems,
fractional neurons models, fitting experimental data, medical, geo-hydrology, motion control, analysis of some special
functions, and chaotic phenomena [2, 4–11], many authors have been actively involved in its development.

Recent developments in numerical integration solvers and computer simulation methods have enabled researchers
to model various chaotic equations with desired properties. Several research papers based on the study of chaos and
chaotic systems have been widely reported in scientific community since the inception of the so-called Lorenz attractor
generated by atmospheric convection was discovered [12]. Chaotic models have been derived in the form of maps, as well
as ordinary and partial differential equations. Recently, they have representation in the form of fractional order differential
equations with presence of chaos. Many chaotic systems with different types of chaotic attractors have been formulated.
For example, the Lorenz-like systems, Sprott systems, no-equilibria chaotic systems, Chua system, Rossler, system, Lu
system Jerk systems, Chen system, and fractional-order chaotic systems [13–19].

Some systems that are modelled with fractional concept do not have exact analytical solutions and the analytical
solution is too involved to be useful. As a result, we seek an approximate and numerical techniques [17, 20]. Various
numerical methods developed to solve fractional differential equations have been reported, see [21]. The present paper is
outlined as follows: In Section Two, some useful preliminaries in terms of definition and properties of fractional calculus
in Riemann-Liouville sense are presented. Section Three addresses the stability analysis and numerical approximation
techniques. Some examples of chaotic systems in literature are illustrated in Section Four, where the classical time
derivative is replaced with the Riemann-Liouville fractional order derivative. Conclusion is presented in the last section.
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2 Preliminaries

Some useful preliminaries in terms of definitions and properties of the theory of fractional calculus [1–3, 17, 22] are
presented in this section.

The left- and right-hand Riemann-Liouville fractional derivatives of order γ > 0 for function y(t) ∈ C1([a,b],Rn) are
defined as

RL
D

γ
a,ty(t) =

dn

dtn

[

D
γ−n
a,t y(t)

]

=
1

Γ (n− γ)

dn

dtn

∫ t

a
(t − ξ )n−γ−1y(ξ )dξ

and

RL
D

γ
t,by(t) = (−1)n dn

dtn

[

D
γ−n

t,b y(t)
]

=
(−1)n

Γ (n− γ)

dn

dtn

∫ b

t
(ξ − t)n−γ−1y(ξ )dξ ,

respectively, where n is an integer which satisfies n− 1 ≤ γ < n.
The Riemann-Liouville fractional derivative of order γ for a function y(t) is defined as

RL
D

γ
a,ty(t) =

1

Γ (n− γ)

dn

dtn

∫ t

a
(t − ξ )n−γ−1y(ξ )dξ ,

where n− 1 ≤ γ < n, and Γ (·) denotes the usual Gamma function.
The Riemann-Liouville fractional integral of order γ for a function y(t) is defined by

RL
I

γ
0 y(t) =

1

Γ (γ)

∫ t

0
(t − ξ )γ−1y(ξ )dξ , 0 < γ < ∞,

where Γ (·) denotes the Euler’s gamma function.
The left and right Caputo derivatives with fractional order γ > 0 of function y(t), for t ∈ (a,b) are defined as

C
D

γ
a,ty(t) = D

γ−n
a,t

[

u(n)(t)
]

=
1

Γ (n− γ)

∫ t

a
(t − ξ )n−γ−1y(n)(ξ )dξ ,

and

C
D

γ
t,by(t) = (−1)n

D
γ−n

t,b

[

y(n)(t)
]

=
(−1)n

Γ (n− γ)

∫ b

t
(ξ − t)n−γ−1y(n)(ξ )dξ

respectively, where n is an integer which satisfies n− 1 < γ < n.
The Caputo fractional order derivative of a function y(t) ∈C1([0,b],Rn); b > 0 with γ ∈ (0,1] is defined as

C
D

γ
0,ty(t) =

1

Γ (n− γ)

∫ t

0
(t − ξ )n−γ−1yn(ξ )dξ ,

for all t ∈ [0,b].
The Grunwald-Letnikov fractional derivative of order γ > 0 of a function u(t) is defined as [17]

GL
D

γ
0,ty(t) = lim

h→0

1

hγ

[ t−γ
h ]

∑
k=0

(−1)k

(

γ

k

)

y(t − kh),

where h is the time-step.
The Laplace transform of the Riemann-Liouville fractional operator is given as

∫ ∞

0
e−pt RL

D
γ
a,ty(t)dt = pγY (p)−

n−1

∑
k=0

pk
[

D
γ−k−1

]

t=a
n− 1 ≤ γ < n.
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The one-parameter Mittag-Leffler function Eγ(z) is defined by

Eγ(z) =
∞

∑
k=0

ωk

Γ (γk+ 1
.

The corresponding two-parameter Mittag-Leffler function is defined as

Eγ,β (z) =
∞

∑
k=0

zk

Γ (kγ +β )

where β > 0,γ > 0 and z ∈C. With β = 1, we have the following useful properties [6]

Eγ (z) = Eγ,1(z), E1,1 = ez.

The Laplace transform of the two-parameter Mittag-Leffler function is

∫ ∞

0
e−pttkγ+β−1E

(k)
γ,β (±atγ)dt =

k!pγ−β

(pγ ± a)k+1
(1)

where R(s)> |a|1/n.
The zero solution of fractional differential

RL
D

γ
t0,ty(t) = F(y(t), t), (2)

with fractional order 0 < γ ≤ 1 is stable if for any yk, k = 0, there exists ε > 0 such that ‖t‖ < ε for every t > t0. Then,
we said the zero solution of fractional differential equation (2) is asymptotically stable if ‖y(t)‖→ 0 as t → ∞.

Lemma 21 Let x(t) and z(t) be continuous functions on t, t0 and x(t)≥ 0, with r1 and r2 being positive constants, if

z(t)≤ r1 +

∫ t

t0

{x(ξ )z(ξ )+ r2}dξ ,

then

z(t)≤ (r1 + r2(t1 − t0))exp

∫ t

t0

x(ξ )dξ , t0 ≤ t ≤ t1.

3 Mathematical analysis of fractional system and method of approximation

3.1 Stability analysis

In this paper, we consider both the autonomous and non-autonomous time-fractional systems represented by

RL
D

γ
0,ty(t) = F(t,y(t)), 0 < α < 1 (3)

and
RL

D
γ
0,ty(t) = Ly(t)+F(t,y(t)), 0 < α < 1 (4)

subject to initial condition
RL

D
γ−1
0,t y(t) = y0, (5)

where y ∈ Rn, and L ∈ Rn×n,F(t) : [0,∞]→ Rn×n is a continuous t matrix.

Theorem 31 If all the eigenvalues of F satisfy

|arg(λ (F))|>
γπ

2
. (6)

Then the zero solution of fractional differential system (3) is asymptotically stable.
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Proof.See [17] for details.

Theorem 32 Assume ‖tγ−1Eγ,γ (Ltγ)‖ ≤ Ae−αt for 0 ≤ t < ∞, α > 0 and

∫ ∞

0
‖F(t)‖dt

is bounded. This implies that
∫ ∞

0 ‖F(t)‖dt ≤ B, with A,B > 0, then we deduce that the solution of (4) is asymptotically
stable.

Proof.Applying the Laplace and inverse Laplace transforms, the given non-autonomous system (4) and its initial condition
transform into

y(t) = tγ−1Eγ,γ(Ltγ )y0 +

∫ t

0
(t − ξ )γ−1Eγ,γ (L(t − ξ )γ)F(ξ )y(ξ )dξ . (7)

Taking the norms, the above-mentioned example leads to

‖y(t)‖ ≤ ‖tγ−1Eγ,γ(Ltγ )‖‖y0‖+
∫ t

0
‖(t − ξ )γ−1Eγ,γ (L(t − ξ )γ)‖‖F(ξ )‖‖y(ξ )‖dξ . (8)

Keep in mind that

‖y(t)‖ ≤ Ae−αt‖y0‖+

∫ t

0
Ae−α(t−ξ )‖F(ξ )‖‖y(ξ )‖dξ . (9)

Next, we multiply both sides of (9) by term eαt to obtain

eαt‖y(t)‖ ≤ A‖y0‖+
∫ t

0
Aeαt‖F(ξ )‖‖y(ξ )‖dξ .

With reference to Lemma 21, we set eαt‖y(t)‖= z(t), to have

eαt‖y(t)‖ ≤ (A‖y0‖)exp

(

A

∫ t

0
‖F(t)‖dt

)

, (10)

Again, we multiply both sides of (10) by e−αt to get

‖y(t)‖ ≤ (A‖y0‖)exp

(

A

∫ t

0
‖F(t)‖dt

)

e−αt , (11)

then
‖y(t)‖ ≤ (A‖y0‖)e

AB−αt , so that ‖y(t)‖→ 0, as t → ∞.

Hence, the solution of fractional differential system (4) is asymptotically stable.

3.2 Numerical approximation techniques

In this section, we follow the idea reported in [17] and present the numerical approximation technique for the Riemann-
Liouville operator.

We recall from definition,

y(t) =
1

Γ (1− γ)

∫ t

0
(t − ξ )−γF(ξ )dξ ,

RL
D

γ
0,t{F(t)}=

d

dt
y(t),

d

dt
y(t) =

y(t j+1 − y(t j))

∆ t
, (12)

where

y(t j+1) =
1

Γ (1− γ)

∫ t j+1

0
(t j+1 − ξ )−γF(ξ )dξ
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Fig. 1: Various phase portraits for fractional differential system (19)at γ = 0.77.

and

y(t j) =
1

Γ (1− γ)

∫ t j

0
(t j − ξ )−γF(ξ )dξ
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Fig. 2: Various phase portraits for fractional differential system (19)at γ = 0.85.

Thus, we present the following numerical approximation:

y(t j+1) =
1

Γ (1− γ)

∫ t j+1

0
(t j+1 − ξ )−γF(ξ )dξ ,

=
1

Γ (1− γ)

j

∑
s=0

∫ ts+1

ts

(t j+1 − ξ )−γ F(ts+1)+F(ts)

2
dξ ,

(13)

=
1

Γ (1− γ)

j

∑
s=0

F(ts+1)+F(ts)

2

∫ ts+1

ts

(t j+1 − ξ )−γdξ ,

=
1

Γ (2− γ)

j

∑
s=0

F(ts+1)+F(ts)

2

[

(t j+1 − ts+1)
1−γ − (t j+1 − ts)

1−γ
]

,
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Fig. 3: Various phase portraits for classical-order differential system (19) obtained with γ = 1.00.

Similarly,

y(t j) =
1

Γ (1− γ)

∫ t j

0
(t j − ξ )−γF(ξ )dξ ,

(14)

=
1

Γ (2− γ)

j

∑
s=1

F(ts)+F(ts−1)

2

[

(t j − ts−1)
1−γ − (t j − ts)

1−γ
]

+O(∆ t).
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Fig. 4: Fractional attractors of system (21) with γ = 0.89.

Thus

RL
D

γ
0,t{y(t)} =

1

∆ tΓ (2− γ)

{

j

∑
s=0

F(ts+1)+F(ts)

2

[

(t j+1 − ts+1)
1−γ − (t j+1 − ts)

1−γ
]

−
j

∑
s=1

F(ts)+F(ts−1)

2

[

(t j − ts−1)
1−γ − (t j − ts)

1−γ
]

}

(15)

+Eγ, j,

where

Eγ, j =
1

∆ tΓ (1− γ)

{

j

∑
s=0

∫ ts+1

ts

F(y)−F(ts+1)

(t j+1 − y)γ
dy−

j−1

∑
s=0

∫ ts+1

ts

F(y)−F(ts+1)

(t j − y)γ
dy

}

.
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Fig. 5: Fractional attractors of system (21) with γ = 0.94.

Theorem 33 Let F denotes a function not necessarily differentiable on [a,T ]. Then the fractional derivative of f of order
γ in the Riemann-Liouville sense is defined by

RL
D

γ
0,t{y(t)} =

1

∆ tΓ (2− γ)

{

j

∑
s=0

F(ts+1)+F(ts)

2

[

(t j+1 − ts+1)
1−γ − (t j+1 − ts)

1−γ
]

−
j

∑
s=1

F(ts)+F(ts−1)

2

[

(t j − ts−1)
1−γ − (t j − ts)

1−γ
]

}

+Eγ, j,

where

|Eγ, j| ≤C
(

t
1−γ
j+1 − t

1−γ
j

)

.
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Fig. 6: Fractional attractors of system (22) with γ = 0.59.

Proof.Considering the error term |Eγ, j|, we have

1

Γ (1− γ)

j

∑
s=0

∫ ts+1

ts

F(τ)−F(ts+1)

(t j+1 − τ)γ
dτ

=
1

Γ (1− γ)

j

∑
s=0

∫ ts+1

ts

(F(τ)−F(ts+1))(r− ts+1)

(τ − ts+1)(t j+1 − τ)γ
dτ

=
1

Γ (1− γ)

j

∑
s=0

∫ ts+1

ts

F(λs)(τ − ts+1)

(t j+1 − τ)
dτ, τ < t ≤ t j+1. (16)
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Fig. 7: Fractional attractors of system (22) with γ = 0.74.

Therefore,
∣

∣

∣

∣

∣

1

Γ (1− γ)

j

∑
s=0

∫ ts+1

ts

F(λs)(τ − ts+1)

(t j+1 − τ)
dτ

∣

∣

∣

∣

∣

≤
t
−γ
j+1

Γ (1− γ)
max

0≤t≤t j+1

|F(t)|
j

∑
s=0

∫ ts+1

ts

1

(t j+1 − τ)γ
dτ

≤
∆ t

Γ (2− γ)
max

0≤t≤t j+1

|F(t)|t
1−γ
j+1 . (17)

Similarly,
∣

∣

∣

∣

∣

1

Γ (1− γ)

j−1

∑
s=0

∫ ts+1

ts

F(τ)−F(ts+1)

(t j − τ)γ
dτ

∣

∣

∣

∣

∣

≤
∆ t

Γ (2− γ)
max

0≤t≤t j+1

|F(t)|t
1−γ
j . (18)
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Fig. 8: Fractional attractors of system (22) with γ = 1.00.

Finally, we have the required result as

1

Γ (2− γ)
max

0≤t≤t j+1

|F(t)|

which completes the proof.

4 Experimental results

Some examples of chaotic models drawn across the literature are addressed in this section. The classical time derivatives
in such models will be replaced using the Riemann-Liouville fractional operator of order 0 < γ ≤ 1. We also intend to
compare the integer order result obtained when γ = 1 with fractional order cases at γ ∈ (0,1).
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4.1 Example 1

Consider the following fractional nonlinear autonomous chaotic system

RL
D

γ
0 u(t) = v− u,

RL
D

γ
0 v(t) = αv− uw, (19)

RL
D

γ
0 w(t) = uv−β ,

which has two equilibrium points obtained by setting RLD
γ
0 = 0 in (19), and solve for u,v,w. That is

v∗− u∗ = 0, αv∗− u∗w∗ = 0, u∗v∗−β = 0.

Simple calculation shows that the interior points E∗ = (u∗,v∗,w∗) corresponds to (±
√

β ,±
√

β ,α). The corresponding
Jacobian matrix is given by

A =





−1 1 0
−w α −u

v u 0



 .

At point E∗, the Jacobian matrix becomes

A =





−1 1 0

−α α −
√

β
√

β
√

β 0





E∗

which has the characteristic equation

λ 3 − (α + 1)λ 2 +β (λ + 2) = 0 (20)

with resulting eigenvalues calculated as λ1 = −1, λ2 = 0.25− 0.968245 j and λ3 = 0.25+ 0.968245 j for parameter
values α = 0.5 and β = 0.5. It should be noted that the real parts of this eigenvalues are nonnegative. This implies that the
equilibrium states are unstable. Consequently, emergence of chaos is evident. In the experiment, we simulate with initial
values u0 = 0.01,v0 = 0.01,w0 = 0 to obtain numerical results as shown in Figures 1 and 2 for γ = 0.77 and γ = 0.85,
respectively. Figure 3 corresponds to integer order results obtained for γ = 1.00.

4.2 Example 2

As an extension, we consider a new four-scroll chaotic attractor introduced to the following fractional differential system
[23]

RL
D

γ
0 u(t) = a1v− a2u+ a3uw

RL
D

γ
0 v(t) = −a4uw− a5u+ a6vw+ a7u (21)

RL
D

γ
0 w(t) = a8 − a9v2.

The choice of parameters a1 = 1,a2 = 0.7,a3 = 0.3,a4 = 4,a5 = 4.4,a6 = 1,a7 = 0.1,a8 = 10,a9 = 1 to obtain chaotic
attractors in Figures 4 and 5.

4.3 Example 3

Finally, we consider three-dimensional autonomous Lu system [24]

RL
D

γ
0 u(t) = a(v− u),

RL
D

γ
0 v(t) = −uw+ cv (22)

RL
D

γ
0 w(t) = uv− bw.

For the experiments, we utilize the Lu system parameters a = 35,b = 3 and c = 28 to obtain results in Figures 6, 7 and 8
for different instances of fractional power γ ∈ (0,1].
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5 Conclusion

In this paper, some classical order chaotic systems have been modelled using the Riemann-Liouville fractional derivative
of order γ ∈ (0,1). Mathematical analysis of the general system is presented. Numerical approximation technique is also
introduced. Some numerical experiments with applications in physics, engineering are considered in some instances of
γ with comparison to classical order case. We deduce that both classical and fractional order systems almost display a
similar distribution in phase.

Acknowledgment

The author is grateful to the editor and anonymous reviewers for their beneficial comments.

References

[1] A.A. Kilbas, H.M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Netherlands,

2006.

[2] I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999.

[3] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional integrals and derivatives. Theory and applications, Gordon and Breach,

Yverdon, 1993.

[4] A. Atangana, Fractional operators with constant and variable order with application to geo-hydrology, Academic Press, New

York, 2017.

[5] D. Baleanu, Z.B. Guvenc and J.A.T. Machado, New Trends in Nanotechnology and Fractional Calculus Applications, Springer,

Netherlands, 2010.

[6] D. Baleanu, R. Caponetto and J.A.T. Machado, Challenges in fractional dynamics and control theory, Journal of Vibration and

Control, 22 (2016) 2151–2152.

[7] R. Caponetto, Fractional Order Systems (Modelling and Control Applications), World Scientific, Singapore, 2010.

[8] K. Diethelm, The Analysis of Fractional Differential Equations, an Application Oriented, Exposition Using Differential Operators

of Caputo Type. Lecture Notes in Mathematics. Springer, Heidelbereg, 2010.

[9] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, World Scientific,

Singapore, 2010.

[10] D.F.M. Torres and A.B. Malinowska, Introduction to the Fractional Calculus of Variations, Imperial College Press, London, 2012.

[11] L. Ying and Y. Chen, Fractional Order Motion Controls, Wiley, New York, 2012.

[12] E.N. Lorenz, Deterministic nonperiodic flow, J Atmos Sci. 20 (1963) 130-141.

[13] T. Gotthans, and J. Petrzela, New class of chaotic systems with circular equilibrium, Nonlinear Dynamics, 73 (2015) 429-436.

[14] S. Jafari, J.C. Sprott, V.T. Pham, C. Volos and C. Li, Simple chaotic 3D flows with surfaces of equilibria, Nonlinear Dynamics, 86

(2016) 1349-1358.

[15] A. Lassoued and O. Boubaker, A new fractional-order jerk system and its hybrid synchronization. In: Fractional order control and

synchronization of chaotic systems, Cham: Springer; 2017. 699-718.

[16] J. Lu, G. Chen, D. Cheng and S. Celikovsky, Bridge the gap between the Lorenz system and the Chen system, Int J Bifurcation

Chaos, 12 (2002) 2917-2926.

[17] K.M. Owolabi, Riemann-Liouville fractional derivative and application to model chaotic differential equations, Progress in

Fractional Differentiation and Applications, 4 (2018) 99-110.

[18] K.M. Owolabi and A. Atangana, Chaotic behaviour in system of noninteger-order ordinary differential equations, Chaos, Solitons

and Fractals, 115 (2018) 362-370.
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